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Abstract units, shifters, multipliers etc). They can also modify hard-

We present a methodology that maximizes the perfovﬁ\%%ﬁoeirsa}gneetggih%fstigg QE)I_PS (such as register file size,

mance of Tensilica based Application Specific Instruction-set A : P
: : ; s the number of coprocessors/functional units increase
Processor (ASIP) through instruction selection when an areg, 4"/, re specific instchtions are involved in an applica-

constraint is given. Our approach rapidly selects from a s ion, the design space exploration of ASIPs takes longer. De-

of pre-fabricated coprocessors/functional units from our '\%‘fners of ASIPs require an efficient methodology to select

,E’erg% &Lg;eﬂgﬂggﬁﬂ eSEl)'gﬁgli(I:i ég%ﬁg%‘?&? (tf\se\éar'é"?ﬁﬁ OUhe correct combination of coprocessors/functional units and
o) e e o, 2 v egbecfc htucters. Heree e Gesin ol paa
constraints are satisfied. Our methodology uses a combl- Research into design approaches for ASIPs has been car-

nation of simulation, estimation and a pre-characterised li- . : :
; e ; _ ed out for about ten years. Design approaches for extensi-
brary of instructions, to select the appropriate co-processor le processors can be divided into three main categories: ar-

and instructions. We report that by selecting the appropriate, - L .
coprocessors/functional units and specific TIE instruction qgfgtgreéjeig'%’f”;gg%’g%%%ﬁ%[‘il]eglf?(’)]r[ég]si[zrﬂ]ﬁ iy
the total execution time of complex applications (we stu rent[agyge]cgs o]f[ext]ensible processgrs [7][9] gning

a voice encoder/decoder), an application’s performance ca The first category of architecture descripti'on languages

be reduced by up to 85% compared to the base implemen- > alvit :
tation. our es){im%tor used in thpe system takes typicglly |e§rér ASIPs is further classified into three sub-categories based

than a second to estimate, with an average error rate of 4% their primary focus: the structure of the processor such
(as compared to full simulation, which takes 45 minutespS the MIMOLA .SyStIaT %7]' tg‘“is'%sﬁruﬂ'?n sgt of thebpro—
The total selection process using our methodology takes 36£SSOr as given in nML [6] an [11]; and a combina-

; i ; ; i :adon of both structure and instruction set of the processor as
hours, ygﬂgesgjgi'a‘fgzgg space exploration using simulatioffL oy 1O€ [10], EXPRESSION [12], LISA [13], PEAS-III

(ASIP-Meister) [16], and FlexWare [19]. This category of
approach generates a retargetable environment, including re-
1 Introduction targetable compilers, instruction set simulators (ISS) of the
target architecture, and synthesizable HDL models. The gen-
Embedded system designers face design challenges s@thted tools allow valid assembly code generation and perfor-
as reducing chip area, increasing application performancgance estimation for each architecture described (i.e. "retar-
reducing power consumption and shortening time-to-markegetable”)
Traditional approaches, such as employing general pro- In the second category, the compiler is the main focus of
grammable processors or designing Application Specific Irithe design process using compiling exploration information
tegrated Circuits (ASICs), do not necessarily meet all desigguch as data flow graph, control flow graph etc. It takes an
challenges. While general programmable processors offapplication written in a high-level description language such
high programmability and lower design time, they may noas ANSI C or C++, and produces application characteristic
satisfy area and performance challenges. On the other haadd architecture parameter for extensible processors. Based
ASICs are designed for a specific application, where the area these application characteristics, an application specific
and performance can easily be optimised. However, the dprocessor for that particular application can be constructed.
sign process of ASICs is lengthy, and is not an ideal agn [21], Zhao used static resource models to explore possible
proach when time-to-market is short. In order to overcomginctional units that can be added to the data path to enhance
the shortcomings of both general programmable processqrerformance. Onion in [18] proposed a feed-back methodol-
and ASICs, Application Specific Instruction set Processonsgy for an optimising compiler in the design of an extensible
(ASIPs) have become popular in the last few years. processors, so more information is provided at the compile
ASIPs are designed specifically for a particular applistage of the design cycle producing a better hardware exten-
cation or a set of applications. Designers of ASIPs casible processors model.
implement custom-designed specific instructions (custom- In the third category, estimation and simulation method-
designed specific functional units) to improve the perforelogies are used to design extensible processors with specific
mance of an application. In addition, ASIP designersegister file sizes, functional units and coprocessors. Gupta
can attach pre-fabricated coprocessors (such as Digital Sig-al. in [9] proposed a processor evaluation methodology to
nal Processing Engines and Floating-Point units) and prquickly estimate the performance improvement when archi-
designed functional units (such as Multiplier-Accumulatd@ectural modifications are made. However, their methodol-
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ogy does not consider an area constraint. Jain [15] proposed I Ernbedaes Agplication ]

