
Exploring High Bandwidth Pipelined Cache Architecture for Scaled Technology

Amit Agarwal, Kaushik Roy, and T. N. Vijaykumar
Electrical & Computer Engineering

Purdue University, West Lafayette, IN 47907, USA

Abstract
In this paper we propose a design technique to pipeline
cache memories for high bandwidth applications. With the
scaling of technology cache access latencies are multiple
clock cycles. The proposed pipelined cache architecture can
be accessed every clock cycle and thereby, enhances
bandwidth and overall processor performance. The
proposed architecture utilizes the idea of banking to reduce
bit-line and word-line delay, making word-line to sense
amplifier delay to fit into a single clock cycle. Experimental
results show that optimal banking allows the cache to be
split into multiple stages whose delays are equal to clock
cycle time. The proposed design is fully scalable and can be
applied to future technology generations. Power, delay and
area estimates show that on average, the proposed
pipelined cache improves MOPS (millions of operations per
unit time per unit area per unit energy) by 40-50%
compared to current cache architectures.

1: Introduction

The phenomenal increase in microprocessor
performance places significant demands on the memory
system. Computer architects are now exploring thread-
level parallelism to exploit the continuing improvements
in CMOS technology for higher performance.
Simultaneous Multithreading (SMT) [7] has been
proposed to improve system throughput by overlapping
multiple (either multi-programmed or explicitly parallel)
threads in a wide-issue processor. SMT enables several
threads to be executed simultaneously on a single
processor, placing a substantial bandwidth demand on the
cache hierarchy, especially on L1 caches. SMT’s
performance is limited by the rate at which the L1 caches
can supply data.

One way to build a high-bandwidth cache is to reduce
the cache access time, which is determined by cache size
and set-associativity [3]. To reduce the access time, the
cache needs to be smaller in size and less set associative.
However, decreasing the size or lowering the associativity
has negative impact on the cache miss rate. The cache

miss rate determines the amount of time the CPU is stalled
waiting for data to be fetched from the main memory.
Hence, there is a need for L1 cache design that is large and
provides high bandwidth.

The main issue with large cache is that the bit-line
delay does not scale well with technology as compared to
the clock cycle time [5]. Clock speed is getting doubled
every technology generation making cache access latency
to be more than one cycle. More than one cycle for cache
access keeps the cache busy for those many cycles and no
other memory operation can proceed without completing
the current access. The instructions dependent on these
memory operations also get stalled. This multi-cycle-
access latency reduces the bandwidth of cache and hurts
processor performance.

One of the techniques to increase the bandwidth is
pipelining. Pipelining divides the cache latency into
multiple stages so that multiple accesses can be made
simultaneously. The problem in pipelining the cache is
that data voltage level in the bit-lines remains at a fraction
of supply voltage making it difficult to latch the bit-line
data. We explore the idea of banking to make pipelining
feasible in caches. We propose a scheme that can be
utilized to divide the cache access latency into several
stages as required by the clock cycle time and bandwidth
requirement (as technology scales). The technique is also
helpful in designing large-sized caches to decrease the
miss rate while providing high bandwidth.

Fig. 1. Cache access delay.

1530-1591/03 $17.00  2003 IEEE

Decoder contributes around 15-20% to overall cache hit
time delay. Nogami et.al [1] proposed a technique to hide
the full or partial decoder delay by putting the decoder in a
pipeline stage. However, even in the best case such a
decoder-pipelined cache is limited by the word-line driver
to data-out delay. Because this delay is 75-80% of the total
cache delay, the decoder-pipelined cache has an imbalanced
pipeline stage, which degrades the bandwidth.

2: Banking of cache

The cache access time can be divided into four parts

(Fig. 1): (i) Decoding Delay (DD), (ii) Word-line Delay
(WD), (iii) Bit-line to Sense Amplifier Delay (BSD), (iv)
Mux to Data Out Delay (MDD). One of the main hit time
reduction techniques in large caches is to bank the cache.
The memory is partitioned into M smaller banks. An extra
address word called bank address selects one of the M
banks to be read or written. The technique reduces the
word-line and bit-line (capacitance) and in turn reduces the
WD and BSD. The bank address can be used to disable
sense amplifiers and row and column decoders of un-
accessed memory banks to reduce power dissipation.

