
Enhancing Speedup in Network Processing Applications by Exploiting
Instruction Reuse with Flow Aggregation

G. Surendra, Subhasis Banerjee, S. K. Nandy
CAD Laboratory, Supercomputer Education and Research Center

Indian Institute of Science, Bangalore 560012, India
Email: {surendra@cadl, subhasis@cadl, nandy@serc}.iisc.ernet.in

Abstract

Instruction reuse is a microarchitectural technique that
improves the execution time of a program by removing re-
dundant computations at run-time. Although this is the job
of an optimizing compiler, they do not succeed many a time
due to limited knowledge of run-time data. In this paper we
examine instruction reuse of integer ALU and load instruc-
tions in network processing applications. Specifically, this
paper attempts to answer the following questions: (1) How
much of instruction reuse is inherent in network processing
applications?, (2) Can reuse be improved by reducing in-
terference in the reuse buffer?, (3) What characteristics of
network applications can be exploited to improve reuse?,
and (4) What is the effect of reuse on resource contention
and memory accesses? We propose an aggregation scheme
that combines the high-level concept of network traffic i.e.
”flows” with a low level microarchitectural feature of pro-
grams i.e. repetition of instructions and data along with
an architecture that exploits temporal locality in incoming
packet data to improve reuse. We find that for the bench-
marks considered, 1% to 50% of instructions are reused
while the speedup achieved varies between 1% and 24%.
As a side effect, instruction reuse reduces memory traffic
and can therefore be considered as a scheme for low power.

1. Introduction

Network Processor Units (NPU) are specialized pro-
grammable engines that are optimized for performing com-
munication and packet processing functions and are capa-
ble of supporting multiple standards and Quality of service
(QoS) requirements. Increasing network speeds along with
the increasing desire to perform more computation within
the network have placed an enormous burden on the pro-
cessing requirements of NPUs. This necessitates the devel-
opment of new schemes to speedup packet processing tasks

while keeping up with the ever increasing line rates. The
above aim has to be achieved while keeping power require-
ments within reasonable limits. In this paper we investigate
dynamic instruction reuse as a means of improving the per-
formance of a NPU. The motivation of this paper is to deter-
mine if instruction reuse is a viable option to be considered
during the design of NPUs and to evaluate the performance
improvement that can be achieved due to instruction reuse.

Dynamic instruction reuse [1][2] improves the execution
time of an application by reducing the number of instruc-
tions that have to be executed dynamically. Research has
shown that many instructions are executed repeatedly with
the same inputs and hence producing the same output [3].
Dynamic instruction reuse is a scheme in which instructions
are buffered in a Reuse Buffer (RB) and future dynamic in-
stances of the same instruction use the results from the RB if
they have the same input operands. The RB is used to store
the operand values and result of instructions that are exe-
cuted by the processor. This scheme is denoted by Sv (’v’
for value) and was first proposed in [1]. The RB consists of
tag, input operands, result, address and memvalid fields [1].
When an instruction is decoded, its operand values are com-
pared with those stored in the RB. The PC of the instruction
is used to index into the RB. If a match occurs in the tag and
operand fields, the instruction under consideration is said to
be reused and the result from the RB is utilized. We assume
that the reuse test can be performed in parallel with instruc-
tion decode [1]. The reuse test will usually not lie in the
critical path since the accesses to the RB can be pipelined.
The tag match can be initiated during the instruction fetch
stage since the PC value of an instruction is known by then.
Execution of load instructions involves an address compu-
tation and then accessing the memory location specified by
the address. The address computation part of a load instruc-
tion can be reused if the instruction operands match an en-
try in the RB, while the actual memory value (outcome of
load) can be reused if the addressed memory location was
not written by a store instruction. The memvalid field indi-
cates whether the value loaded from memory is valid while

1530-1591/03 $17.00 2003 IEEE

the address field indicates the memory address. When a
store instruction is executed by the processor, the address
field of each RB entry is searched for a matching address,
and the memvalid bit is reset for matching entries. In this
paper we assume that the RB is updated by instructions that
have completed execution and are ready to update the regis-
ter file. This ensures that precise state is maintained with the
RB containing only the results of committed instructions.
Instruction reuse improves performance since “reused in-
structions” can bypass some stages in the pipeline with the
result that it allows the dataflow limit to be exceeded. Per-
formance is further improved since subsequent instructions
that are dependent on the reused instruction are resolved
earlier and can be issued earlier.