a methodology for evaluating register file size in an extensi- ———W
ble processors design. By selecting an optimum register file I+ Henss configurable oore step
size, they are able to reduce the area and energy consumption * ProfilesSimulates the 2pplication using
significantly. rarstansice | Lo

Our design flow fits between second and third cate- — *™™ ——— e
gories of the design approaches given above. In this pa- 2 TIE step
per, we propose a methodology for extracting specific in- T ttution o lnction sale
struction from an application to build an instruction library e T e
and a heuristic algorithm for selecting pre-fabricated copro- Performance
cessors/functional units and pre-designed (from our library) 7 o ot saties
specific instructions to construct an extensible processors. [ Final Desian |
Hence, the extensible processor achieves maximum perfor- ) o ]
mance within the given area constraint. There are four in- Figure 1. Xtensa application’s design flow.

puts of our design flow: an application written in C/C++,
set of pre-fabricated coprocessors/functional units, a spe
instructions library and an area constraint. In addition, ans

other feature of the design flow is a performance estimat : ; :
; i describes the design methodology on configurable core
of tge conflﬁuge? extinsmle processor. ific i . and functional units; section 4 describes the DSP application
ur methodology for extracting specific Instruction Cony,sed in this paper; section 5 presents the verification method

sists of a probability model for selecting program sectionynq yesults. Finally, section 6 concludes with a summary.
implements the program section as hardware, and character-