The memory can be broken into smaller banks. Based on
such banking, two parameters can be defined: Ndwl and Ndbl
[2]. The parameter Ndwl indicates the number of times the
array has been split with vertical cut lines (creating more,
but shorter word-lines), while Ndbl indicates the number of
times the array is split with horizontal cut lines (creating
shorter bit-lines). The total number of banks is Ndwl x

Ndbl. However, reduced hit time by increasing these
parameters comes with extra area, energy and delay
overhead. Increasing Ndbl increases the number of sense
amplifiers, while increasing Ndwl translates into more
word-line drivers and bigger decoder due to increase in the
number of word-lines [4]. Most importantly, except in the
case of a direct mapped cache (where Ndbl and Ndwl are
both equal to one), a multiplexer is required to select the
data from the appropriate bank. Increasing Ndbl increases
the size of multiplexer, which in turn increases the critical
hit time delay and energy consumption.

Fig. 2 shows the variation of different components of hit
time with respect to Ndbl and Ndwl. A 64K and a 128K, 2-
way caches were simulated using TSMC 0.25u technology.
Increasing Ndbl decreases BSD due to shorter bit-lines but
it also increases MDD due to larger number of banks. More
banking requires large column multiplexer to select proper
data. There is an optimum partitioning beyond which the
increase in delay due to column multiplexer supercedes the
delay gain due to reduced bit-lines. Increasing Ndwl does
not make any difference in delay for 64K cache for current
technology generations. In a 64k cache, a single word-line
needs to have 2 cache blocks (64 byte) to maintain a good
aspect ratio. Because the cache under consideration in Fig. 1
is a 2-way associative cache, which requires reading of two
cache blocks simultaneously, changing Ndwl does not
change the capacitance driven by word-line driver. For
128K cache, 4 cache blocks can be put in a single word-
line. Dividing word-line into two parts decreases WDD, but
increases DD due to the increased number of word-lines to
be decoded. Several variations of the given architecture are
possible. Variation includes positioning of sense amplifiers,
the partitioning of the word and bit-lines, and the logic
styles of the decoder used.

3: Proposed pipelined cache architecture

Pipelining is a popular design technique often used to

increase the bandwidth of the datapaths. It reduces the cycle
time of a block that may otherwise be governed by critical
delay of the block. Unfortunately, unlike functional units,
caches do not lend themselves to be pipelined to arbitrary
depth. The key impediment to pipelining the cache into
more stages is the bit-line delay cannot be pipelined
because the signals on the bit-lines are weak, and not
digital; latching can be done only after the sense
amplifiers convert the bit-line signals from analog to
digital. A bit-line is loaded by both the multiple word-line
cells' capacitances, and the bit-line's wire capacitance and
resistance. Consequently, the bit-line delay depends on the
bank size, which is optimized for latency. In a latency-
optimized cache, further dividing the cache (other than the
decoder) into the two natural stages of bit-line +
senseamps and multiplexor + data driver creates a
substantially uneven split; the WD+BSD is considerably-a

0.0

1.0

2.0

3.0

4.0

8x1 8x2 16x1 16x2
Ndbl X Ndwl

De
la

y
(n

s)

Decoder Delay WordLine Delay
Bitline/SenseAmp Delay BankMux/DataOutput Delay
Total Hit Time Delay

0.0

1.0

2.0

3.0

4.0

5.0

2x1 4x1 8x1 16x1
Ndbl X Ndwl

De
al

y
(n

s)

Decoder Delay WordLine Delay
Bitline/SenseAmp Delay BankMux/DataOutput Delay
Total Hit Time Delay

Fig. 2. Delay analysis for different Ndbl x Ndwl.
a) 64K Cache, b) 128K Cache.

factor of two to four longer than the MDD step (Fig. 2).
Thus, the uneven split renders ineffective pipelining a
latency-optimized cache along such natural stages.