Whereas dynamic instruction reuse has been exploited
in the context of general purpose processing applications
[1], to the best of our knowledge, this is the first paper that
enhances the utility of instruction reuse with a flow aggre-
gation scheme in network processing applications. Specifi-
cally, the following are the main contributions of this paper
- (i) We evaluate dynamic instruction reuse for NPU bench-
marks and show that significant instruction reuse can be ex-
ploited. (ii) We propose a flow aggregation scheme that ex-
ploits the locality in packet data to improve reuse. The idea
is to store reuse information of “related” packets (flows) in
separate Reuse Buffers (RB’s) so that interference in RB’s
is reduced. (iii) We evaluate the impact of instruction reuse
on resource contention and memory accesses.

The rest of the paper is organized as follows. We de-
scribe the flow aggregation approach in section 2, present
simulation results in section 3 and conclude with section 4.

2. Improving reuse by aggregating Flows

A flow (commonly used in congestion control terminol-
ogy) may be thought of as a sequence of packets sent be-
tween a source/destination pair following the same route in
the network. A router inspects the IP addresses in the packet
header and treats packets with the same source/destination
address pairs as belonging to a particular flow. A router may
also use application port (layer 4) information in addition
to the IP addresses to classify packets into flows. A flow
can be either implicitly defined or explicitly established. In
the former, each router watches for packets between partic-
ular source/destination pairs by inspecting the headers. In
the latter, the source sends a flow setup message across the
network, declaring that a flow of packets is about to start
(connection oriented systems). When packets with a par-
ticular source/destination IP address pair traverse through
an intermediate router in the network, one can expect many
more packets belonging to the same flow (i.e. having the
same address pair) to pass through the same router (usu-
ally through the same input and output ports) in the near

future. All packets belonging to the same flow will be sim-
ilar in most of their header (both layer 3 and layer 4) fields
and many a time in their payload too. For example, the
source/destination IP addresses, ports, version and protocol
fields in an IP packet header will be the same for all packets
of a particular connection/session. Header processing ap-
plications such as firewalls, route lookup, network address
translators, intrusion detection systems etc, are critically de-
pendent on the above fields and yield higher reuse if flow
aggregation is exploited. Instruction reuse can be improved
if applications that process these packets somehow identify
the flow to which the packet belongs to, and uses different
RB’s for different flows. The idea is to have multiple RB’s,
each catering to a flow or a set of flows so that similarity in
data values (at least header data) is preserved ensuring that
evictions in the RB is reduced.

A simple example (figure 1) is used to illustrate how flow
aggregation reduces the possibility of evictions in a RB and
enhances reuse. For simplicity, let us assume that an ALU
operation (say addition) is computed by the NPU on in-
coming packet data ai, bi. Figure 1(a) shows the ”reuse”
scheme without flow aggregation using a single 4 entry RB
while 1(b) exploits flow aggregation using two RB’s. As-
sume that incoming packets are classified into two flows -
Pkt1, Pkt2 and Pkt6 belong to flowA while Pkt3, Pkt4,
and Pkt5 belong to flowB . The RB (fig 1(a)) is updated
by instructions that operate on the first four packets. When
the contents of Pkt5 is processed (there is no hit in the RB),
the LRU entry (i.e. a1, b1) is evicted and overwritten with
a5, b5. This causes processing of the next packet Pkt6 to
also miss (since the contents were just evicted) in the RB.
Assume that a flow aggregation scheme is used with mul-
tiple RB’s so that program instructions operating on pack-
ets belonging to flowA query RB1 and those operating on
flowB query RB2 for exploiting reuse. Instructions operat-
ing on Pkt5 will be mapped to RB2 (which will be a miss)
while instructions operating on Pkt6 mapped to RB1 will
cause a hit and enable the result to be reused leading to an
overall improvement in reuse (compared to fig1(a)). Ob-
viously, a good mapping strategy is necessary to uncover
higher reuse.