izes the instruction. Hence, an instruction library is build2 Xtensa Overview & Tools
To our best knowledge, there is no formal methodology de- xiensa is a configurable and extendable processor devel-
scribed on how to extract program section from an applicgsped by Tensilica Inc. It allows designers to configure their
tion program which constructs an instruction library. embedded applications by constructing configurable core
_ Our heuristic algorithm is closely related to Gupta et aland designing application specific instructions using Xtensa
in [8] and IMSP-2P-MIFU in [14]. Gupta et al proposed asoftware development tools. The project described in this pa-
methodology, which through profiling an application writtenper used the Xtensa environment. Figure 1 shows the design
in C/C++, using a performance estimator and an architectuf@w of the Xtensa processor. In this section, we describe
exploration engine, to obtain optimal architectural paramesonstructing configurable cores, designing specific instruc-
ters. Then, based on the optimal architectural parametefns and the Xtensa tools in detail.
they select a combination of four pre-fabricated components, The work carried out and the methodology developed,
being a MAC unit, a floating-point unit, a multi-ported mem-however, is general and could have been conducted with any
ory, and a pipelined memory unit for an extensible processefther similar reconfigurable processor platform.
when an area constraint is given. Alternatively, the authors in Xtensa’s configurable core can be constructed from the
IMSP-2P-MIFU proposed a methodology to select specifipase instruction set architecture (ISA) by selecting the
instructions using the branch and bound algorithm when aXtensa processor configuration options such as the Vectra
area constraint is given. DSP Engine, floating-point unit, 16-bit Multiplier etc. The
There are three major differences between the work guality of the configuration is dependent on the design ex-
Gupta et al. in [8] & IMSP-2P-MIFU in [14] and our work. perience of the designer who analyses an application. Our
Firstly, Gupta et al. only proposed to select pre-fabricatechethodology tries to reduce this dependence based on quick
components for extensible processors. On the other hampkrformance estimation of the application. As this paper uses
the IMSP-2P-MIFU system is only able to select specifi@ speech recognition application as a case study, it is neces-
instructions for extensible processors. Our methodologsary to look at the Vectra Digital Signal Processing (DSP)
is able to select both pre-fabricated coprocessors/functionahgine and Floating-Point (FP) Unit closely. As DSP ap-
units and pre-designed specific instructions for extensiblgications involve computational intensive algorithms such
processors. The second difference is the IMSP-2P-MIF8s in filter design, convolution and the FFT algorithm, most
system uses the branch and bound algorithm to select spé-the DSP processors have multiple functional units such
cific instructions, which is not suitable for large applicationsas the ALU, shifter and multiplier that operate in parallel
due to the complexity of the problem. Our methodology useis order to achieve a fast computation time. The Vectra
performance estimation to determine the best combinatioSP Engine is a fully configurable, single instruction mul-
of coprocessors/functional units and specific instructions itiple data (SIMD) coprocessor with additional instructions,
an extensible processor for an application. Although Guptahich targets parallel computational intensive algorithm. In
et al. also use a performance estimator, they require exhatise Vectra DSP Engine, there are five configurations with
tive simulations between the four pre-fabricated componentifferent register widths, different number of registers, and
in order to select the components accurately. For our estlifferent functional units, which are able to handle a wide
mation, the information required is the hardware parameterange of DSP applications. The floating-point unit provides
and the application characteristics from initial simulation okingle precision (32-bit) operation and extended single pre-
an application. Therefore, our methodology is able to esteision (48-bit) operation with 52 additional instructions such
mate the performance of an application in a short period afs multiply and accumulate (MAC), floating-point addition,
time. The final difference is that our methodology includedloating-point subtraction, floating-point multiplication etc.
the latency of additional specific instructions into the perforHowever, it does not provide parallel computation as men-
mance estimation, where IMSP-2P-MIFU in [14] does notioned for the Vectra DSP engine. Moreover, in the T10xx.x
take this factor into account. This is very important since iXtensa configuration, six instructions are not implemented,
eventually decides of the usefulness of the instruction seldueing division, reciprocal, reciprocal square root, square root

C?ﬁign when implemented into a real-world hardware.
The rest of this paper is organized as follows: section
presents an overview of the Xtensa and its tools; section



Ll pm—— E— [ Notation [ Descripfions ]
O rndion2 Functon2 Area_Core; area in gate for processor i
T Fancion 3 (TE) Speedup_TTE;; | speedup rafio of TIE instruction j in processor i
Functon # oo TE] Area TTE; area in gafe of TIE instrucfion |
% 7 percentage of cycle-count for funcfion J In processoy i
g aplczton cCy total cycle-count spentin processor i
implemented in TE Clock_Pertod; clock period of processor |
. Latency; Tatency of TIE instruction |
Furcne Selected; () array stores selected TIE instructions in processor
Table 1. Notations for algorithm

0%

Original application
Methodology {
. . . . For loop (from 1 to n Xtensa processor) {
Figure 2. An example of application with 2 TIE. Compile the appiication using GNU C/C++ compler;
Simulate the application using I1SS;
Profile the application using Xtensa Profiler; Constructing

and read/write floating-point status registers. This is becaus il - 1 Xtensa
there has not been a significant demand for these feature ™ """ e, Clodk__Period, - irea_core,” Proesssor
eSpeCIa”y for XIensa CUStomerS in the embedded marke1 )Selectthextensa processor with the highest value of effective_core;
particularly, since these instructions can be fairly area inten: e tatency = clock Period:

Sive. Therefore, |f an embedded app“cat'on uses these unin For all TIE instructions in the selected Xtensa processor k {
plemented instructions heavily, then it is ideal to implement g, - Lo Iy
these instructions using the Tensilica Instruction Extensions Area TIE, < Ma(Latency . Clock _ Period,)

