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Abstract

System-on-chip (SoC) designs use bus protocols for high
performance data transfer among the Intellectual Property
(IP) cores. These protocols incorporate advanced features
such as pipelining, burst and split transfers. In this paper,
we describe a case study in formally verifying a widely used
SoC bus protocol: the Advanced Micro-controller Bus Ar-
chitecture (AMBA) protocol from ARM.

In particular, we develop a formal specification of the
AMBA protocol. We then employ model checking, a state
space exploration based formal verification technique, to
verify crucial design invariants. The presence of pipelining
and split transfer in the AMBA protocol gives rise to inter-
esting corner cases, which are hard to detect via informal
reasoning. Using the SMV model checker, we have detected
a potential bus starvation scenario in the AMBA protocol.
Such scenarios demonstrate the inherent intricacies in de-
signing pipelined bus protocols.

1 Introduction

With the increase in size and complexity of system-on-
chip (SoC) designs, functional verification has become im-
portant and more difficult to achieve. Currently an SoC de-
sign is typically bus based, that is, a number of heteroge-
neous functional modules are connected to a common bus
(or a hierarchy of buses). Many of the modules connected to
the bus are vendor provided Intellectual Property (IP) cores.
The design for these cores are typically not available; how-
ever they are often pre-validated. Still, we would need to
validate the interactions among the IP cores. In a bus based
SoC design, this could be achieved in the following steps
(see [4] for a similar methodology).

• Design/verify interfaces to connect IP cores to a bus.

• Verify the bus protocol.

• Check that the IP cores together with their interfaces
conform to the specific bus protocol.

We do not address the issue of component interface de-
sign in this paper. Currently a huge body of work is de-
voted to this area with focus on interface modeling, verifi-
cation and correct-by-construction synthesis. The interested
reader could refer to [10] for example.

In this paper, we verify the interactions among various IP
cores via the SoC bus, in the AMBA AHB protocol. Even
today, these interactions are specified informally in design
documents via timing diagrams and English descriptions.
Such an informal descriptions makes it almost impossible
to reason about the correctness of nontrivial protocols. We
employformal verificationtechniques in validating the bus
protocol.

We first develop a formal specification of the protocol.
The bus interface of each component is modeled as a finite
state machine. The protocol is then defined to be the syn-
chronous composition of these state machines. This finite
state description of the protocol can beformally verified by
a state space search technique called model checking [5].
Model checking is an automated verification technique for
checking functionality properties of finite state concurrent
systems. It allows verification of properties specified in
a temporal logic, common forms of which include safety,
liveness etc. In particular, we have used the Cadence SMV
model checker [3] to automatically verify safety properties
in the AMBA protocol.

Using the SMV model checker, we found a scenario
which leads to bus master starvation: a master request-
ing the bus but being denied access forever. The scenario
shows a subtle incompleteness in the protocol specification
which would be very hard to detect without formal verifi-
cation. More importantly, this starvation scenario demon-
strates the intricacy involved in designing pipelined bus
protocols. Pipelining is an important performance enhanc-
ing feature of many on-chip and off-chip protocols such as
CoreConnect Bus, Intel Itanium Bus etc. The AMBA pro-
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tocol is also pipelined, that is, transferA2 may start before
the previous transferA1 has completed. Thus the protocol
designer must be cautious about how to roll back transfer
A2 if transferA1 fails to complete. From our experience
in understanding the AMBA protocol, we believe that the
complication of pipelining makes it harder to detect bugs
via human reasoning.

Contributions In summary, the contributions of this pa-
per are:

• We exercise a practical verification methodology on
a widely used system-on-chip bus protocol. The
methodology involves formally verifying the protocol
assuming that the individual component implementa-
tions conform to the protocol. Given the wide usage
of AMBA, formal verification of this protocol is of ut-
most importance (which, to the best of our knowledge,
has not been achieved so far). In fact, verification of
pipelined bus protocols have only been studied very
recently. In our work, the modeling of the protocol is
done by hand whereas the verification is done automat-
ically via model checking.

• Our efforts at model checking the AMBA protocol
found a potential starvation scenario. This arises from
an incompleteness in the specification. We believe it
is important to document such corner cases for widely
used protocols like AMBA. Furthermore, the starva-
tion scenario that we found shows some inherent com-
plications in designing pipelined bus protocols.

