
Rapid Configuration & Instruction Selection for an ASIP: A Case Study

Newton Cheung
School of Computer Science

& Engineering
University of NSW, Sydney
ncheung@cse.unsw.edu.au

J̈org Henkel
NEC Laboratories America

4 Independence Way
Princeton, NJ 08540

henkel@nec-labs.com

Sri Parameswaran
School of Computer Science

& Engineering
University of NSW, Sydney
sridevan@cse.unsw.edu.au

Abstract
We present a methodology that maximizes the perfor-

mance of Tensilica based Application Specific Instruction-set
Processor (ASIP) through instruction selection when an area
constraint is given. Our approach rapidly selects from a set
of pre-fabricated coprocessors/functional units from our li-
brary of pre-designed specific instructions (to evaluate our
technology we use the Tensilica platform). As a result, we
significantly increase application performance while area
constraints are satisfied. Our methodology uses a combi-
nation of simulation, estimation and a pre-characterised li-
brary of instructions, to select the appropriate co-processors
and instructions. We report that by selecting the appropriate
coprocessors/functional units and specific TIE instructions,
the total execution time of complex applications (we study
a voice encoder/decoder), an application’s performance can
be reduced by up to 85% compared to the base implemen-
tation. Our estimator used in the system takes typically less
than a second to estimate, with an average error rate of 4%
(as compared to full simulation, which takes 45 minutes).
The total selection process using our methodology takes 3-4
hours, while a full design space exploration using simulation
would take several days.

1 Introduction
Embedded system designers face design challenges such

as reducing chip area, increasing application performance,
reducing power consumption and shortening time-to-market.
Traditional approaches, such as employing general pro-
grammable processors or designing Application Specific In-
tegrated Circuits (ASICs), do not necessarily meet all design
challenges. While general programmable processors offer
high programmability and lower design time, they may not
satisfy area and performance challenges. On the other hand,
ASICs are designed for a specific application, where the area
and performance can easily be optimised. However, the de-
sign process of ASICs is lengthy, and is not an ideal ap-
proach when time-to-market is short. In order to overcome
the shortcomings of both general programmable processors
and ASICs, Application Specific Instruction set Processors
(ASIPs) have become popular in the last few years.

ASIPs are designed specifically for a particular appli-
cation or a set of applications. Designers of ASIPs can
implement custom-designed specific instructions (custom-
designed specific functional units) to improve the perfor-
mance of an application. In addition, ASIP designers
can attach pre-fabricated coprocessors (such as Digital Sig-
nal Processing Engines and Floating-Point units) and pre-
designed functional units (such as Multiplier-Accumulate

units, shifters, multipliers etc). They can also modify hard-
ware parameters of the ASIPs (such as register file size,
memory size, cache size etc).

As the number of coprocessors/functional units increase
and more specific instructions are involved in an applica-
tion, the design space exploration of ASIPs takes longer. De-
signers of ASIPs require an efficient methodology to select
the correct combination of coprocessors/functional units and
specific instructions. Hence, the design cycle and chip area
is reduced and an application performance is maximized.

Research into design approaches for ASIPs has been car-
ried out for about ten years. Design approaches for extensi-
ble processors can be divided into three main categories: ar-
chitecture description languages [3] [4] [13] [16] [20]; com-
pilers [5] [8] [18] [21] and methodologies for designing dif-
ferent aspects of extensible processors [7] [9].

The first category of architecture description languages
for ASIPs is further classified into three sub-categories based
on their primary focus: the structure of the processor such
as the MIMOLA system [17]; the instruction set of the pro-
cessor as given in nML [6] and ISDL [11]; and a combina-
tion of both structure and instruction set of the processor as
in HMDES [10], EXPRESSION [12], LISA [13], PEAS-III
(ASIP-Meister) [16], and FlexWare [19]. This category of
approach generates a retargetable environment, including re-
targetable compilers, instruction set simulators (ISS) of the
target architecture, and synthesizable HDL models. The gen-
erated tools allow valid assembly code generation and perfor-
mance estimation for each architecture described (i.e. ”retar-
getable”)

In the second category, the compiler is the main focus of
the design process using compiling exploration information
such as data flow graph, control flow graph etc. It takes an
application written in a high-level description language such
as ANSI C or C++, and produces application characteristic
and architecture parameter for extensible processors. Based
on these application characteristics, an application specific
processor for that particular application can be constructed.
In [21], Zhao used static resource models to explore possible
functional units that can be added to the data path to enhance
performance. Onion in [18] proposed a feed-back methodol-
ogy for an optimising compiler in the design of an extensible
processors, so more information is provided at the compile
stage of the design cycle producing a better hardware exten-
sible processors model.