. . . }
The second part of designing the Xtensa processor iS D' Forioop rom the highest gradint to the fowest){

using Tensilica Instruction Extensions (TIE). "Tensilica In- "Gt e biecea;

struction Extension (TIE) is a language that lets designers — freaReman = Aa constint- Area TIE; Selectng
incorporate application specific functionality in the proces- | MLl ey instruction
sor by adding new instructions.” [7]. The main idea of TIE From al TIE inshuctions in Selectedy ) of selected Ytensa Processork( |
language is to design a specific functional unit to handle & BrecutionTing, =(G0-3 )+ T — By i ateney | Execuon

#  Speedup TIE, Time

specific functionality that is heavily used in the application,
and hence this functional unit can lead to higher performance
of the application. Figure 2 shows an example, which shows, ’
the percentage of execution time consumed by four functions
and how TIE instructions can lead to higher performance of

an application. In this example, function 4 consumes 50%elect coprocessors/functional units (these are coprocessors
of the execution time of an application and the second oRghich are supplied by Tensilica) and specific TIE instruc-
(function 3) consumes 25% of the time. When both TIE intjons (designed by us as a library), and to maximize perfor-
structions for function 3 and function 4 are implemented fomance while trying to satisfy a given area constraint. Our
this application, the execution time is able to reduce to hafhethodology divides into three phases: a) selecting a suit-
of the original execution time. . able configurable core; b) selecting specific TIE instructions;
TIE language is a language that generates Verilog @nd c) estimating the performance after each TIE instruction
VHDL code when compiled. The Verilog/VHDL code canis implemented, in order to select the instruction. The spe-
then be put through the Synopsys tool Design Compiler tgific TIE instructions are selected from a library of TIE in-

obtain timing and area. _ _ _ structions. This library is pre-created and pre-characterised.
However, adding TIE instructions may incur an increase

in the latency of the processor. If this is the case, clock fr%%.l Assumptions

guency must be slowed in order to compensate for the addi- . . . .

tion of TIE instructions. Since the simulator only considerE All TIE instructions are mutually exclusive with respect
e

}

Figure 3. The algorithm

the cycle-count, it would mislead the real performance of thf® other TIE instructions (i.e., they are different). This is
application when the latency is increased. The real perfopecause each TIE instruction is specifically designed for a
mance of an application should be the number of c:ycle—couﬁ?ﬁware function call with minimum area or maximum per-
multiplied by the latency caused by TIE instructions. Therelofmance gain. . . o
fore, our methodology reinforces this critical point in our se-  Speedup/area ratio of a configurable options is higher than
lection process of TIE instructions. For more information orthe speedup/area ratio of a specific TIE instruction when the
TIE language, a detailed description can be found in [1] [2]$@Me instruction is executed by both (i.e., designers achieve
During the construction of configurable cores and the deetter performance by selecting suitable configurable op-
sign of specific instructions, profiling (to get the applicalions, than by selecting specific TIE instructions). This su-
tion characteristics) and simulation (to find out the perforPerior performance is achieved because configurable options
mance for each configuration) are required. In order to eff@re optimally designed by the manufacturer for those partic-
ciently obtain the characteristics and performance informalar instruction sets, whereas the effective selection of TIE
tion, Xtensa provides four software tools: a GNU C/C++hstructions is based on designers’ experience.
compiler, Xtensa’s Instruction Set Simulator, Xtensa’s pro- i
filer and TIE compiler. A detailed description about embed3-2  Algorithm
ded applications using Xtensa processor can be found in [7]. There are three Seﬁtido?fs in our n;etho%?logy: selecting
Xtensa processor with different configurable co-processor
3 Methodology core options, selecting specific TIE instructions, and estimat-
Our methodology consists of minimal simulation by uti-ing the performance of an application after each TIE instruc-
lizing a greedy algorithm to rapidly select both pre-fabricatetion is implemented. Firstly, minimal simulation is used to
coprocessors/functional units and pre-designed specific THelect an efficient Xtensa processor that is within the area
instructions for an ASIP. The goal of our methodology is ta@onstraint. Then with the remaining area constraint, our
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yalce: Load Configuration of Copy the datato a Use Euklid distance to
command

methodology selects TIE instructions using a greedy algcue: — = = e
rithm in an iterative manner until all remaining area is ef-command | | perecorded samples ‘ temporary bufer compare each pre-

ficiently used. Figure 3 shows the algorithm and three sec ST m— e e procsmnd fata.
tions of the methodology and the notation is shown in table 1 befeiL pre ecolded smallfame [ putre comparea |

