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Abstract 
In this paper we propose a design technique to pipeline 
cache memories for high bandwidth applications. With the 
scaling of technology cache access latencies are multiple 
clock cycles. The proposed pipelined cache architecture can 
be accessed every clock cycle and thereby, enhances 
bandwidth and overall processor performance. The 
proposed architecture utilizes the idea of banking to reduce 
bit-line and word-line delay, making word-line to sense 
amplifier delay to fit into a single clock cycle. Experimental 
results show that optimal banking allows the cache to be 
split into multiple stages whose delays are equal to clock 
cycle time. The proposed design is fully scalable and can be 
applied to  future technology generations. Power, delay and 
area estimates show that on average, the proposed 
pipelined cache improves MOPS (millions of operations per 
unit time per unit area per unit energy) by 40-50% 
compared to current cache architectures. 
 
 
1: Introduction 
 

The phenomenal increase in microprocessor 
performance places significant demands on the memory 
system. Computer architects are now exploring thread-
level parallelism to exploit the continuing improvements 
in CMOS technology for higher performance. 
Simultaneous Multithreading (SMT) [7] has been 
proposed to improve system throughput by overlapping 
multiple (either multi-programmed or explicitly parallel) 
threads in a wide-issue processor. SMT enables several 
threads to be executed simultaneously on a single 
processor, placing a substantial bandwidth demand on the 
cache hierarchy, especially on L1 caches. SMT’s 
performance is limited by the rate at which the L1 caches 
can supply data. 

One way to build a high-bandwidth cache is to reduce 
the cache access time, which is determined by cache size 
and set-associativity [3]. To reduce the access time, the 
cache needs to be smaller in size and less set associative. 
However, decreasing the size or lowering the associativity 
has negative impact on the cache miss rate. The cache 

miss rate determines the amount of time the CPU is stalled 
waiting for data to be fetched from the main memory. 
Hence, there is a need for L1 cache design that is large and 
provides high bandwidth.   

The main issue with large cache is that the bit-line 
delay does not scale well with technology as compared to 
the clock cycle time [5]. Clock speed is getting doubled 
every technology generation making cache access latency 
to be more than one cycle. More than one cycle for cache 
access keeps the cache busy for those many cycles and no 
other memory operation can proceed without completing 
the current access. The instructions dependent on these 
memory operations also get stalled. This multi-cycle-
access latency reduces the bandwidth of cache and hurts 
processor performance.  

One of the techniques to increase the bandwidth is 
pipelining. Pipelining divides the cache latency into 
multiple stages so that multiple accesses can be made 
simultaneously. The problem in pipelining the cache is 
that data voltage level in the bit-lines remains at a fraction 
of supply voltage making it difficult to latch the bit-line 
data.  We explore the idea of banking to make pipelining 
feasible in caches. We propose a scheme that can be 
utilized to divide the cache access latency into several 
stages as required by the clock cycle time and bandwidth 
requirement (as technology scales). The technique is also 
helpful in designing large-sized caches to decrease the 
miss rate while providing high bandwidth. 

 
Fig. 1. Cache access delay. 
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Decoder contributes around 15-20% to overall cache hit 
time delay. Nogami et.al [1] proposed a technique to hide 
the full or partial decoder delay by putting the decoder in a 
pipeline stage. However, even in the best case such a 
decoder-pipelined cache is limited by the word-line driver 
to data-out delay. Because this delay is 75-80% of the total 
cache delay, the decoder-pipelined cache has an imbalanced 
pipeline stage, which degrades the bandwidth.  

 
2: Banking of cache  

 
The cache access time can be divided into four parts 

(Fig. 1): (i) Decoding Delay (DD), (ii) Word-line Delay 
(WD), (iii) Bit-line to Sense Amplifier Delay (BSD), (iv) 
Mux to Data Out Delay (MDD). One of the main hit time 
reduction techniques in large caches is to bank the cache. 
The memory is partitioned into M smaller banks. An extra 
address word called bank address selects one of the M 
banks to be read or written. The technique reduces the 
word-line and bit-line (capacitance) and in turn reduces the 
WD and BSD. The bank address can be used to disable 
sense amplifiers and row and column decoders of un-
accessed memory banks to reduce power dissipation.  