In the third category, estimation and simulation method-
ologies are used to design extensible processors with specific
register file sizes, functional units and coprocessors. Gupta
et al. in [9] proposed a processor evaluation methodology to
quickly estimate the performance improvement when archi-
tectural modifications are made. However, their methodol-

1

1530-1591/03 $17.00 2003 IEEE

ogy does not consider an area constraint. Jain [15] proposed
a methodology for evaluating register file size in an extensi-
ble processors design. By selecting an optimum register file
size, they are able to reduce the area and energy consumption
significantly.

Our design flow fits between second and third cate-
gories of the design approaches given above. In this pa-
per, we propose a methodology for extracting specific in-
struction from an application to build an instruction library
and a heuristic algorithm for selecting pre-fabricated copro-
cessors/functional units and pre-designed (from our library)
specific instructions to construct an extensible processors.
Hence, the extensible processor achieves maximum perfor-
mance within the given area constraint. There are four in-
puts of our design flow: an application written in C/C++, a
set of pre-fabricated coprocessors/functional units, a specific
instructions library and an area constraint. In addition, an-
other feature of the design flow is a performance estimator
of the configured extensible processor.

Our methodology for extracting specific instruction con-
sists of a probability model for selecting program section,
implements the program section as hardware, and character-
izes the instruction. Hence, an instruction library is build.
To our best knowledge, there is no formal methodology de-
scribed on how to extract program section from an applica-
tion program which constructs an instruction library.

Our heuristic algorithm is closely related to Gupta et al.
in [8] and IMSP-2P-MIFU in [14]. Gupta et al proposed a
methodology, which through profiling an application written
in C/C++, using a performance estimator and an architecture
exploration engine, to obtain optimal architectural parame-
ters. Then, based on the optimal architectural parameters,
they select a combination of four pre-fabricated components,
being a MAC unit, a floating-point unit, a multi-ported mem-
ory, and a pipelined memory unit for an extensible processor
when an area constraint is given. Alternatively, the authors in
IMSP-2P-MIFU proposed a methodology to select specific
instructions using the branch and bound algorithm when an
area constraint is given.

There are three major differences between the work at
Gupta et al. in [8] & IMSP-2P-MIFU in [14] and our work.
Firstly, Gupta et al. only proposed to select pre-fabricated
components for extensible processors. On the other hand,
the IMSP-2P-MIFU system is only able to select specific
instructions for extensible processors. Our methodology
is able to select both pre-fabricated coprocessors/functional
units and pre-designed specific instructions for extensible
processors. The second difference is the IMSP-2P-MIFU
system uses the branch and bound algorithm to select spe-
cific instructions, which is not suitable for large applications
due to the complexity of the problem. Our methodology uses
performance estimation to determine the best combinations
of coprocessors/functional units and specific instructions in
an extensible processor for an application. Although Gupta
et al. also use a performance estimator, they require exhaus-
tive simulations between the four pre-fabricated components
in order to select the components accurately. For our esti-
mation, the information required is the hardware parameters
and the application characteristics from initial simulation of
an application. Therefore, our methodology is able to esti-
mate the performance of an application in a short period of
time. The final difference is that our methodology includes
the latency of additional specific instructions into the perfor-
mance estimation, where IMSP-2P-MIFU in [14] does not
take this factor into account. This is very important since it
eventually decides of the usefulness of the instruction selec-

Figure 1. Xtensa application’s design flow.

tion when implemented into a real-world hardware.
The rest of this paper is organized as follows: section

2 presents an overview of the Xtensa and its tools; section
3 describes the design methodology on configurable core
and functional units; section 4 describes the DSP application
used in this paper; section 5 presents the verification method
and results. Finally, section 6 concludes with a summary.