One can relax the previous definition and classify pack-
ets related in some other sense as belonging to a flow. For
instance, the input port through which packets arrive at a
router and the output port through which packets are for-
warded could be used as possible alternatives. For every
packet that arrives, the NPU must determine the RB to
be associated with instructions that operate on that packet.
Routers that classify packets based on the IP addresses are
required to parse the IP header and maintain state informa-
tion for every flow. Flow classification based on the out-
put port involves some computation to determine the out-
put port. The output port is determined using the Longest

a b a + b1 1 1 1
a b a + b2 2 2 2
a b a + b3 3 3 3
a b a + b4 4 4 4

Operands Result

Reuse Buffer

a b1 1 a b2 2 a b3 3 a b4 4 a b5 5 a b11

Pkt Pkt Pkt Pkt PktPkt1 2 3 4 5 6

Miss,
Evict LRU entry

a b a + b1 1 1 1
a b a + b2 2 2 2

RB1

Operands Result

Evict LRU entry
Miss,

a b a + b3 3 3 3
a b a + b4 4 4 4

Operands Result

RB2
of hits = 0
#of evictions = 2

of hits = 1
#of evictions = 1

Hit, reused

(b)(a)

flowAflowA flowA

Time

Bflow flowB flowB

Figure 1. An example comparing (a) ordinary in-
struction reuse with (b) flow based reuse.

Prefix Match (LPM) algorithm and is computed for every
packet irrespective of whether reuse is exploited or not [6].
Most routers employ route caches to minimize computing
the LPM for every packet thereby ensuring that the output
port is known very early [6]. A one-to-one (instruction)
mapping between an output port and a RB is not practi-
cal since the number of output ports is usually greater than
the number of RB’s that can be incorporated on-chip. A
many-to-one mapping scheme in which instructions operat-
ing on packets destined to different output ports query the
same RB is necessary which by itself opens up a design
space that needs to be carefully explored. Classification of
flows based on the input port involves little or no computa-
tion (since the input port through which a packet arrives is
known) but uncovers a smaller percentage of reuse for some
applications.

2.1. Architecture proposal

For single processor systems the architecture proposed
in [1] with a few minor changes is sufficient to exploit
flow based reuse. However, for multiprocessor and mul-
tithreaded systems which are generally used in designing
NPUs, extra modifications are required. The architecture
proposed in this section can be applied to both non-blocking
and blocking multithreaded execution models. The essence
of the problem at hand is to determine the appropriate RB
to be used by instructions operating on a packet and switch
between RB’s when necessary. The NPU is essentially a
chip multiprocessor consisting of multiple RISC process-
ing engines called microengines (using the terminology of
Intel IXP1200 [7]) which support hardware multithreading
with zero cycle context switching. Programs can run on
multiple microengines and multiple threads. It is the job of
the programmer to partition tasks across threads as well as
programs across microengines. The inter-thread and inter-
processor communication also has to be explicitly managed
by the user. Each microengine has a RB array consisting