The memory can be broken into smaller banks. Based on 
such banking, two parameters can be defined: Ndwl and Ndbl 
[2]. The parameter Ndwl indicates the number of times the 
array has been split with vertical cut lines (creating more, 
but shorter word-lines), while Ndbl indicates the number of 
times the array is split with horizontal cut lines (creating 
shorter bit-lines). The total number of banks is Ndwl x 

Ndbl.  However, reduced hit time by increasing these 
parameters comes with extra area, energy and delay 
overhead. Increasing Ndbl increases the number of sense 
amplifiers, while increasing Ndwl translates into more 
word-line drivers and bigger decoder due to increase in the 
number of word-lines [4]. Most importantly, except in the 
case of a direct mapped cache (where Ndbl and Ndwl are 
both equal to one), a multiplexer is required to select the 
data from the appropriate bank. Increasing Ndbl increases 
the size of multiplexer, which in turn increases the critical 
hit time delay and energy consumption. 

Fig. 2 shows the variation of different components of hit 
time with respect to Ndbl and Ndwl. A 64K and a 128K, 2-
way caches were simulated using TSMC 0.25u technology. 
Increasing Ndbl decreases BSD due to shorter bit-lines but 
it also increases MDD due to larger number of banks. More 
banking requires large column multiplexer to select proper 
data. There is an optimum partitioning beyond which the 
increase in delay due to column multiplexer supercedes the 
delay gain due to reduced bit-lines. Increasing Ndwl does 
not make any difference in delay for 64K cache for current 
technology generations. In a 64k cache, a single word-line 
needs to have 2 cache blocks (64 byte) to maintain a good 
aspect ratio. Because the cache under consideration in Fig. 1 
is a 2-way associative cache, which requires reading of two 
cache blocks simultaneously, changing Ndwl does not 
change the capacitance driven by word-line driver. For 
128K cache, 4 cache blocks can be put in a single word-
line. Dividing word-line into two parts decreases WDD, but 
increases DD due to the increased number of word-lines to 
be decoded.  Several variations of the given architecture are 
possible. Variation includes positioning of sense amplifiers, 
the partitioning of the word and bit-lines, and the logic 
styles of the decoder used.  

 
3: Proposed pipelined cache architecture 

 
Pipelining is a popular design technique often used to 

increase the bandwidth of the datapaths. It reduces the cycle 
time of a block that may otherwise be governed by critical 
delay of the block. Unfortunately, unlike functional units, 
caches do not lend themselves to be pipelined to arbitrary 
depth. The key impediment to pipelining the cache into 
more stages is the bit-line delay cannot be pipelined 
because the signals on the bit-lines are weak, and not 
digital; latching can be done only after the sense 
amplifiers convert the bit-line signals from analog to 
digital. A bit-line is loaded by both the multiple word-line 
cells' capacitances, and the bit-line's wire capacitance and 
resistance. Consequently, the bit-line delay depends on the 
bank size, which is optimized for latency. In a latency-
optimized cache, further dividing the cache (other than the 
decoder)  into the two natural stages of bit-line + 
senseamps and multiplexor + data driver creates a 
substantially uneven split; the WD+BSD is considerably-a 
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Fig.  2. Delay analysis for different Ndbl x Ndwl.    
a) 64K Cache, b) 128K Cache.  



factor of two to four longer than the MDD step (Fig. 2). 
Thus, the uneven split renders ineffective pipelining a 
latency-optimized cache along such natural stages. 

Partitioning the cache into multiple banks decreases BSD 
but increases MDD. Beyond a certain point more 
partitioning increases the multiplexer delay and it dominates 
the decrease in bit-line delay. It is interesting to observe that 
banking makes BDD delay to catch up the WD + BSD 
delay. Placing a latch in between divides the word-line to 
data-out delay into two approximately comparable sections. 
This technique has advantage of having more banks (low 
bit-line delay) than a conventional design permits. The 
increase in multiplexer delay due to aggressive banking is 
hidden in a pipeline stage. The clock cycle is governed by 
the word-line to sense amplifier delay (WD+BSD) and can 
be made smaller by aggressive banking. The technique can 
be used to aggressively bank the cache to get minimum 
possible WD+BSD which is limited by WD. For scaled 
technologies it might be necessary to bank the cache more 
so that BSD fits in a single clock cycle Aggressive banking 
makes MDD to go beyond the point where it can no longer 
fit into a single cycle. For dealing with this problem, 
multiplexer can be designed as a tree and can itself be 
pipelined into multiple stages as required. 