Since the configurable coprocessor core is pre-fabricate 3 Apply Hamming Iowf s cai
by Tensilica and is associated with an extended instructio aleddull -

Calculate Power Check the first three
Spectrum matches pre-recorded
T samples

set, itis quite difficult to estimate an application performance
when a configurable coprocessor core is implemented withi

an Xtensa processor. Therefore, we simulate the applic
tion using an Instruction Set Simulator (ISS) on each Xtens Lo Fefrosss G
processor configuration without any TIE instructions. This Spesch Recogniion Appi ot it

simulation does not require much time as we have only a
few co-processor options available for use. We simulate a
processor with each of the coprocessor options. , In the last section, after TIE instructions are selected, an
Through simulation, we obtain total cycle-count, simuestimation of execution time is calculated. The execution
lation time, and a call graph of the application for eachime estimation (ETE) for an extensible proceskarith a

Xtensa processor. Then we calculate the effectiveness it of selected TIE instruction (from 1 jipis defined as:
the processor for this application by considering total cycle-

count, clock period, and the area of each configurable Z CCr X P
Pir) + E .
J J

Figure 4. Speech Recognition Application.

processor. The effectiveness of the Xtensa procegsorZTEix = (CCx(1 - SrecdunTI1E.L) X Latencymas

. . " peedup T1E
Ef fective_processor;, is defined as: o
Bf fproc; = 1 ) where CCy, is the original total cycle-count of an applica-
PrO4 =G, % Clock Period x Area_Processor; tion running on an Xtensa processor k. The first part of the
. I . . &quation calculates the cycle-count of an application, then it
This factor indicates a processor is most effective when fytiples with the maximum latency between TIE instruc-
has the smallest chip size with the smallest execution timg&ns™ Maximum latency is the maximum clock period value

(cycle-count CC multiplied by the clock period) of an ap-uf g the TIE instructions and configured processor.
plication. This factor calculates the ratio of performance per

area for each processor, and our methodology selects the pfo- Speech Recognition Software & Analysis
cessor with the highest performance per area ratio that falls e yse a speech recognition application as a case study
within the area constraint. This factor may not select the prqg gemonstrate the effectiveness of our approach. This ap-

cessor with the best performance. Note, that "A@me” is pication provides user voice control over Unix commands
not only an optimization goal but may also be a (hard) corjy, 3 |inux’ shell environment. It employs a template match-
straints. ing based recognition approach, which requires the user to

_Next, the methodology focuses on selecting specific Tlkscord at least four samples for each Unix command that
instructions. The selection of a specific TIE instruction ie/she wants to use. These samples are recorded and are
based on the area, speedup ratio, latency (maximum clog red in a file. Moreover, since this software involves a

period in all TIE instructions and configured processor), angser’s voice, for the sake of consistency, a test bench is
percentage of total cycle-count for the TIE instruction. Wgecorded and is stored in another file.

define the gradient of TIE instructignn Xtensa processa The application consists of three main sections: record,

as: pre-process, and recognition. In the "record” section, it first

Cradiont.. — Pji, X Speedup TIEjj, ) loads the configuration of the speaker, then it loads the pre-
% = AreaTIE; x Max(Latency,, Clock_Periods,) @ recorded test bench as inputs, and the pre-recorded samples