2 Xtensa Overview & Tools
Xtensa is a configurable and extendable processor devel-

oped by Tensilica Inc. It allows designers to configure their
embedded applications by constructing configurable core
and designing application specific instructions using Xtensa
software development tools. The project described in this pa-
per used the Xtensa environment. Figure 1 shows the design
flow of the Xtensa processor. In this section, we describe
constructing configurable cores, designing specific instruc-
tions and the Xtensa tools in detail.

The work carried out and the methodology developed,
however, is general and could have been conducted with any
other similar reconfigurable processor platform.

Xtensa’s configurable core can be constructed from the
base instruction set architecture (ISA) by selecting the
Xtensa processor configuration options such as the Vectra
DSP Engine, floating-point unit, 16-bit Multiplier etc. The
quality of the configuration is dependent on the design ex-
perience of the designer who analyses an application. Our
methodology tries to reduce this dependence based on quick
performance estimation of the application. As this paper uses
a speech recognition application as a case study, it is neces-
sary to look at the Vectra Digital Signal Processing (DSP)
Engine and Floating-Point (FP) Unit closely. As DSP ap-
plications involve computational intensive algorithms such
as in filter design, convolution and the FFT algorithm, most
of the DSP processors have multiple functional units such
as the ALU, shifter and multiplier that operate in parallel
in order to achieve a fast computation time. The Vectra
DSP Engine is a fully configurable, single instruction mul-
tiple data (SIMD) coprocessor with additional instructions,
which targets parallel computational intensive algorithm. In
the Vectra DSP Engine, there are five configurations with
different register widths, different number of registers, and
different functional units, which are able to handle a wide
range of DSP applications. The floating-point unit provides
single precision (32-bit) operation and extended single pre-
cision (48-bit) operation with 52 additional instructions such
as multiply and accumulate (MAC), floating-point addition,
floating-point subtraction, floating-point multiplication etc.
However, it does not provide parallel computation as men-
tioned for the Vectra DSP engine. Moreover, in the T10xx.x
Xtensa configuration, six instructions are not implemented,
being division, reciprocal, reciprocal square root, square root

2

Figure 2. An example of application with 2 TIE.

and read/write floating-point status registers. This is because
there has not been a significant demand for these features,
especially for Xtensa customers in the embedded market,
particularly, since these instructions can be fairly area inten-
sive. Therefore, if an embedded application uses these unim-
plemented instructions heavily, then it is ideal to implement
these instructions using the Tensilica Instruction Extensions.

The second part of designing the Xtensa processor is by
using Tensilica Instruction Extensions (TIE). ”Tensilica In-
struction Extension (TIE) is a language that lets designers
incorporate application specific functionality in the proces-
sor by adding new instructions.” [7]. The main idea of TIE
language is to design a specific functional unit to handle a
specific functionality that is heavily used in the application,
and hence this functional unit can lead to higher performance
of the application. Figure 2 shows an example, which shows
the percentage of execution time consumed by four functions
and how TIE instructions can lead to higher performance of
an application. In this example, function 4 consumes 50%
of the execution time of an application and the second one
(function 3) consumes 25% of the time. When both TIE in-
structions for function 3 and function 4 are implemented for
this application, the execution time is able to reduce to half
of the original execution time.

TIE language is a language that generates Verilog or
VHDL code when compiled. The Verilog/VHDL code can
then be put through the Synopsys tool Design Compiler to
obtain timing and area.

However, adding TIE instructions may incur an increase
in the latency of the processor. If this is the case, clock fre-
quency must be slowed in order to compensate for the addi-
tion of TIE instructions. Since the simulator only considers
the cycle-count, it would mislead the real performance of the
application when the latency is increased. The real perfor-
mance of an application should be the number of cycle-count
multiplied by the latency caused by TIE instructions. There-
fore, our methodology reinforces this critical point in our se-
lection process of TIE instructions. For more information on
TIE language, a detailed description can be found in [1] [2].