Organization The rest of this paper is organized as fol-
lows. In the next section, we discuss related work on run-
time monitoring and bus protocol specification/verification.
In Section 3, we give a brief overview of the AMBA bus
protocol. In Section 4 we discuss our experience in model
checking the protocol. In particular, we outline a subtle cor-
ner case detected by the model checker. Finally, we present
our conclusions and possible future work in Section 5.

2 Related Work

Formal specification and verification of bus protocols
(such as the PCI Local Bus) have been studied widely
[1, 4, 8, 12]. However, these protocols do not involve
pipelined data transfers. The work in [11, 12] promotes a
specification style in which the bus protocol is described
via an observer which raises error signals on violation of
the protocol. This observer also detects the agent which
is responsible for the error. Apart from finding protocol
specification errors, such a specification style can aid the
construction of a run-time monitor which checks protocol
implementation.

The AMBA bus protocol involves advanced features
such as pipelining and split transfers. This leads to in-
teresting corner cases involving the splitting of a transfer
whose subsequent transfers have been initiated. To the best
of our knowledge, formal specification and verification of
pipelined bus protocols has not been studied until recently.
In particular, [11] formally specifies the pipelined Itanium
bus protocol.

In [9], monitors are developed for watching the compo-
nents (such as master, slave) connected to a bus system at
run-time; this methodology is then applied to develop moni-
tors for the AMBA AHB protocol. Note that this work does
not correspond to a formal verification of the AMBA pro-
tocol itself. Instead, it performs functional verification of
the circuit blocks participating in the protocol. Our work
studies the interactions between components in the AMBA
protocol via model checking.

3 The AMBA Bus Protocol

In this section, we outline the AMBA system-on-chip
bus protocol. Many of the features of this protocol, such
as pipelined transfers and split transfers are present in other
SoC communication protocols such as CoreConnect [7].

Bus Architecture The architecture of the AMBA bus
consists of a high-performance bus, called the AHB and a
peripheral bus called the APB. The AHB and the APB are
connected via a bus bridge. Several masters and slaves can
be connected to the AHB, but at a time only one master is
allowed access. The master to be allowed access is selected
by an arbiter. Which slave services a transfer depends on the
address being read/written. The AHB-APB bridge serves as
a slave on the AHB, and the only master in the APB. The
various low performance peripherals on the APB serve as
the APB slaves.

Pipelining and Wait Cycles The AMBA protocol allows
burst transfers by a master which has been granted bus ac-
cess. The individual transfers within a burst are called as
beats. The address and data of the different beats in a single
burst are transferred in apipelinedfashion. A write burst
which writes dataD1, D2, D3 to addressesA1, A2, A3 re-
spectively is shown in Figure 1. Note that dataDi and ad-
dressAi+1 are transmitted in thesameclock cycle on the
HADDR and HWDATA lines. Thus the address and data
phases of consecutive beats within a burst can overlap.

The protocol allows a slave to insert wait cycles by de-
asserting a HREADY signal if the slave is not ready to ser-
vice a transfer. This extends the data phase of a transfer.
Due to the pipelined nature of the bus, the address phase of
the next transfer also has to be extended. Figure 2 shows
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Figure 1. Pipelined transfer in AMBA

the writing ofD1, D2, D3 to addressesA1, A2, A3 with the
insertion of a single wait cycle in the transfer ofD2.
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Figure 2. Pipelined transfer with wait states

Split and Retry Response In order to prevent an exces-
sive number of wait cycles (and hence wastage of bus band-
width) for a particular transfer, the protocol allows the re-
lease of bus access to the other masters. This is co-ordinated
by the slave which either informs the arbiter of its temporary
inability to service a master (a SPLIT response) or informs
the master to retry the transfer (a RETRY response).