Fig. 3 shows a block diagram of a fully pipelined cache. 
The cache is divided into three parts, a) Decoder, b) Word-
line Driver to Sense Amplifier via Bit-lines, c) Bank 
Multiplexer to Data Output Drivers. Cache is banked 

optimally so that word-line driver to sense amplifier delay is 
comparable to a clock cycle time. Bank multiplexer is 
further divided into more pipeline stages as required by 
clock cycle time requirement.  

 
3.1: Sense amplifier latches 

 
Sense amplifiers are duplicated based on the number of 

horizontal cuts, Ndbl. A latch is placed at both input and 
output path of every sense amplifier to pipeline both read 
and write delay. Both input and output data is routed 
through bank multiplexer and data output drivers. The 
output of the bank decoder is also used to drive the sense 
enable signal of sense amplifiers. Only the accessed bank’s 
sense amplifiers are activated and take part in sensing the 
data while the rest of them remain idle and do not increase 
dynamic energy. Increasing the number of banks increases 
the number of sense amplifier required, and in turn 
increases the number of latches. However, only one set of 
latches dissipates dynamic energy since switching occurs 
only on the datalines associated with accessed bank.  Clock 
has to be routed to all the latches to synchronize the pipeline 
operation. To reduce the redundant clock power, clock 
gating was used. No extra control logic is required for clock 
gating. The outputs of bank decoder themselves act as 
control signals to gate the clock to un-accessed   latches. 
 
3.2: Decoder latches  

 
All bank, row, and column decoders’ outputs are also 

latched. Increasing the number of vertical cuts (Ndwl) 
increases the number of word-lines to decode. This requires 
a bigger row decoder and more number of latches. At the 
same time increasing the number of banks also increases the 
size of bank decoder and hence, the number of latches. 
However, at most only two lines switch in a single 
read/write operation. These two lines are: the one that got 
selected in previous cycle and the one that is going to be 
selected in current cycle. Hence, not all latches contribute to 
dynamic energy dissipation.  

 
3.3: Multiplexer latches 

 
To pipeline the multiplexer, sets of latches are placed at 

appropriate positions so that the multiplexer can be divided 
into multiple stages. The required number of latches 
depends on the aggressiveness of banking and how deep the 
latches are placed in the multiplexer tree. Similar to sense 
amplifier larches bank decoder output can be used to gate 
the clock in unused multilexer latches. 

 
4: Results 
 

In this section we evaluate the performance of 
conventional unpipelined cache with respect to technology 

 
Fig. 3. Block diagram of a fully pipelined 

cache having bank configuration 4x2. 



scaling. We show the effectiveness of the proposed design 
in maintaining the pipeline stage delay within the clock 
cycle time bound. We extracted HSPICE netlist from the 
layout of a 64K cache using TSMC 0.25µ technology. We 
scaled down the netlist for 0.18, 0.13, 0.10 and 0.07µ 
technology and used BPTM [6] (Berkeley Predictive 
Technology Model) for simulating the cache for scaled 
technology.  

 
4.1: Cache access latency vs CPU cycle 
 

Current technology scaling trend shows that CPU clock 
frequency is getting doubled each generation. However, 
cache access latency does not scale that well because of 
long bit-lines. Fig. 4 shows the difference between clock 
frequency and conventional unpiplined cache access 
frequency for different technology generations. Here we 
assume that for 0.25µ technology the cache is accessed in 
one clock cycle. As technology is scaled clock cycle 
frequency is doubled. The cache is banked optimally to get 
minimum possible cache delay. Fig. 4 shows that as 
technology scales the gap between clock frequency and 
cache access frequency widens. Multiple clock cycles are 
required to access the cache (Table 1). Hence, cache cannot 
be accessed in every clock cycle. This reduces the 
bandwidth of cache and leads to processor stalls and loss in 
overall performance.  

The third column of Table 1 shows the number of clock 
cycles required to access the cache with pipelined decoder 
[1]. For the design under consideration, the cache has two 
pipeline stages. First stage (decoder) is accessed in one 
clock cycle while second stage is accessed in the number of 
cycles given in Table 1. Putting decoder in pipeline reduces 
the clock cycle time requirement and enhances the 
bandwidth. However, the cache is still not capable of 
limiting the overall cache delay in pipeline stages to single 
clock cycle (Fig. 4).  