During the construction of configurable cores and the de-
sign of specific instructions, profiling (to get the applica-
tion characteristics) and simulation (to find out the perfor-
mance for each configuration) are required. In order to effi-
ciently obtain the characteristics and performance informa-
tion, Xtensa provides four software tools: a GNU C/C++
compiler, Xtensa’s Instruction Set Simulator, Xtensa’s pro-
filer and TIE compiler. A detailed description about embed-
ded applications using Xtensa processor can be found in [7].

3 Methodology
Our methodology consists of minimal simulation by uti-

lizing a greedy algorithm to rapidly select both pre-fabricated
coprocessors/functional units and pre-designed specific TIE
instructions for an ASIP. The goal of our methodology is to

Notation Descriptions
Area Corei area in gate for processor i

Speedup TIEij speedup ratio of TIE instruction j in processor i
Area TIEj area in gate of TIE instruction j

Pij percentage of cycle-count for function j in processor i
CCi total cycle-count spent in processor i

Clock Periodi clock period of processor i
Latencyj latency of TIE instruction j

Selectedi() array stores selected TIE instructions in processor i

Table 1. Notations for algorithm

Figure 3. The algorithm

select coprocessors/functional units (these are coprocessors
which are supplied by Tensilica) and specific TIE instruc-
tions (designed by us as a library), and to maximize perfor-
mance while trying to satisfy a given area constraint. Our
methodology divides into three phases: a) selecting a suit-
able configurable core; b) selecting specific TIE instructions;
and c) estimating the performance after each TIE instruction
is implemented, in order to select the instruction. The spe-
cific TIE instructions are selected from a library of TIE in-
structions. This library is pre-created and pre-characterised.

3.1 Assumptions
All TIE instructions are mutually exclusive with respect

to other TIE instructions (i.e., they are different). This is
because each TIE instruction is specifically designed for a
software function call with minimum area or maximum per-
formance gain.

Speedup/area ratio of a configurable options is higher than
the speedup/area ratio of a specific TIE instruction when the
same instruction is executed by both (i.e., designers achieve
better performance by selecting suitable configurable op-
tions, than by selecting specific TIE instructions). This su-
perior performance is achieved because configurable options
are optimally designed by the manufacturer for those partic-
ular instruction sets, whereas the effective selection of TIE
instructions is based on designers’ experience.

3.2 Algorithm
There are three sections in our methodology: selecting

Xtensa processor with different configurable co-processor
core options, selecting specific TIE instructions, and estimat-
ing the performance of an application after each TIE instruc-
tion is implemented. Firstly, minimal simulation is used to
select an efficient Xtensa processor that is within the area
constraint. Then with the remaining area constraint, our

3

methodology selects TIE instructions using a greedy algo-
rithm in an iterative manner until all remaining area is ef-
ficiently used. Figure 3 shows the algorithm and three sec-
tions of the methodology and the notation is shown in table 1.

Since the configurable coprocessor core is pre-fabricated
by Tensilica and is associated with an extended instruction
set, it is quite difficult to estimate an application performance
when a configurable coprocessor core is implemented within
an Xtensa processor. Therefore, we simulate the applica-
tion using an Instruction Set Simulator (ISS) on each Xtensa
processor configuration without any TIE instructions. This
simulation does not require much time as we have only a
few co-processor options available for use. We simulate a
processor with each of the coprocessor options.

Through simulation, we obtain total cycle-count, simu-
lation time, and a call graph of the application for each
Xtensa processor. Then we calculate the effectiveness of
the processor for this application by considering total cycle-
count, clock period, and the area of each configurable
processor. The effectiveness of the Xtensa processori,
Effective processori, is defined as:

Eff proci =
1

CCi × Clock Period× Area Processori

(1)

This factor indicates a processor is most effective when it
has the smallest chip size with the smallest execution time
(cycle-count CC multiplied by the clock period) of an ap-
plication. This factor calculates the ratio of performance per
area for each processor, and our methodology selects the pro-
cessor with the highest performance per area ratio that falls
within the area constraint. This factor may not select the pro-
cessor with the best performance. Note, that ”AreaCore” is
not only an optimization goal but may also be a (hard) con-
straints.