of N + 1 RB’s - RB0, ..., RBN (see figure 2). RB0 is a
default RB that is queried by instructions before the flow id
of a packet is computed. The NPU also consists of a Flow
id table that indicates the flow id for a packet and a map-
per (which can be programmed) that identifies the RB to
be used by instructions operating on that packet. The Flow
id table and the mapper are accessible by all microengines
of the NPU and also by the memory controller which is re-
sponsible for filling an entry on the arrival of a new packet.
The flow id field is initialized to a default value (say 0)
which maps to the default RB (RB0). This field is updated
once the actual flow id is computed based on any of the
schemes mentioned previously. The packet id of the packet
currently being processed by a thread is obtained by track-
ing (hardware required for this is maintained by the memory
controller) the memory being accessed by load instructions
(we assume that a packet is stored in contiguous memory).
Each thread stores the packet id of the packet currently be-
ing processed, the thread id and the flow id to which the
packet belongs. The selection of the RB based on the flow id
is made possible by augmenting the Reorder Buffer (RoB)
with the thread id and the RB id (the mapper gives the flow
id to RB id mapping). Instructions belonging to different
threads (even those in other microengines) access the Flow
id table which indicates the RB to be queried by that in-
struction. The flow id field indicates the default RB (RB0)
initially. After a certain amount of processing, the thread
that determines the output port updates the flow id entry
in the Flow id table for the packet being processed. This
information is known to all other threads operating on the
same packet through the centralized Flow id table which is
accessed by all threads. Once the flow id is known, the map-
per gives the exact RB id (RB to be used) which is stored in
thread registers as well as in the RoB.

When the processing of the packet is complete, it is re-
moved from the memory i.e. it is forwarded to the next
router or sent to the host processor for local consumption.
This action is again initiated by some thread and actually
carried out by the memory controller. At this instant the flow
id field in the Flow id table is reset to the default value. In
summary, reuse is always exploited with instructions query-
ing either the default RB or a flow id specified RB.

2.2. Impact of reuse on resources

Instructions contend for various resources such as func-
tional units and memory ports as they flow through the
pipeline. An effect of instruction reuse is that demand for
resources is reduced since reused instructions do not con-
sume functional units allowing other ready instructions to
execute early. This changes the schedule of instruction ex-
ecution resulting in clustering or spreading of request for
resources, thereby, increasing or decreasing resource con-

Fe
tc

h Inst
Queue

RoB

Ready
Queue

W
ri

te
ba

ck

C
om

m
it

PC

RB0
RB1

RBn

M
ap

pe
r

Pkt_id Flow_id

D
ec

od
e

&
 R

en
am

e

E
xe

cu
te

&
 M

em
or

y

Register
File

Reuse
Buffer
Array Microengine

Flow id table

Figure 2. Microarchitecture to exploit instruction
reuse using the Flow aggregation scheme.

tention [2]. Resource contention is defined as the ratio of
the number of times resources are not available for execut-
ing ready instructions to the total number of requests made
for resources. Exploiting reuse for load instructions helps
in reducing the number of memory (on-chip and off-chip)
accesses [4], bus transitions and port contention.

2.3. Operand based indexing

Indexing the RB with the PC enables one to exploit reuse
due to dynamic instances of the same static instruction. Re-
dundancy across dynamic instances of statically distinct in-
structions (having the same opcode) can be captured by in-
dexing the RB with the instruction opcode and operands.
One way to implement operand indexing is to have an op-
code field in addition to other fields mentioned previously
in the RB and search in parallel the entire RB for matches.
In other words, an instruction that finds a match in the op-
code and operand fields can read the result value from the
RB. This is in contrast to PC based indexing where the as-
sociative search is limited to a portion of the RB. We use
a method similar to the one proposed in [5] to evaluate
operand based indexing. Operand indexing helps in uncov-
ering slightly more reuse than PC based indexing (for the
same RB size). This can be attributed to the fact that in
many network processing applications, certain tasks are of-
ten repeated for every packet. Since there is significant cor-
relation in packet data, the inputs over which processing is
done is quite limited and hence network (especially header)
processing applications tend to reuse results that were ob-
tained while processing a previous packet.