into memory. After that, it puts the test bench into a queue
This factor indicates that the performance gain per area of aassing through to the next section. In the "pre-process” sec-
application when the TIE instruction is implemented in thdion, it copies the data from the queue to a buffer in order
extensible processor. For example, if an application spetd divide the data into frame size segments. Then, it per-
30% of the time calling function X and 20% of the time call-forms a filtering process using the Hamming window and
ing function Y, two TIE instructions, sa§/Ex andTIEy, applies single-precision floating-point 256-point FFT algo-
are implemented to replace software function call X and softithm to the input data to minimize the work done in the
ware function call Y. The speedup of TIE instructions is 4ollowing recognition section. Afterwards, it calculates the
times and 6 times fol ' IEx andT'IFEy respectively, and power spectrum of each frame and puts these frames back
the area for the implemented TIE instructions are 3000 gat@®o the queue. Finally, in the "recognition” section, it im-
and 4000 gates respectively. The latency value (the clock pelements the template matching approach utilizing Euclid’'s
riod) for both instructions is the same. The gradient of funcdistance measure in which it compares the input data with
tional units is 0.0004 and 0.0003 f6Y Ex andT'I Ey. This  the pre-recorded samples that are loaded in memory during
means thaf"I Ex will be considered for implementation in the "record” section. In the next step, it stores the compared
the processor beforéIEy. This example shows that the results in another queue. If the three closest matches of pre-
overall performance gain of an application will be the samescorded samples are the same command, then the program
whetherT'I Ex or TIEy is implemented. Sinc€IEx has executes the matched Unix command. However, if the input
a smaller aredl'I E'x is selected befor@&'I Ey. Equation 2 data does not match the pre-recorded samples, the program
uses the remaining area effectively by selecting the specifgoes back to the "record” section to load the input again, and
TIE instruction with largest performance improvement peso on. Figure 4 shows the block diagram of speech recogni-
area. This is a greedy approach to obtain the largest perfdien application.
mance improvement per area. This greedy approach provedAs this application involves a human interface and oper-
to be effective and efficient in our application sets. ates in sequence, it is necessary to set certain real-time con-



[ Function l Description l P1 l P2 l P3 ] Design 3 Xtensa Processors
Sqrif Single precision square root 1.3% 2.3% | 13.4% 9 Specific functional urﬁts (10 TIE instructions)
Mod3 Modular 3 0.2% 0.6% 3.0% il
Logf Single precision natural Togarithm 2.7% 2.6% 2.4% W J,
Divf Single precision division 0.8% T.83% 7.3% Simulate the application with 3
Addf Single precision addition 13.6% | 25.1% | 10.0%  different processors.
MUt Single precision multiplication | 58.9% | 31.1% | 16.3% This providestha information
; - e s the athaolvgy
Table 2. Percentage of time spent for functions Simulate the applicafion vith
different combinations of Xtensa J/
Processors and s_pecific functional Verify the TIE instructions using
[_Xtensa Processor_] Pl [ P2 [ P3 ] (576 conﬁgﬂ?alttisons in total) Desion Gompilerandiefrieves
the hardware information of the
Area(mm?2) 1.08 4.23 2.28 TIE instruction. This provides
Area(gates) 35,000 160,000 87,000 the gn;f:‘r‘mtiilt;nsr:gilg:‘ezfi;\hteable
e
ock Rate(MHz
Simulafion Time (sec) 2770.93 1797.34 641.69
Cycle-Count 422,933,748 390,019,604 | 131,798,414 Run through the methodology |
— - - w— 5
Table 3. Hardware Cost and initial simulation S Nathsaelees
straints. For example, it is assumed that each voice com- | Compare the resuls betwsen simulation and methodology |
mand should be processed within 1 second after the user fin- _ o
ished his/her command. So, "record” section should take Figure 5. Verification methodology

process” and "recognition” should consume less than 0 ine specific functional units (ten TIE instructions) are im-

less than 0.25s to put all the data into a queue. While “pr%
and 0.25s respectivelv. Throuah a profiler we analvsed t emented and the corresponding information such as area
speech recogﬁition sgftware ir? a fi?st approximatign. Ta: gathes, and thebISPGEdLr']p fgctor Undereachg?tensa processor
ble 2 shows the percentage of selected software functic?g e shown in Table 4. The down arrow in Table 4 represents

that are involved In this application in different Xtensa pro- egative speedup, whereas the up arrow with a number, N,