Next, the methodology focuses on selecting specific TIE
instructions. The selection of a specific TIE instruction is
based on the area, speedup ratio, latency (maximum clock
period in all TIE instructions and configured processor), and
percentage of total cycle-count for the TIE instruction. We
define the gradient of TIE instructionj in Xtensa processork
as:

Gradientjk =
Pjk × Speedup TIEjk

Area TIEj ×Max(Latencyj , Clock Periodk)
(2)

This factor indicates that the performance gain per area of an
application when the TIE instruction is implemented in the
extensible processor. For example, if an application spent
30% of the time calling function X and 20% of the time call-
ing function Y, two TIE instructions, sayTIEX andTIEY ,
are implemented to replace software function call X and soft-
ware function call Y. The speedup of TIE instructions is 4
times and 6 times forTIEX andTIEY respectively, and
the area for the implemented TIE instructions are 3000 gates
and 4000 gates respectively. The latency value (the clock pe-
riod) for both instructions is the same. The gradient of func-
tional units is 0.0004 and 0.0003 forTIEX andTIEY . This
means thatTIEX will be considered for implementation in
the processor beforeTIEY . This example shows that the
overall performance gain of an application will be the same
whetherTIEX or TIEY is implemented. SinceTIEX has
a smaller area,TIEX is selected beforeTIEY . Equation 2
uses the remaining area effectively by selecting the specific
TIE instruction with largest performance improvement per
area. This is a greedy approach to obtain the largest perfor-
mance improvement per area. This greedy approach proved
to be effective and efficient in our application sets.

Figure 4. Speech Recognition Application.

In the last section, after TIE instructions are selected, an
estimation of execution time is calculated. The execution
time estimation (ETE) for an extensible processork with a
set of selected TIE instruction (from 1 toj) is defined as:

ETEjk = (CCk(1−
∑

j

Pjk)+
∑

j

CCk × Pjk

Speedup TIEjk

)×Latencymax

(3)
whereCCk is the original total cycle-count of an applica-
tion running on an Xtensa processor k. The first part of the
equation calculates the cycle-count of an application, then it
multiples with the maximum latency between TIE instruc-
tions. Maximum latency is the maximum clock period value
of all the TIE instructions and configured processor.

4 Speech Recognition Software & Analysis
We use a speech recognition application as a case study

to demonstrate the effectiveness of our approach. This ap-
plication provides user voice control over Unix commands
in a Linux’ shell environment. It employs a template match-
ing based recognition approach, which requires the user to
record at least four samples for each Unix command that
he/she wants to use. These samples are recorded and are
stored in a file. Moreover, since this software involves a
user’s voice, for the sake of consistency, a test bench is
recorded and is stored in another file.

The application consists of three main sections: record,
pre-process, and recognition. In the ”record” section, it first
loads the configuration of the speaker, then it loads the pre-
recorded test bench as inputs, and the pre-recorded samples
into memory. After that, it puts the test bench into a queue
passing through to the next section. In the ”pre-process” sec-
tion, it copies the data from the queue to a buffer in order
to divide the data into frame size segments. Then, it per-
forms a filtering process using the Hamming window and
applies single-precision floating-point 256-point FFT algo-
rithm to the input data to minimize the work done in the
following recognition section. Afterwards, it calculates the
power spectrum of each frame and puts these frames back
into the queue. Finally, in the ”recognition” section, it im-
plements the template matching approach utilizing Euclid’s
distance measure in which it compares the input data with
the pre-recorded samples that are loaded in memory during
the ”record” section. In the next step, it stores the compared
results in another queue. If the three closest matches of pre-
recorded samples are the same command, then the program
executes the matched Unix command. However, if the input
data does not match the pre-recorded samples, the program
goes back to the ”record” section to load the input again, and
so on. Figure 4 shows the block diagram of speech recogni-
tion application.