Partitioning the cache into multiple banks decreases BSD
but increases MDD. Beyond a certain point more
partitioning increases the multiplexer delay and it dominates
the decrease in bit-line delay. It is interesting to observe that
banking makes BDD delay to catch up the WD + BSD
delay. Placing a latch in between divides the word-line to
data-out delay into two approximately comparable sections.
This technique has advantage of having more banks (low
bit-line delay) than a conventional design permits. The
increase in multiplexer delay due to aggressive banking is
hidden in a pipeline stage. The clock cycle is governed by
the word-line to sense amplifier delay (WD+BSD) and can
be made smaller by aggressive banking. The technique can
be used to aggressively bank the cache to get minimum
possible WD+BSD which is limited by WD. For scaled
technologies it might be necessary to bank the cache more
so that BSD fits in a single clock cycle Aggressive banking
makes MDD to go beyond the point where it can no longer
fit into a single cycle. For dealing with this problem,
multiplexer can be designed as a tree and can itself be
pipelined into multiple stages as required.

Fig. 3 shows a block diagram of a fully pipelined cache.
The cache is divided into three parts, a) Decoder, b) Word-
line Driver to Sense Amplifier via Bit-lines, c) Bank
Multiplexer to Data Output Drivers. Cache is banked

optimally so that word-line driver to sense amplifier delay is
comparable to a clock cycle time. Bank multiplexer is
further divided into more pipeline stages as required by
clock cycle time requirement.

3.1: Sense amplifier latches

Sense amplifiers are duplicated based on the number of

horizontal cuts, Ndbl. A latch is placed at both input and
output path of every sense amplifier to pipeline both read
and write delay. Both input and output data is routed
through bank multiplexer and data output drivers. The
output of the bank decoder is also used to drive the sense
enable signal of sense amplifiers. Only the accessed bank’s
sense amplifiers are activated and take part in sensing the
data while the rest of them remain idle and do not increase
dynamic energy. Increasing the number of banks increases
the number of sense amplifier required, and in turn
increases the number of latches. However, only one set of
latches dissipates dynamic energy since switching occurs
only on the datalines associated with accessed bank. Clock
has to be routed to all the latches to synchronize the pipeline
operation. To reduce the redundant clock power, clock
gating was used. No extra control logic is required for clock
gating. The outputs of bank decoder themselves act as
control signals to gate the clock to un-accessed latches.

3.2: Decoder latches

All bank, row, and column decoders’ outputs are also

latched. Increasing the number of vertical cuts (Ndwl)
increases the number of word-lines to decode. This requires
a bigger row decoder and more number of latches. At the
same time increasing the number of banks also increases the
size of bank decoder and hence, the number of latches.
However, at most only two lines switch in a single
read/write operation. These two lines are: the one that got
selected in previous cycle and the one that is going to be
selected in current cycle. Hence, not all latches contribute to
dynamic energy dissipation.

3.3: Multiplexer latches

To pipeline the multiplexer, sets of latches are placed at

appropriate positions so that the multiplexer can be divided
into multiple stages. The required number of latches
depends on the aggressiveness of banking and how deep the
latches are placed in the multiplexer tree. Similar to sense
amplifier larches bank decoder output can be used to gate
the clock in unused multilexer latches.

4: Results

In this section we evaluate the performance of
conventional unpipelined cache with respect to technology

Fig. 3. Block diagram of a fully pipelined

cache having bank configuration 4x2.

scaling. We show the effectiveness of the proposed design
in maintaining the pipeline stage delay within the clock
cycle time bound. We extracted HSPICE netlist from the
layout of a 64K cache using TSMC 0.25µ technology. We
scaled down the netlist for 0.18, 0.13, 0.10 and 0.07µ
technology and used BPTM [6] (Berkeley Predictive
Technology Model) for simulating the cache for scaled
technology.

4.1: Cache access latency vs CPU cycle

Current technology scaling trend shows that CPU clock
frequency is getting doubled each generation. However,
cache access latency does not scale that well because of
long bit-lines. Fig. 4 shows the difference between clock
frequency and conventional unpiplined cache access
frequency for different technology generations. Here we
assume that for 0.25µ technology the cache is accessed in
one clock cycle. As technology is scaled clock cycle
frequency is doubled. The cache is banked optimally to get
minimum possible cache delay. Fig. 4 shows that as
technology scales the gap between clock frequency and
cache access frequency widens. Multiple clock cycles are
required to access the cache (Table 1). Hence, cache cannot
be accessed in every clock cycle. This reduces the
bandwidth of cache and leads to processor stalls and loss in
overall performance.