: " ts that the corresponding specific functional unit is
cessors configurations that we denote as P1, P2 and P3. [gR'>e : -
is an Xtensa processor with the minimal configurable cor Emes faster than the software function call. Different sets

options. P2 is a processor with Vectra DSP Enaine and it SPecific functional units are combined into a total of 576
agsociated configFl)JrabIe core options. P3is a prgcessor w) ﬁrent clqnflgura'?:(_)ns reprehsentlnﬁ] the -E]i-n tire de&gr;} sg alce
a floating-point unit and its associated configurable core ofJ; the application. Figure 5 shows the verification methodol-

ti(f)fns (morelcorr]]ﬁguraﬂons are prSSible’ but forr':he sahke In order to verify our methodology, we pre-configured the
(I\a/lcl)(r:gcc)\);érori]ny'lzat?lsee4t trr(]ag a(lzp?pr)llilcgaq[irgrglosnpser%relss L&?’gf ti?rr1 "Xtensa processors and the 9 specific functional units (10
calling the single precision square root function in Xtensa |E instructions) at the beginning of the verification. Then
processor P3. e S|mu|!aéed the 57€ (gﬁlerent configurations ESIRQ th?]ISS.
This application simulates with a cycle-count of Ve applied our methodology (to compare with the exhaus-

422,933,748 and an instruction-count of 338,079,172 in e simulation) to obtain the result under an area constraint.
Xtensa processor with minimal configurable core optiona? uring the first Iphas e of ﬁhe mr?th_lglclizo!ogy, just the _f_(tglrls%
and with no additional instructions. The simulation time of-'0C€SSOr IS S€ ected without the Instructions. Table

h Rt : - .~ provides the area, cycle-count, and clock rate for an appli-
f]hdisteagmlé:%%onglllsm?r?gpro%(;]n;aéglgliégtirgrl‘lng(t)enssigpsdggussobst‘%tion with each Xtensa processor. This information is used
files written in ANSI C, which include 50 subroutines and equation 1 of the methodology. The information from Ta-

: ; : e 2 and Table 4 is retrieved from running initial simulation
ggguét?ﬁgg lines of code. The compiled source code sae%d verifying TIE instructions. The information provided in

Table 3 is then used in the selection of TIE instructions. For
5 Verification methodology & Results equation 3, all the parameters are obtained from Table 2, Ta-

) ble 3, and Table 4. At the end, we compare results from
We have pre-configured three Xtensa processors, namelynulation to our methodology.

P1, P2 and P3, for this case study as explained above. As

mentioned before, although Xtensa can be configured with1 Results

other hardware parameters such as register file size, CaChel'he simulation results of 576 configurations are plotted
size etc, in our case, all processors are configured with the _. ¢ S

same register file size, cgche size etc. We cgnsidered cdfi.Figure 6 with execution time verse area. The dark squares
structing an Xtensa processor P4 with DSP Engine and F€ the points obtained using our methodology for differing
unit together, but this proved to be inefficient. The hardwargf¢2 constdraldn%s. ﬂ-]r h%se g[omts 5t9|eff5tt%d %y our methodologK
cost and initial simulation result for the speech recognitiof©"€SPonded 1o the Fareto points of thé design space grapn.

application for each of these processors are shown in Table/3s Mentioned above, the 576 configurations represent the en-
tire design space and these Pareto points indicate the fastest

Function ‘ e ‘(Aarm?:, Speedup factor Lé}fs’;c execution time under a particular area constraint. Therefore,

T o :?200 T e there are no extra Pareto points in this design space. More-
FP Division (1) FEDIV 538007 T7.4x— 1 [T T5.9% 146 over, Table 4 shows the information of all Pareto points such

FP Division (2) MANT,LP24,COMB 6800]T 6.48%|T 3.52X|] 5.28%| 6.80 as area in gates, simulated execution time in seconds, esti-

ﬁ;l\/rlglltﬂlc:rut%n FRFEh;I(BFgLN 3200 TT.6X|[ 8.98% 111 5 g-ég mated execution time in seconds, latency, selected Xtensa
oI R s ST oaga0|  Processor and the replaced software function calls. Table 5
Square root (1)] LDEXP,FREXP | 3300 3.30%| 7.00 also indicates the estimation of application performance for
Square 100t (2) LDEXP 1100 2.50%| 6.50 each configuration is on average within 4% of the simulation
Square oot () FREXP_ [3200 190 630  result. For the fastest configuration (configuration 9 in Ta-
Table 4. Function unit's information ble 5), the application execution time is reduced to 85% of