The proposed pipeline technique is implemented in 64K 
cache for different technology generations. To scale the bit-
lines, the cache is divided into multiple banks. The overall 

cache delay is divided into three parts: decoder delay (DD), 
word-line to sense amplifier delay (WD+BSD) and 
multiplexer to data output delay (MDD). Fig. 5 shows the 
variation of these delays with banking for different 
technology generations. The delay for a particular 
technology is normalized with respect to the clock cycle 
time for that technology as given in Fig. 4. To account for 
latch overhead, latch setup time and propagation delay are 
added to the WD+BSD and MDD. This overhead is around 
10% of the clock cycle time for a given technology. DD 
remains within the bound of one clock cycle irrespective of 
technology scaling. Since Ndwl is kept constant, banking 
the cache does not affect DD. WD+BSD does not scale well 
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Table 1. The Number of Clock Cycle Vs Technology 
Technology 

(µ) 
Unpipelined 

Conventional Cache 
Cache with 

Pipelined Decoder 
0.25 1 1 
0.18 2 2 
0.13 3 2 
0.10 3 3 
0.07 4 3 
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with technology. Scaling down the technology requires 
more clock cycles for a given bank configuration. For 
example, the number of cycles required for 4x2 bank 
configuration is one for 0.25µ and 0.18µ technology, 
whereas for 0.13µ and 0.10µ it is two cycles, and for 0.07µ 
technology it is three cycles (Fig. 4).  

More banking makes the bit-line delay to go down. The 
goal behind banking is to get an optimal configuration for 
which the word-line driver to sense amplifier delay (with 
latch overhead) is equal a single CPU cycle. Over-banking 
will increase energy and area overhead without any 
performance improvement. Fig 5(b) shows that for a 0.25µ 
technology, the bit-line delay remains within the limit of 
one cycle for all bank configurations. Scaling the 
technology requires more banking to achieve one cycle bit-
line delay, e.g. for 0.18µ, optimal banking is 8x2. Similarly 
for 0.13µ, 0.10µ, and 0.07µ technologies, optimal banking 
configurations are 16x2, 32x2, and 64x2, respectively. 

For optimal banking, WD+BSD can be confined to a 
single clock cycle; however, it increases MDD. Since MDD 
consists of wire delay due to routing of the banks, it also 
does not scale effectively with technology. In the proposed 
scheme, the MDD is determined by the optimal banking 
configuration for a bit-line delay. Analyzing MDD (Fig. 
5(c)) for the optimal configurations shows that for 0.25µ, 
0.18µ, and 0.13µ technology, MDD remains within one 
clock cycle. For 0.10µ and 0.07µ technologies, optimal 
bank configurations, decided by bit-line delay, are 32x2 and 
64x2 respectively, for which required MDD goes beyond 
one clock cycle. To make the cache fully pipelined with 
access frequency equivalent to clock frequency, the 
multiplexer can be divided into multiple pipeline stages. 
Table 2 shows the optimal banking requirement and the 
number of pipeline stages required to make the cache fully 
pipelined with access frequency of one clock cycle.  

The design technique has its own disadvantages of 
having extra energy and area overhead. Table 3 shows the 
area and energy overhead associated with pipelining for 
different technology generations. The energy estimate 
considers the energy overhead due to extra latches, 
multiplexers, clock and decoders. It also accounts for the 
decrease in precharge energy as the bit-line capacitance is 
reduced. Increase in area due to extra precharge circuitry, 
latches, decoders, sense amplifiers, and multiplexer is 
considered in this analysis. To account for area and energy 
overhead together with performance gain we use MOPS 

(million of operation per unit time per unit area per unit 
energy) as a metric for comparison. Three scenarios have 
been considered to calculate MOPS: i) Back to Back Read 
(BBR) operations, ii) Back to Back Write (BBW) 
operations, and iii) Alternate Read and Write (ARW). Fig. 6 
shows the pipeline stalls required due to resource conflict 
for all three scenarios. In the case of conventional 
unpipelined cache, both read and write have to wait until 
previous read or write is finished. In a cache with pipelined 
decoder, DD is hidden into previous read or write access.  