As this application involves a human interface and oper-
ates in sequence, it is necessary to set certain real-time con-

4

Function Description P1 P2 P3
Sqrtf Single precision square root 1.3% 2.3% 13.4%
Mod3 Modular 3 0.2% 0.6% 3.0%
Logf Single precision natural logarithm 2.7% 2.6% 2.4%
Divf Single precision division 0.8% 1.8% 7.3%
Addf Single precision addition 13.6% 25.1% 10.0%
Multf Single precision multiplication 58.3% 31.1% 16.3%

Table 2. Percentage of time spent for functions

Xtensa Processor P1 P2 P3
Area(mm2) 1.08 4.23 2.28
Area(gates) 35,000 160,000 87,000
Power(mW) 54 161 108

Clock Rate(MHz) 188 158 155
Simulation Time (sec) 2770.93 1797.34 641.69

Cycle-Count 422,933,748 390,019,604 131,798,414

Table 3. Hardware Cost and initial simulation

straints. For example, it is assumed that each voice com-
mand should be processed within 1 second after the user fin-
ished his/her command. So, ”record” section should take
less than 0.25s to put all the data into a queue. While ”pre-
process” and ”recognition” should consume less than 0.5s
and 0.25s respectively. Through a profiler we analysed the
speech recognition software in a first approximation. Ta-
ble 2 shows the percentage of selected software functions
that are involved in this application in different Xtensa pro-
cessors configurations that we denote as P1, P2 and P3. P1
is an Xtensa processor with the minimal configurable core
options. P2 is a processor with Vectra DSP Engine and its
associated configurable core options. P3 is a processor with
a floating-point unit and its associated configurable core op-
tions (more configurations are possible, but for the sake of
efficacy, only these three configurations are shown here).
Moreover, in Table 4, the application spent 13.4% of time
calling the single precision square root function in Xtensa
processor P3.

This application simulates with a cycle-count of
422,933,748 and an instruction-count of 338,079,172 in an
Xtensa processor with minimal configurable core options
and with no additional instructions. The simulation time of
this application is approximately 46 minutes and thus is a
quite time consuming. The application consists 20 source
files written in ANSI C, which include 50 subroutines and
about 3500 lines of code. The compiled source code size is
620 Kbytes.

5 Verification methodology & Results
We have pre-configured three Xtensa processors, namely

P1, P2 and P3, for this case study as explained above. As
mentioned before, although Xtensa can be configured with
other hardware parameters such as register file size, cache
size etc, in our case, all processors are configured with the
same register file size, cache size etc. We considered con-
structing an Xtensa processor P4 with DSP Engine and FP
unit together, but this proved to be inefficient. The hardware
cost and initial simulation result for the speech recognition
application for each of these processors are shown in Table 3.

Function TIE Area Speedup factor Latency
instruction/s (gates) P1 P2 P3 (ns)

FP Addition FA32 32000↑ 8.14×↑ 8.31× ↓ 8.50
FP Division (1) FFDIV 53800↑ 17.4× ↓ ↑ 15.9× 14.6
FP Division (2) MANT,LP24,COMB 6800↑ 6.48×↑ 3.52×↑ 5.28× 6.80

FP Multiplication FM32 32000↑ 11.6×↑ 8.98× ↓ 7.10
Natural Logarithm FREXPLN 3300 ↓ ↓ ↑ 1.10× 6.90

Modular 3 MOD3 5500↑ 10.9× ↓ ↑ 17.0× 6.40
Square root (1) LDEXP,FREXP 3300 ↓ ↓ ↑ 3.30× 7.00
Square root (2) LDEXP 1100 ↓ ↓ ↑ 2.50× 6.50
Square root (3) FREXP 3200 ↓ ↓ ↑ 1.90× 6.90

Table 4. Function unit’s information

Figure 5. Verification methodology

Nine specific functional units (ten TIE instructions) are im-
plemented and the corresponding information such as area
in gates, and the speedup factor under each Xtensa processor
are shown in Table 4. The down arrow in Table 4 represents
a negative speedup, whereas the up arrow with a number, N,
represents that the corresponding specific functional unit is
N times faster than the software function call. Different sets
of specific functional units are combined into a total of 576
different configurations representing the entire design space
of the application. Figure 5 shows the verification methodol-
ogy.