Configuration Area Simulated | Esfimated | Percentage[ Latency Xtensa Software Function replaced
(gates) | execution | execution | difference of the Processor
time (sec.) | time (sec.) processor| selected
1 35,000 1.8018 — — 5.32 P1 —
2 67,000 1.0164 1.1233 10.5 7.1 P1 Floating-point multiplication
3 72,500 1.0147 1.1188 10.2 7.1 P1 Modular 3, Floafing-point multiplication
] 87,000 0.2975 — — 6.45 P3 -
5 88,100 0.2738 0.2718 0.7 6.5 P3 Square root (2)
6 93,600 0.2670 0.2694 2.1 6.5 P3 Square root (1), Natural Tog
7 100,400 | 0.2632 0.2651 1.9 5.8 P3 Square root (1), Natural log, Floafing-point division (2)
8 103,700 0.2614 0.2642 1.0 6.9 P3 Square root (2), Modular 3, Natural Tog, Floating-point division (R)
9 105,900 | 0.2586 0.7638 2.0 7.0 P3 Square root (1), Modular 3, Natural Tog, Floafing-point division (2)
Average — — — 4% — — —
Table 5. Pareto points
o Execution Time vs Area [2] Tensilica Instruction Extension (TIE) Language User's Guide (For Xtensa T1040
Parets pairt, M Processor Cores)Tensilica, Inc, 2001.
soe [3] ALOMARY, A., NAKATA, T., HONMA, Y., IMAI, M., AND HIKICHI, N. An
asip instruction set optimization algorithm with functional module sharing con-
straint. INICCAD (1993), pp. 526-532.
__ 4.0000
[4] BINH, N., IMAI, M., AND TAKEUCHI, Y. A performance maximization algo-
é rithm to design asips under the constraint of chip area including ram and rom
£ 30000 = size. INASP-DAC(1998).
“ - - [5] CHol, H., AND PARK, |I. Coware pipelining for exploiting intellectual proper-
Y o ties and software codes in processor-based desigh3timAnnual IEEE Inter-
. national ASIC/SOQ2000), pp. 153-157.
- P - s [6] FauTH, A. Beyond tool-specific macine descriptioBode Generation for Em-
- E - . bedded Processo(d995), 138-152.
e s [7]1 GonzALEz, R. Xtensa: A configurable and extensible proces$BEE Micro
0.0000

0 50,000 100,000 150,000

Area (gate)

Figure 6. The results and the Pareto points.

200,000 250,000 300,000

8]

the original execution time (configuration 1 in Table 5). Theq,
fastest configuration is with Xtensa processor P3 (that is with
a floating-point unit and its associated configurable core op-
tions). Seven TIE instructions (LDEXP, FREXP, MYMODS, [10]
FREXPLN, MANT, LP24, COMB) are also implemented

in the fastest configuration to replace four software fungiy
tions. There are square root, modular 3, natural logarithm
and floating-point division. The time for selection of core
options and instructions are in the order of a few hours (aboU#l
3-4hrs), while the exhaustive simulation method would take
several weeks (about 300 hrs) to complete. 113
6 Conclusions

This paper describes a methodology to maximize applica-
tion performance in an ASIP, through the selection of coprag#4]
cessors / functional units and specific TIE instructions when
an area constraint is given. The methodology described uses
a combination of simulation and estimation to greedily conf*s!
struct an ASIP.

Our methodology has demonstrated how a speech reclgs-]
nition application can be designed within a reconfigurabl
processor environment (we used Xtensa). The applica-
tion’s execution time is reduced by 85% when a floating-
point coprocessor is selected and seven of our proprietdiy]
TIE instructions (LDEXP, FREXP, MYMOD3, FREXPLN,
MANT, LP24, COMB) are implemented to replace four soft-
ware function calls: square root, modular 3, natural Ioga{lg]
rithm and floating-point division. In addition, our methodol-
ogy was able to locate all nine Pareto points from the desigH!
space of 576 configurations. Finally, the performance esti-
mation for the proposed implementation is on average withiﬁo]
4% of the simulation results.
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