The provision ofsplit transfers, that is, temporarily sus-
pending a transfer and resuming it later when the slave is
ready, raises many important questions. The pipelined na-
ture of the AMBA bus further complicates the situation.
Consider a burst transfer of addressesA1, A2 from a master
m where the transfer forA1 causes a split. By the time
the slave’s response is known, the addressA2 is already
transmitted. However, since the transfer ofA1 has been
temporarily suspended, the protocol must kill the transfer
of A2 as well. Furthermore, the SPLIT/RETRY responses
can also cause a bus starvation scenario under certain cir-
cumstances. In the next section, we discuss how we can
formally verify such design invariants by employing model
checking.

4 Model Checking the Protocol

We used the Cadence SMV symbolic model checker [3]
to formally verify the AMBA protocol. The aim of this ex-
ercise is to find subtle bugs in the informal protocol specifi-
cation.

The input language of SMV allows us to describe each of
the modules in the protocol (master, slave, arbiter, decoder)
as a finite state machine. In particular, the user specifies
the initial states and transition relation of each of the mod-
ules. From the description of each of the modules, SMV
constructs a global state transition graph of the entire sys-
tem. The transition relation and sets of states are viewed
as boolean functions. These are represented efficiently by
a compact data structure called Binary Decision Diagrams
(BDD) [2] which involve structure sharing.

Modeling in SMV For the AMBA bus protocol, we
first modeled the Advanced High Performance Bus (AHB).
AHB consists of the following modules: (a) multiple mas-
ters (b) multiple slaves (c) an arbiter, (d) an address decoder,
(e) a default master, and (f) a default slave. Masters request
bus access from the arbiter. The arbiter is fair and it ensures
non starvation of requests. A master which is granted bus
access conducts a sequence of read transfers or a sequence
of write transfers. The address of any transfer is passed on
to the decoder, which selects the slave to service the trans-
fer. Thus, the decoder has an implicit memory map. In case
the memory map of the decoder is incomplete, the protocol
has a default slave (which services addresses not mapped to
any other slave). Similarly, there is a default master which
is granted bus access when no master is requesting.

Next, we model the Advanced Peripheral Bus (APB). In
particular, the AHB-APB bridge is modeled as another slave
on the AHB; it is selected by the AHB decoder just like any
other AHB slave. The bridge however has a reduced set of
response signals as compared to other AHB slaves. This
is because the APB slaves have a smaller response set, and
the bridge can only echo these responses back to the AHB.
In addition, we must model the additional control logic in
the bridge which sets the APB bus to idle in the absence
of any activity. Consequently, when there is a read/write
request from AHB, there is a additional cycle for set-up. We
can then verify simple properties of the AHB-APB interface
such as:Every read request from AHB to APB incurs at
least one wait cycle.

Logic for Specifying Properties The SMV Model
checker allows us to specify properties of the protocol in
Computation Tree Logic (CTL) [6]. Assume thatϕ is a
state formula, that is, a property of states in the transition
system we are verifying. Then,ϕ is an invariantis stated
in CTL asAGϕ. ϕ is true in all the next states (at least one
next state)is stated asAXϕ (EXϕ). ϕ is eventually true in
all outgoing paths (at least one outgoing path)is stated as
AFϕ (EFϕ).

The operators of CTL can be nested. Thus, the prop-
erty AG(ϕ ⇒ AFψ) means that in all reachable states
of the system either (a)ϕ is not true, or (b)ϕ holds and
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Figure 3. A possible Transfer Cancellation

along all outgoing pathsψ holds eventually. Such a prop-
erty is useful for specifying “guaranteed response” or lack
of starvation. For example in the AMBA protocol, we
can specify and check the propertyAG(HBUSREQm ⇒
AF HGRANTm). Here the masterm requests bus access
by assertingHBUSREQm and the arbiter grants bus ac-
cess tom by asserting the signalHGRANTm. This prop-
erty states that whenever masterm requests bus access, it is
always eventually granted bus access by the arbiter.

Transfer Cancellation Due to the pipelined nature of the
AMBA protocol, a master initiates transferi+ 1 before re-
ceiving the response for transferi. Consequently, if transfer
i resulted in a SPLIT or RETRY response from the slave,
the mastermustcancel the transferi + 1. This is because
transferi+1 was initiated with the assumption that transferi
would result in an OKAY response from the slave. One such
scenario (showing a SPLIT response from the slave and the
cancellation of the second transfer in a burst) is captured by
the timing diagram in Figure 3. The signalHTRANS de-
notes the status of the current transfer; it is IDLE if transfer
is not taking place,NSEQfor the first transfer in a burst and
SEQfor the subsequent transfers.