In the proposed pipeline design read access, is divided 
into three stages (Fig. 6). In the case of BBR, a read comes 
out of the cache in every clock cycle. A write is a read 
followed by a write and that requires five stages. Issuing 
write back-to-back encounters a structural hazard due to 
multiple access of the multiplexer stage in single write.  
Also the fourth stage requires the multiplexer and the 
decoder to be accessed simultaneously causing resource 
conflict in the pipeline. Issuing another write after two 
cycles of previous write resolves this hazard. Similar hazard 
is there in the case of ARW. Again issuing next read or 
write after two cycles of previous read or write resolves this 
hazard.  Fortunately, similar stalls are required for the case 
when multiplexer is pipelined and accessed in two clock 
cycles (0.10 and 0.07µ technology). MOPS achieved by the 
pipelined cache is compared with the conventional and the 
cache with pipelined decoder.  

Table 3 shows the percentage improvement in MOPS 
achieved by pipelining cache. For 0.18µ technology 
pipeline cache achieves 41% and 15.9% improvement in 

Table 2. Number of cache pipeline stages  
 

Tech 
(µ) 

Banks 
(Ndbl 

X    
Ndwl) 

 
Decoder 

Stage 

WL - 
Sense 
Amp 
Stage 

 
 Mux to 
DataOut 
Stages  

Total 
Cache 

Pipeline 
Stages 

0.18 8x2 1 1 1 3 
0.13 16x2 1 1 1 3 
0.10 32x2 1 1 2 4 
0.07 64x2 1 1 2 4 

Fig.  6. Stalls require for BBR, BBW, and ARW.



MOPS in the case of BBR and 16.5% and 3.86% 
improvement in MOPS in the case of BBW with respect to 
conventional cache and the cache with pipelined decoder, 
respectively. In the case of ARW, MOPS is lower for the 
proposed cache. For other technologies pipeline cache 
achieves significant improvement in MOPS ranging from 
68.1 - 85.4% and 47.7 - 51.8% in the case of BBR, 42.9 - 
49.3% and 32.0 - 32.4% in the case of BBW, and  13.4 - 
21.0% in the case of ARW with respect to conventional 
unpipelined cache and the cache with pipelined decoder, 
respectively. The results show the effectiveness of the 
proposed methodology in designing a scalable pipelined 
cache that can be accessed every clock cycle.  
 
4.2: Increasing the size of the cache 

 
With growing need for higher performance, processors 

need larger cache to deal with large and independent 
workloads. Small caches cannot hold sufficient data that is 
required frequently by independent programs and leads to 
capacity and conflict misses. Increasing the size of the 
cache increases the access time. The proposed pipelined 
technique can be applied to design a large cache whose 
pipeline stage delay is equal to clock cycle time.  

Fig. 7 shows the optimal banking required for pipelining 
large caches for different technology generations. 
Increasing the cache size increases either the number of 
rows or the number of columns. Increase in delay due to 
extra rows and extra columns can be reduced by increasing 
Ndbl and Ndwl, respectively. Increasing Ndwl divides the 
number of columns into multiple sections, creating more but 
shorter word-lines. It requires a bigger decoder. However, 
decoder stage delay for 64K cache is much smaller than 
clock cycle time (Fig. 5). Hence, there is sufficient slack 
available to merge the extra delay due to bigger decoder.  
Ndbl divides the bit-line capacitance and reduces the bit-
line to sense amplifier delay. 

 
5: Conclusions 

 
In this paper we explored a design technique to 

effectively pipeline caches for higher bandwidth. Pipelining 
is made possible by aggressively banking the cache which 
makes word-line to sense amplifier delay to fit into single 
clock cycle. The technique is capable of splitting the cache 
into three, four or more pipeline stages as required by clock 

cycle time requirement. A large cache, having cache access 
frequency equal to clock frequency, can be designed by 
carefully banking the cache. The proposed pipeline cache 
dominates other designs in terms of the MOPS measure. 
The technique is fully scalable and very effective in 
pipelining future cache designs.  
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Table 3. Performance, energy and area estimates. 
% increase in MOPS with 

respect to Conventional Cache 
% increase in MOPS with respect to 

Cache with Pipelined Decoder 
 

Tech 
(µ) 

 
% increase 

area 

% increase 
Read 

Energy 

% increase 
Write   

Energy BBR BBW ARW BBR BBW ARW 

0.18 3.3 3.1 3.7 41.1 16.5 -6.5 15.9 3.86 -19.1 
0.13 7.5 11.2 12.4 85.0 48.9 20.7 50.5 32.0 3.62 
0.10 15.8 23.1 25.4 85.4 49.3 21.0 51.8 32.4 4.15 
0.07 31.8 54.4 60.6 68.1 42.9 13.4 47.7 32.2 3.05 
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