The third column of Table 1 shows the number of clock
cycles required to access the cache with pipelined decoder
[1]. For the design under consideration, the cache has two
pipeline stages. First stage (decoder) is accessed in one
clock cycle while second stage is accessed in the number of
cycles given in Table 1. Putting decoder in pipeline reduces
the clock cycle time requirement and enhances the
bandwidth. However, the cache is still not capable of
limiting the overall cache delay in pipeline stages to single
clock cycle (Fig. 4).

The proposed pipeline technique is implemented in 64K
cache for different technology generations. To scale the bit-
lines, the cache is divided into multiple banks. The overall

cache delay is divided into three parts: decoder delay (DD),
word-line to sense amplifier delay (WD+BSD) and
multiplexer to data output delay (MDD). Fig. 5 shows the
variation of these delays with banking for different
technology generations. The delay for a particular
technology is normalized with respect to the clock cycle
time for that technology as given in Fig. 4. To account for
latch overhead, latch setup time and propagation delay are
added to the WD+BSD and MDD. This overhead is around
10% of the clock cycle time for a given technology. DD
remains within the bound of one clock cycle irrespective of
technology scaling. Since Ndwl is kept constant, banking
the cache does not affect DD. WD+BSD does not scale well

0

1

2

3

4

5

6

0.25 0.18 0.13 0.10 0.07
Technology (micron)

Fr
eq

ue
nc

y
(G

H
z)

Clock Frquency Conventional Unpipelined Cache
Cache with Pipelined Decoder

Fig. 4. Cache access freq vs. clock cycle freq.

Table 1. The Number of Clock Cycle Vs Technology
Technology

(µ)
Unpipelined

Conventional Cache
Cache with

Pipelined Decoder
0.25 1 1
0.18 2 2
0.13 3 2
0.10 3 3
0.07 4 3

0

1

2

3

4

2x2 4x2 8x2 16x2 32x2 64x2
Ndbl X Ndwl

W
or

dl
in

e-
B

itl
in

e/
Se

ns
eA

m
p

D
el

ay

(W
D

+B
SD

) (

C
PU

 c
yc

le
)

0.25u tech 0.18u tech 0.13u tech 0.10u tech 0.07u tech

0

1

2

2x2 4x2 8x2 16x2 32x2 64x2
Ndbl X Ndwl

M
ux

/D
at

aO
ut

pu
t D

el
ay

(M

DD
)

(#
 C

PU
 c

yc
le

)

0.25u tech 0.18u tech 0.13u tech 0.10u tech 0.07u tech

Fig. 5. Delay analysis. a) Decoder delay, b) Word-
line to Sense amplifier delay via bit-line, c) Mux to

Data output delay.

0.0

0.5

0.25 0.18 0.13 0.10 0.07

Technology (micron)

D
ec

od
er

 D
el

ay

(D
D

)
(#

 C
PU

 c
yc

le
)

with technology. Scaling down the technology requires
more clock cycles for a given bank configuration. For
example, the number of cycles required for 4x2 bank
configuration is one for 0.25µ and 0.18µ technology,
whereas for 0.13µ and 0.10µ it is two cycles, and for 0.07µ
technology it is three cycles (Fig. 4).

More banking makes the bit-line delay to go down. The
goal behind banking is to get an optimal configuration for
which the word-line driver to sense amplifier delay (with
latch overhead) is equal a single CPU cycle. Over-banking
will increase energy and area overhead without any
performance improvement. Fig 5(b) shows that for a 0.25µ
technology, the bit-line delay remains within the limit of
one cycle for all bank configurations. Scaling the
technology requires more banking to achieve one cycle bit-
line delay, e.g. for 0.18µ, optimal banking is 8x2. Similarly
for 0.13µ, 0.10µ, and 0.07µ technologies, optimal banking
configurations are 16x2, 32x2, and 64x2, respectively.