3. Simulation Methodology and Results

The goal of this paper is to demonstrate the idea and ef-
fectiveness of aggregating flows to improve reuse and not
the architecture for enabling the same. Hence, we do not

simulate the architecture proposed in the previous section
(this will be done as future work) but use a single threaded
single processor model to evaluate reuse. We modified the
SimpleScalar [8] simulator (MIPS ISA) and used the default
configuration [8] to evaluate instruction reuse on a subset of
programs representative of different classes of applications
from two popular NPU benchmarks - CommBench [9] and
NetBench [10] (see table 1). It must be noted that we use
SimpleScalar since it is representative of an out-of-order is-
sue pipelined processor with dynamic scheduling and spec-
ulative execution support. In other words, we assume that
the NPU is based on a superscalar RISC architecture which
is representative of many NPUs available in the market.
Further, using Simplescalar makes it easy to compare re-
sults with certain other results in [9] and [10] that also use
the same simulation environment.

Every application has a certain function (or piece of
code) which reads a new packet. When the PC of an instruc-
tion matches with the PC of this function, the output port for
the packet is read from a precomputed table of output ports.
This gives the RB to be used for the current set of instruc-
tions being processed. The RB id is stored in the RoB along
with the operands for the instruction and the appropriate RB
is queried to determine if the instruction can be reused. The
results therefore obtained are valid independent of the ar-
chitecture proposed in the previous section. Since threads
and multiple processors are not considered during simula-
tion, the results reported in this paper give an upper bound
on the speedup that can be achieved by exploiting flow ag-
gregation. However, the bound can be improved further if
realistic network traffic traces that are not anonymized in
their header and payload are available.

Inputs provided with the benchmarks were used in all
the experiments except FRAG for which randomly gener-
ated packets with fragment sizes of 64, 128, 256, 512, 1024,
1280 and 1518 bytes were used [11]. We evaluate instruc-
tion reuse for ALU and Load instructions for various sizes
of the RB. We denote the RB configuration by the tuple
(x, y) where x represents the size of the RB (number of
entries) and y the associativity (number of distinct operand
signatures per entry). x takes on values of 32, 128 and
1024 while y takes on values of 4 and 8. Statistics collection
begins after 0.1 million instructions and the LRU policy is
used for evictions since it was found to be the best scheme.

3.1. Reuse and Speedup - Base case

Table 1 shows reuse recovered by different RB config-
urations and speedup for the benchmark programs consid-
ered. We find that that network processing applications on
average have slightly lesser instruction repetition patterns
compared to SPEC benchmark results [1]. It is seen that
a high number of hits in the RB need not necessarily lead

Table 1. Reuse and Speedup without flow aggregation for different RB configurations. R=% instructions reused,
S=% improvement in speedup obtained due to reuse. % speedup due to operand indexing and % reduction in
memory traffic due to load instruction reuse for a (32,8) RB is shown in the last two columns.

Bench- (32,4) (32,8) (128,4) (128,8) (1024,4) (1024,8) ope- Mem
mark R/S R/S R/S R/S R/S R/S rand traffic

FRAG 7.9/3.7 10.4/5 20.4/4.9 25.8/5.7 24.4/8.3 29.8/10.7 5.3 42.1
DRR 12.6/0.16 12.8/0.18 15.5/0.5 16.5/0.64 18.2/0.86 20.3/1.1 0.4 11.6
RTR 15.2/3.8 16.3/4 33.2/6.1 35.9/6.3 47.6/8.1 49.4/8.6 9.2 71.3

REEDENC 19.8/2 21.7/2.17 20.3/2.05 21.9/2.23 25.2/2.95 27.4/3.13 4.7 8.7
REEDDEC 6.6/1.76 6.8/1.84 11.8/4 12.9/4.2 16.6/5.6 18.7/6.5 6 4.9