In order to verify our methodology, we pre-configured the
3 Xtensa processors and the 9 specific functional units (10
TIE instructions) at the beginning of the verification. Then
we simulated the 576 different configurations using the ISS.
We applied our methodology (to compare with the exhaus-
tive simulation) to obtain the result under an area constraint.
During the first phase of the methodology, just the Xtensa
processor is selected without the TIE instructions. Table 3
provides the area, cycle-count, and clock rate for an appli-
cation with each Xtensa processor. This information is used
in equation 1 of the methodology. The information from Ta-
ble 2 and Table 4 is retrieved from running initial simulation
and verifying TIE instructions. The information provided in
Table 3 is then used in the selection of TIE instructions. For
equation 3, all the parameters are obtained from Table 2, Ta-
ble 3, and Table 4. At the end, we compare results from
simulation to our methodology.

5.1 Results
The simulation results of 576 configurations are plotted

in Figure 6 with execution time verse area. The dark squares
are the points obtained using our methodology for differing
area constraints. Those points selected by our methodology
corresponded to the Pareto points of the design space graph.
As mentioned above, the 576 configurations represent the en-
tire design space and these Pareto points indicate the fastest
execution time under a particular area constraint. Therefore,
there are no extra Pareto points in this design space. More-
over, Table 4 shows the information of all Pareto points such
as area in gates, simulated execution time in seconds, esti-
mated execution time in seconds, latency, selected Xtensa
processor and the replaced software function calls. Table 5
also indicates the estimation of application performance for
each configuration is on average within 4% of the simulation
result. For the fastest configuration (configuration 9 in Ta-
ble 5), the application execution time is reduced to 85% of

5

Configuration Area Simulated Estimated Percentage Latency Xtensa Software Function replaced
(gates) execution execution difference of the Processor

time (sec.) time (sec.) processor selected
1 35,000 1.8018 – – 5.32 P1 –
2 67,000 1.0164 1.1233 10.5 7.1 P1 Floating-point multiplication
3 72,500 1.0147 1.1188 10.2 7.1 P1 Modular 3, Floating-point multiplication
4 87,000 0.2975 – – 6.45 P3 –
5 88,100 0.2738 0.2718 0.7 6.5 P3 Square root (2)
6 93,600 0.2670 0.2694 2.1 6.5 P3 Square root (1), Natural log
7 100,400 0.2632 0.2651 1.9 6.8 P3 Square root (1), Natural log, Floating-point division (2)
8 103,700 0.2614 0.2642 1.0 6.9 P3 Square root (2), Modular 3, Natural log, Floating-point division (2)
9 105,900 0.2586 0.2638 2.0 7.0 P3 Square root (1), Modular 3, Natural log, Floating-point division (2)

Average – – – 4% – – –

Table 5. Pareto points

Figure 6. The results and the Pareto points.

the original execution time (configuration 1 in Table 5). The
fastest configuration is with Xtensa processor P3 (that is with
a floating-point unit and its associated configurable core op-
tions). Seven TIE instructions (LDEXP, FREXP, MYMOD3,
FREXPLN, MANT, LP24, COMB) are also implemented
in the fastest configuration to replace four software func-
tions. There are square root, modular 3, natural logarithm
and floating-point division. The time for selection of core
options and instructions are in the order of a few hours (about
3-4hrs), while the exhaustive simulation method would take
several weeks (about 300 hrs) to complete.

6 Conclusions
This paper describes a methodology to maximize applica-

tion performance in an ASIP, through the selection of copro-
cessors / functional units and specific TIE instructions when
an area constraint is given. The methodology described uses
a combination of simulation and estimation to greedily con-
struct an ASIP.

Our methodology has demonstrated how a speech recog-
nition application can be designed within a reconfigurable
processor environment (we used Xtensa). The applica-
tion’s execution time is reduced by 85% when a floating-
point coprocessor is selected and seven of our proprietary
TIE instructions (LDEXP, FREXP, MYMOD3, FREXPLN,
MANT, LP24, COMB) are implemented to replace four soft-
ware function calls: square root, modular 3, natural loga-
rithm and floating-point division. In addition, our methodol-
ogy was able to locate all nine Pareto points from the design
space of 576 configurations. Finally, the performance esti-
mation for the proposed implementation is on average within
4% of the simulation results.

References
[1] Tensilica Instruction Extension (TIE) Language Reference Manual (For Xtensa

T1040 Processor Cores). Tensilica, Inc, 2001.