For optimal banking, WD+BSD can be confined to a
single clock cycle; however, it increases MDD. Since MDD
consists of wire delay due to routing of the banks, it also
does not scale effectively with technology. In the proposed
scheme, the MDD is determined by the optimal banking
configuration for a bit-line delay. Analyzing MDD (Fig.
5(c)) for the optimal configurations shows that for 0.25µ,
0.18µ, and 0.13µ technology, MDD remains within one
clock cycle. For 0.10µ and 0.07µ technologies, optimal
bank configurations, decided by bit-line delay, are 32x2 and
64x2 respectively, for which required MDD goes beyond
one clock cycle. To make the cache fully pipelined with
access frequency equivalent to clock frequency, the
multiplexer can be divided into multiple pipeline stages.
Table 2 shows the optimal banking requirement and the
number of pipeline stages required to make the cache fully
pipelined with access frequency of one clock cycle.

The design technique has its own disadvantages of
having extra energy and area overhead. Table 3 shows the
area and energy overhead associated with pipelining for
different technology generations. The energy estimate
considers the energy overhead due to extra latches,
multiplexers, clock and decoders. It also accounts for the
decrease in precharge energy as the bit-line capacitance is
reduced. Increase in area due to extra precharge circuitry,
latches, decoders, sense amplifiers, and multiplexer is
considered in this analysis. To account for area and energy
overhead together with performance gain we use MOPS

(million of operation per unit time per unit area per unit
energy) as a metric for comparison. Three scenarios have
been considered to calculate MOPS: i) Back to Back Read
(BBR) operations, ii) Back to Back Write (BBW)
operations, and iii) Alternate Read and Write (ARW). Fig. 6
shows the pipeline stalls required due to resource conflict
for all three scenarios. In the case of conventional
unpipelined cache, both read and write have to wait until
previous read or write is finished. In a cache with pipelined
decoder, DD is hidden into previous read or write access.

In the proposed pipeline design read access, is divided
into three stages (Fig. 6). In the case of BBR, a read comes
out of the cache in every clock cycle. A write is a read
followed by a write and that requires five stages. Issuing
write back-to-back encounters a structural hazard due to
multiple access of the multiplexer stage in single write.
Also the fourth stage requires the multiplexer and the
decoder to be accessed simultaneously causing resource
conflict in the pipeline. Issuing another write after two
cycles of previous write resolves this hazard. Similar hazard
is there in the case of ARW. Again issuing next read or
write after two cycles of previous read or write resolves this
hazard. Fortunately, similar stalls are required for the case
when multiplexer is pipelined and accessed in two clock
cycles (0.10 and 0.07µ technology). MOPS achieved by the
pipelined cache is compared with the conventional and the
cache with pipelined decoder.

Table 3 shows the percentage improvement in MOPS
achieved by pipelining cache. For 0.18µ technology
pipeline cache achieves 41% and 15.9% improvement in

Table 2. Number of cache pipeline stages

Tech
(µ)

Banks
(Ndbl

X
Ndwl)

Decoder

Stage

WL -
Sense
Amp
Stage

 Mux to
DataOut
Stages

Total
Cache

Pipeline
Stages

0.18 8x2 1 1 1 3
0.13 16x2 1 1 1 3
0.10 32x2 1 1 2 4
0.07 64x2 1 1 2 4

Fig. 6. Stalls require for BBR, BBW, and ARW.

MOPS in the case of BBR and 16.5% and 3.86%
improvement in MOPS in the case of BBW with respect to
conventional cache and the cache with pipelined decoder,
respectively. In the case of ARW, MOPS is lower for the
proposed cache. For other technologies pipeline cache
achieves significant improvement in MOPS ranging from
68.1 - 85.4% and 47.7 - 51.8% in the case of BBR, 42.9 -
49.3% and 32.0 - 32.4% in the case of BBW, and 13.4 -
21.0% in the case of ARW with respect to conventional
unpipelined cache and the cache with pipelined decoder,
respectively. The results show the effectiveness of the
proposed methodology in designing a scalable pipelined
cache that can be accessed every clock cycle.