CRC 19.1/19.6 19.3/19.67 20.7/19.84 21.1/19.91 21.8/19.82 22.4/20.1 20.4 35.1
MD5 1.4/1.3 1.5/1.36 3.5/2.3 3.6/2.39 14.2/8.3 14.9/8.47 1.6 34.35
URL 18.8/9.4 19.2/10.2 19.9/11.2 20.32/11.44 22.2/12.7 22.7/12.92 13.1 42

to a higher speedup. This is because speedup is governed
not only by the amount of reuse uncovered but also by the
availability of free resources. Though resource demand is
reduced due to reuse, resource contention becomes a lim-
iting factor in obtaining higher speedup. An appropriate
selection of both the number entries in the RB and the as-
sociativity of the RB are critical in obtaining good perfor-
mance improvements. DRR is rather uninteresting yielding
a very small speedup even with an (1024,8) RB. A closer
examination of the DRR program reveals that though it is
loop intensive, it depends on the packet length which varies
widely in our simulations. A more significant reason for the
small speedup gain is due to the high resource contention
(figure 4). On increasing the number of integer ALU units
to 6, multiply units to 2 and memory ports to 4 (we shall
refer to this configuration as the extended configuration), a
speedup of around 5.1% was achieved for a (32,8) RB.

3.2. Speedup due to flow aggregation

Simulation is carried out using 8 network interfaces
(ports) with randomly generated addresses and network
masks (mask length varies between 16 and 32). We use
separate RB’s for ALU and load instructions to reduce the
size of the RB. This is because only load instructions utilize
the memvalid and address fields in the RB which need not
be present for ALU instructions. We found that the flow ag-
gregation scheme with 4 RB’s usually gives the best result
for the benchmarks considered. Our simulation results in-
dicate that a single RB is capable of capturing as much as
70% load instruction reuse. This number does not increase
significantly when multiple load RB’s are used. Hence, all
results reported in this paper make use of 4 ALU RB’s and
1 load RB to exploit flow based reuse. The flow aggregation
is based on the output port (we use a route cache to deter-
mine this value) with a simple mapping scheme (for RTR

we use the input port scheme since this is the program that
computes the output port). We map instructions executing
packets destined for port 0 and 1 to RB1, 2 and 3 to RB2

and so on. This type of mapping is clearly not optimal and
better results can be obtained if other characteristics of the
network traffic are exploited. Since most traffic traces are
anonymized, this kind of analysis is difficult to carry out
and we do not explore this design space. Figure 3 shows
the speedup results due to flow aggregation for FRAG and
RTR programs. Flow aggregation is capable of uncover-
ing significant amount of reuse even when smaller RB’s are
used. For example, for the FRAG program, 5 (128,8) RB’s
(4 for ALU and 1 for load instructions) produces the same
speedup as a single RB with a (1024,8) configuration. The
solid lines represent speedup due to ALU instructions in the
base case while the dotted lines show results due to the flow
based scheme for ALU instructions only. The dashed lines
indicate the additional contribution made by load instruc-
tions to the overall speedup. To examine the effect of reduc-

32 128 1024
Number of entries in RB

3

4

5

6

7

8

9

10

11

12

13

14

%
Sp

ee
du

p

Flow+loads+8-way
Flow+loads+4-way
Flow+8-way
Flow+4-way
8-way associative
4-way associative

FRAG

32 128 1024
Number of entries in RB

4

6

8

10

12

14

16

18

20

%
Sp

ee
du

p

RTR

Figure 3. Speedup with flow aggregation

ing resource contention on speedup, we tried the extended
configuration and obtained a 4.8% improvement in speedup

for RTR (2.3% for FRAG) over the flow based scheme (with
(32,8) RB). Speedup is improved by 2% to 8% over the base
scheme for other programs (this in conjunction with table 1
gives approximate values). The reuse and speedup results
of these are not shown explicitly for lack of space.

frag drr rtr reedenc reeddec md5 url crc
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ed

uc
ti

on
in

re
so

ur
ce

de
m

an
d/

R
es

ou
rc

e
co

nt
en

ti
on

Resource contention - flow based
Resource contention - without flow aggregation
Resource demand - flow based
Resource demand - without flow aggregation

Figure 4. Resource demand and resource con-
tention due to reuse

Figure 4 shows that resource demand due to flow reuse is
lower than the base scheme. Resource demand is calculated
by normalizing the number of resource accesses with reuse
to that without reuse. The figure also shows resource con-
tention normalized to the base case. As mentioned in sec-
tion 2.2, contention may increase or decrease due to reuse.
Resource contention comes down drastically on using the
extended configuration (see section 3.1). Load instruction
reuse also reduces memory traffic [4] significantly (see last
column of table 1) thereby decreasing power consumption.
Power reduction is also achieved due to reduced number of
executions when an instruction is reused. This may however
be offset due to accesses to the RB.