In Figure 3, a masterm is granted bus access and trans-
fers in cycle 1. The slave issues a split response to this trans-
fer in cycle 2. However, by this timem has driven the next
addressA2. So the slave issues another split response in cy-
cle 3. Furthermore, the master also does not drive any new
addresses on the address bus. This is shown as HTRANS =
IDLE in cycle 3.

The current AMBA specification thus forces a slave to
set HRESP = SPLIT for two cycles in case of a split re-
sponse. This allows the cancellation of the transferA2 in
Figure 3 (which was started even before the response for
A1 was obtained). This requirement is typical of a pipelined
bus protocol. It captures the protocol’s attempt to correctly
roll-back transfers which were speculatively initiated (A2
was initiated based on the speculation thatA1 will produce

an OKAY response). We now discuss how subtle corner
cases can occur in spite of such a requirement.

Checking for no-starvation The pipelined nature of the
AMBA bus makes the cancellation (say due to a SPLIT) and
resumption of transfers difficult. In the above, we have only
considered the cancellation of transfers. A crucial design
invariant in a bus protocol is the non-starvation of all bus
masters, that is

AG (HBUSREQm ⇒ AF HGRANTm)

Thus, if a masterm requests the bus (by asserting the sig-
nalHBUSREQm) then it is eventually granted bus access.
Verifying this property is important in AMBA, since there
might be corner cases in the protocol which prevent the re-
sumption of bus access by a master which has been split.
Using the SMV model checker, we found a counterexample
to the above property: a scenario in which starvation of a
split master is possible in the AMBA protocol.

Before presenting the starvation scenario, let us explain
some relevant features of our modeling. A bus masterm
which has been split by a slaves can suffer from starvation
for many reasons:

• the slaves never informs the arbiter that it is now able
to servicem, or

• even afters has informed its ability to servicem, the
arbiter ignores the bus request fromm forever.

However, the above situations are not caused by any
error in the bus protocol. Instead they are caused by an
implementation error in the slave or an unfair arbitration
policy used in the arbiter. When we model check the
AMBA protocol, our aim is to find subtle bugs in the
protocol itself, assuming that the arbiter is fair and the
masters/slaves conform to the protocol specification. To
prove the no-starvation propertyAG (HBUSREQm ⇒
AF HGRANTm) for any masterm, we would like to in-
struct the model checker to assume certain properties of the
arbiter/slave. This can be done in SMV by specifying

using fair, slave_live prove no_starve;
assume fair, slave_live;

whereno starve is the no-starvation property that we
want to prove.

fair is an assertion stating fairness of the arbiter. In
particular the arbiter maintains a list of masters which
have been split (and have not recovered). Requests from
such masters aremaskeduntil the slave informs the ar-
biter that it is able to service these masters. The arbiter
maintains amask array; maskm is true if and only if
the arbiter believes thatm has been split but has not re-
covered. Thus the fairness property of the arbiter requires



AG(HBUSREQm ∧ ¬maskm ⇒ AF HGRANTm) for
any masterm. In other words, ifm is requesting the bus
and the arbiter believes thatm has not been split, thenm is
eventually granted bus access.

slave live is an assertion which requires the slave
to always eventually recover from a split. Any slaves
maintains a list of masters that it has split so far. Thus,
the slave maintains asplit array; splitm is true if the
slave has split masterm and is not yet ready to service
m. When the slave is ready to service masterm, it as-
serts theHSPLITm signal. Theslave live property
is AG(splitm ⇒ AF HSPLITm).

Note that SMV does not prove the assertionsfair
andslave live . Instead it uses them to prove the no-
starvation property. This removes the need to model the
specific details of the arbitration policy or the slave imple-
mentation in our SMV code. This feature is extremely use-
ful for protocol verification where we want to verify the pro-
tocol by assuming certain desirable properties of the com-
ponent implementations (which participate in the protocol).