[2] Tensilica Instruction Extension (TIE) Language User’s Guide (For Xtensa T1040
Processor Cores). Tensilica, Inc, 2001.

[3] ALOMARY, A., NAKATA , T., HONMA , Y., IMAI , M., AND HIKICHI , N. An
asip instruction set optimization algorithm with functional module sharing con-
straint. InICCAD (1993), pp. 526–532.

[4] BINH , N., IMAI , M., AND TAKEUCHI , Y. A performance maximization algo-
rithm to design asips under the constraint of chip area including ram and rom
size. InASP-DAC(1998).

[5] CHOI, H., AND PARK , I. Coware pipelining for exploiting intellectual proper-
ties and software codes in processor-based design. In13th Annual IEEE Inter-
national ASIC/SOC(2000), pp. 153–157.

[6] FAUTH , A. Beyond tool-specific macine description.Code Generation for Em-
bedded Processors(1995), 138–152.

[7] GONZALEZ, R. Xtensa: A configurable and extensible processor.IEEE Micro
(2000).

[8] GUPTA, T. V. K., KO, R. E., AND BARUA , R. Compiler-directed customiza-
tion of asip cores. In10th International Symposium on Hardware/Software Co-
Design(2002).

[9] GUPTA, T. V. K., SHARMA , P., BALAKRISHNAN , M., AND MALIK , S.Proces-
sor evaluation in an embedded systems design environment. In13th International
Conf. on VLSI Design(2000), pp. 98–103.

[10] GYLLENHAAL , J. C., HWU, W. M., AND RAU , B. R. HMDES Version 2.0
specification. University of Illinois, 1996.

[11] HADJIYIANNIS , G., RUSSO, P., AND DEVADAS, S. A methodology for accu-
rate performance evaluation in architecture exploration. InDAC (1999), ACM
Press, pp. 927–932.

[12] HALAMBI , A., GRUN, P., GANESH, V., KAHARE, A., DUTT, N., AND NICO-
LAU , A. Expression: A language for architecture exploration through com-
piler/simulator retargetability. InDATE 99(1999), pp. 485–490.

[13] HOFFMANN, A., KOGEL, T., NOHL, A., BRAUN, G., SCHLIEBUSCH, O.,
AND WAHLEN , O. A novel methodology for the design of application-specific
instruction-set processors (asips) using a machine description language.IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 20,
11 (2001), 1338–1354.

[14] IMAI , M., BINH , N., AND SHIOMI , A. A new hw/sw partitioning algorithm for
synthesizing the highest performance pipelined asips with multiple identical fus.
In EURO-VHDL’96(1996), pp. 126–131.

[15] JAIN , M. K., WEHMEYER, L., STEINKE, S., MARWEDEL, P.,AND BALAKR -
ISHNAN, M. Evaluating register file size in asip design. In9th international
symposium on Hardware/software codesign(2001), pp. 109–114.

[16] KOBAYASHI , S., MITA , H., TAKEUCHI , Y., AND IMAI , M. Design space ex-
ploration for dsp applications using the asip development system peas-iii. In
IEEE International Conf. on Acoustics, Speech, and Signal Processing(2002),
pp. 3168 – 3171.

[17] LEUPERS, R., AND MARWEDEL, P. Retargetable code generation based on
structural processor descriptions. InDesign Automation for Embedded Systems
(1998), pp. 75–108.

[18] ONION, F., NICOLAU , A., AND DUTT, N. Incorporating compiler feedback
into the design of asips. InDATE (95), pp. 508–513.

[19] PAULIN , P. G., LIEM , C., MAY, T. C., AND SUTAWALA , S. Flexware: A flex-
ible firmware development environment for embedded systems. InCode Gener-
ation for Embedded Processors(1995), pp. 65–84.

[20] YANG, J.-H., KIM , B.-W., ET AL . Metacore: an application specific dsp devel-
opment system. InDAC (1998), pp. 800–803.

[21] ZHAO, Q., MESMAN, B., AND BASTEN, T. Practical instruction set design and
compiler retargetability using static resource models. InDATE (02), pp. 1021–
1026.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