Also, as shown in table 1 (column 8 vs column 3),
operand indexing is capable of uncovering additional reuse
and speedup. An extra speedup of about 2% to 4% is
achieved when flow aggregation is used along with operand
indexing. Since a reused instruction executes and possibly
commits early, it occupies a RoB slot for a smaller amount
of time. This reduces the stalls that would occur as a result
of the RoB being full. Flow based reuse has the ability to
further improve reuse thereby reducing the RoB occupancy
even further. Flow based reuse reduces the occupancy of the
RoB by 1.5% to 3% over the base reuse scheme.

4. Conclusions

In this paper we examined instruction reuse in network
processing applications. To further enhance the utility of
reuse by reducing interference, a flow aggregation scheme
that exploits packet correlation and uses multiple RB’s

is proposed. The results indicate that exploiting instruc-
tion reuse with flow aggregation does significantly improve
the performance of our NPU model (24% improvement in
speedup). Future work would be to simulate the architec-
ture proposed, evaluate power issues and determine which
instructions really need to be present in the RB. Interfer-
ence in the RB can be reduced if critical instructions are
identified and placed in the RB. Further, a detailed explo-
ration of various mapping schemes is necessary to evenly
distribute related data among RB’s. Finally, we believe that
additional reuse can be recovered from payload processing
applications if realistic (non anonymized) traffic is used.

References

[1] A. Sodani and G. Sohi, “Dynamic Instruction Reuse,”
In Proc. of ISCA-24, July 1997, pp. 194-205.

[2] A. Sodani, G. Sohi, “Understanding the Differences be-
tween Value Prediction and Instruction Reuse,” 31th

Annual ACM/IEEE International Symposium on Mi-
croarchitecture, Dec 1998, pp. 205-215.

[3] A. Sodani and G. Sohi, “An Empirical Analysis of In-
struction Repetition,” In Proc. of ASPLOS-8, 1998.

[4] J. Yang and R. Gupta, “Load redundancy removal
through instruction reuse,” In Proc. Intn’l Conf. on Par-
allel Processing, Aug 2000, pp. 61-68.

[5] C. Molina, A. Gonzalez and J. Tubella, “Dynamic Re-
moval of Redundant Computations,” In Proc. Intn’l.
Conf. on Supercomputing, June 1999.

[6] F. Baker, “Requirements for IP Version 4 Routers,”
RFC - 1812, Network Working Group, June 1995.

[7] Intel IXP1200 Network Processor - Hardware Refer-
ence Manual, Intel Corporation, December 2001.

[8] D. Burger, T. M. Austin, and S. Bennett, “Evaluat-
ing Future Microprocessors: The SimpleScalar Tool
Set,” Technical Report CS-TR-96-1308, University of
Wisconsin-Madison, July 1996.

[9] Tilman Wolf, Mark Franklin, “CommBench - A
Telecommunications Benchmark for Network Proces-
sors,” IEEE Symposium on Performance Analysis of
Systems and Software, Apr 2000, pp. 154-162.

[10] Gokhan Memik, B. Mangione-Smith, W. Hu, “Net-
Bench: A benchmarking Suite for Network Proces-
sors,” In Proc. ICCAD, Nov. 2001.

[11] S. Bradner, J. McQuaid, “A Benchmarking Method-
ology for Network Interconnect Devices”, Request For
Comments - 2544, IETF, March 1999.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