Verification Statistics In a bus configuration with 2 mas-
ters and 1 slave, SMV finds a violation of no-starvation in
0.17 seconds. As far as the memory usage is concerned,
the number of Binary Decision Diagram (BDD) nodes allo-
cated during the verification run is 19149. The verification
was conducted using a Linux version of Cadence SMV in a
Pentium IV 1.3 GHz workstation with 1 GB of main mem-
ory.

The SMV description of a simplified version of AMBA
AHB is available athttp://www.comp.nus.edu.
sg/˜abhik/software/amba/ahb.smv This de-
scription does not model many features of AHB (such as
burst transfers of various lengths2, 4, . . .), but is detailed
enough to demonstrate the no-starvation scenario presented
in this paper. The SMV description contains only 144 lines
of source code. The counter-example generated by Cadence
SMV is also available online athttp://www.comp.
nus.edu.sg/˜abhik/software/amba/ahb.out

A starvation scenario Figure 4 shows a bus starvation
scenario in the AMBA protocol. The timing diagram cap-
tures the relevant part of the counter-example computed by
the SMV model checker.

In Figure 4, masterm1 transfers a two beat burst in cy-
cles 1 and 2. In cycle 3, masterm2 gains bus access and
starts a burst. The HMASTER signal captures the master
which currently has bus access. Thus, HMASTER =m1 in
clock cycles 1 and 2, and HMASTER =m2 in cycle 3. The
response for the address transmitted in cycle 2 (by master
m1) comes in cycle 3 due to the pipelined nature of AMBA.
If this is a split response (as is shown in Figure 4), then the
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Figure 4. A Starvation scenario in AMBA

slave records the fact that masterm1 has been split. Mean-
while the arbiter snoops on the split response sent by the
slave in cycle 3. In the next clock cycle, that is in cycle
4, the arbiter however setsmaskm2 instead ofmaskm1.
This is because HMASTER changed tom2 in cycle 3. By
snooping on the split response (from the slave) and check-
ing the HMASTER signal, the arbiter believes thatm2 has
been split. This is the source of the problem, since the slave
believes thatm1 has been split. Subsequently, the slave be-
comes ready to servicem1 andm1 accesses the bus. How-
ever, the arbiter never grants bus access to masterm2 (even
if m2 requests bus access), since it believes thatm2 has
been split. On the other hand, the slave has no record that
m2 has been split, so it never asserts HSPLIT2 to inform
the arbiter that it is ready to servicem2. This leads to a
starvation of the bus masterm2, that is, a violation of the
propertyAG(HBUSREQm2 ⇒ AF HGRANTm2).

After finding the above counter-example trace from
SMV, we cross-checked it against the AMBA protocol spec-
ification. We found that this behavior is a potential bug aris-
ing from an incompleteness in the current AMBA specifi-
cation. The error is introduced by the manner in which the
arbiter checks for a split response. In Figure 4, the arbiter
finds out in clock cycle 4 that a split response occurred in
cycle 3. However, it is incorrect for the arbiter to consider
the HMASTER of cycle 3 (which is m2). Note that the split
response in cycle 3 is the slave’s response to the address
transferred in cycle 2 (due to the pipelined nature of the
AMBA bus). Therefore, the arbiter should use the HMAS-
TER of cycle 2 to infer thatm1 has been split. In other
words, the arbiter always needs to keep track of not only
the current HMASTER, but also the HMASTER of previ-



ous cycles (whose response is yet to arrive). This needs to
be explicitly clarified in the AMBA protocol specification
to avoid the starvation scenario depicted in Figure 4.

Note that in a pipelined protocol, all communicating
agents should always keep track of all incomplete trans-
fers which have started. In the above scenario, the mas-
ters/slave keep track of the incomplete transfers in every
cycle. However, in cycle 3 the arbiter failed to record that
even thoughm1 has stopped transferring, the response for
m1’s last transfer is yet to arrive. This resulted in the star-
vation scenario.

5 Discussions

In this paper, we presented our experience in verification
of a system-on-chip bus protocol. Verification techniques
such as model checking are useful in automatically detect-
ing subtle corner cases in the protocol specification. This
was indeed the case for the AMBA AHB protocol, where
the starvation scenario found would be very hard to detect
without automated formal verification. Our work shows the
intricacies in designing pipelined bus protocols and the im-
portance of formally verifying these protocols.
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