4.2: Increasing the size of the cache

With growing need for higher performance, processors

need larger cache to deal with large and independent
workloads. Small caches cannot hold sufficient data that is
required frequently by independent programs and leads to
capacity and conflict misses. Increasing the size of the
cache increases the access time. The proposed pipelined
technique can be applied to design a large cache whose
pipeline stage delay is equal to clock cycle time.

Fig. 7 shows the optimal banking required for pipelining
large caches for different technology generations.
Increasing the cache size increases either the number of
rows or the number of columns. Increase in delay due to
extra rows and extra columns can be reduced by increasing
Ndbl and Ndwl, respectively. Increasing Ndwl divides the
number of columns into multiple sections, creating more but
shorter word-lines. It requires a bigger decoder. However,
decoder stage delay for 64K cache is much smaller than
clock cycle time (Fig. 5). Hence, there is sufficient slack
available to merge the extra delay due to bigger decoder.
Ndbl divides the bit-line capacitance and reduces the bit-
line to sense amplifier delay.

5: Conclusions

In this paper we explored a design technique to

effectively pipeline caches for higher bandwidth. Pipelining
is made possible by aggressively banking the cache which
makes word-line to sense amplifier delay to fit into single
clock cycle. The technique is capable of splitting the cache
into three, four or more pipeline stages as required by clock

cycle time requirement. A large cache, having cache access
frequency equal to clock frequency, can be designed by
carefully banking the cache. The proposed pipeline cache
dominates other designs in terms of the MOPS measure.
The technique is fully scalable and very effective in
pipelining future cache designs.

Acknowledgement: The research was funded in part by
SRC (98-HJ-638) and by DARPA.

Reference

[1] K. Naogami, T. Sakurai et. al. A 9-ns hit-delay 32-kbyte

Cache Macro for high speed RISC. IEEE Journal of Solid
State Circuits, vol. 25, no. 1, February 1990.

[2] T. Wada and S. Rajan. An Analytical Access Time Model
for On-Chip cache Memories. IEEE Journal of Solid State
Circuits, Vol. 27, No 8, pages 1147-1156,August 1992.

[3] J.L. Hennessy and D.A. Patterson. Computer Architecture A
Quantitative Approach. Morgan KaufMann, 2nd Edition.

[4] S. J. E. Wilson and N. P. Jouppi. An enhanced access and
cycle time model for on-chip caches. Technical Report 93/5,
Digital Equipment Corporation, Western Research
Laboratory, July 1994.

[5] J. M. Rabaey. Digital Integrated Circuit. Prentice Hall,
1996.

[6] http://www-device.eecs.berkeley.edu/~ptm/
[7] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous

multithreading: maximizing on-chip parallelism. In
Proceedings of the 22th Annual International Symposium
on Computer Architecture, pages 392-403, June 1995.

0
64

128
192
256
320
384
448
512
576

8x
2

8x
4

16
x2

16
x4

16
x8

32
x2

32
x4

32
x8

64
x2

64
x4

64
x8

12
8x

2

12
8x

4

12
8x

8

Ndbl X Ndwl

C
ac

he
 S

iz
e

(K
B

yt
e)

0.18u tech 0.13u tech 0.10u tech 0.07u tech

Fig. 7. Optimal banking required for pipelining the
large size cache (64, 128, 256, and 512KB) for
different technology.

Table 3. Performance, energy and area estimates.
% increase in MOPS with

respect to Conventional Cache
% increase in MOPS with respect to

Cache with Pipelined Decoder

Tech
(µ)

% increase

area

% increase
Read

Energy

% increase
Write

Energy BBR BBW ARW BBR BBW ARW

0.18 3.3 3.1 3.7 41.1 16.5 -6.5 15.9 3.86 -19.1
0.13 7.5 11.2 12.4 85.0 48.9 20.7 50.5 32.0 3.62
0.10 15.8 23.1 25.4 85.4 49.3 21.0 51.8 32.4 4.15
0.07 31.8 54.4 60.6 68.1 42.9 13.4 47.7 32.2 3.05

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

