
Combination of Lower Bounds in Exact BDD Minimization

Rüdiger Ebendt
Department of Computer Science

University of Kaiserslautern
67663 Kaiserslautern, Germany

ebendt@informatik.uni-kl.de

Wolfgang Günther
CL DAT TDM VM

Infineon Technologies
81730 Munich, Germany

wolfgang.guenther@infineon.com

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

Abstract

Ordered Binary Decision Diagrams (BDDs) are a data
structure for efficient representation and manipulation of
Boolean functions. They are frequently used in logic synthe-
sis and formal verification. The size of BDDs depends on a
chosen variable ordering, i.e. the size may vary from linear
to exponential, and the problem of improving the variable
ordering is known to be NP-complete.

In this paper we present a new exact branch&bound
technique for determining an optimal variable order. In
contrast to all previous approaches, that only considered
one lower bound, our method makes use of a combina-
tion of three bounds and by this avoids unnecessary com-
putations. The lower bounds are derived by generalization
of a lower bound known from VLSI design. They allow to
build the BDD either top down or bottom up. Experimental
results are given to show the efficiency of our approach.

1. Introduction

There is a renewed interest in multiplexor based design
styles, since often multiplexor nodes can be realized at very
low cost (as e.g. Pass Transistor Logic (PTL)). In addition,
these techniques allow to consider layout aspects during the
synthesis step and by this guarantee high design quality [4,
8, 15, 14, 7, 18]. Furthermore, these techniques make use of
ordered Binary Decision Diagrams (BDDs) as introduced in
[2].

As is well known, the size of BDDs is often very sen-
sitive to a chosen variable ordering. In [2] an example has
been given, where the BDD size of a function varies from
linear to exponential dependent on the ordering of the vari-
ables. Especially in applications like logic synthesis it is
important to determine a good ordering, since a reduction
in the number of BDD nodes directly transfers to a smaller
chip area.

In general, determining an optimal variable ordering is a
difficult problem, i.e. improving a given ordering has been

proven to be an NP-complete problem [1]. For this, in the
past many heuristic approaches have been proposed, that
are based on structural information [10] or on dynamic re-
construction of BDDs [16]. But all these methods cannot
guarantee an optimal result and experimental studies have
shown that they are often up to a factor of two away from
the best known solution. For the applications given above,
this is a significant drawback.

Beside these heuristic approaches, exact algorithms have
been studied. While the first method proposed in [9] was
limited to few variables, more advanced techniques make
use of an efficient representation of the information and use
a branch&bound approach. Alternative lower bounds have
been proposed in [12, 13, 6]. Furthermore, functional as-
pects, like symmetry, have been used to prune parts of the
search space. Using these methods, larger functions can be
handled, e.g. in [6] exact solutions for 32-bit adders have
been computed. But all methods have in common that they
completely rely on one lower bound technique and still run-
time is a crucial factor.

In this paper we present a new exact algorithm for the
computation of an optimal variable ordering. As all other
exact algorithms presented so far, the core technique is
based on [9] in combination with branch&bound. But in
contrast to previous approaches, we make use of three lower
bounds in parallel and by this can prune large parts of the
search space at an early stage. The lower bounds are gen-
eralizations of bounds known from VLSI design and can be
applied top down and bottom up. This gives more flexibil-
ity during the algorithm run. Experiments show that sig-
nificant runtime reductions can be observed on benchmark
functions, i.e. for the functions considered an improvement
up to 49% has been obtained.

2. Preliminaries

Boolean variables (denoted by Latin letters) are bound to
values in B := {0,1}. It is well-known that a Boolean func-
tion f : Bn → B over the variable set Xn can be represented
by a Binary Decision Diagram (BDD) [2], i.e. a directed

1530-1591/03 $17.00 2003 IEEE

acyclic graph where a Shannon decomposition

f = xi fxi=0 + xi fxi=1 (1 ≤ i ≤ n)

is carried out in each node. In the following, only reduced,
ordered BDDs are considered and for briefness these graphs
are called BDDs. Redundant nodes are assumed to be elim-
inated and variables are encountered at most once and in
the same order (the “variable ordering”) on every path from
the root to a terminal node. For more details see [2].

The size of BDDs often critically depends on their vari-
able ordering, i.e. it may vary from linear to exponential.
Variables are denoted by permutations π: Xn → Xn. For
simplicity we write xi = π(k), if variable xi is the k-th el-
ement of the variable ordering, i.e. xi is in the k-th level of
the BDD. For a set of variables I ⊆ Xn, let Π(I) be the set
of permutations π on Xn, whose first |I| members constitute
I. We extend π straightforwardly to also map subsets of Xn
to subsets of Xn, i.e. I is a fixpoint for π. Further, we denote
the minimal number of nodes in a BDD labeled by a vari-
able in I ⊆ Xn with min costI .

BDDs are defined analogously for multi-output func-
tions f : Bn → Bm, using a graph for each of the m single-
output functions for the shared BDD representation. In
the following we assume shared BDDs with Complement
Edges (CEs) without mentioning it further. (Note that all re-
sults reported here directly transfer to BDDs without CEs.)
We write BDD(f ,π) for the BDD with variable ordering π,
which represents the Boolean function f . For a BDD F , let
label(F,xk) denote the number of nodes in F labeled by xk.
We extend this notation straightforwardly to also cover sets
of variables, i.e. label(F, I) = ∑xi∈I label(F,xi).

3. Previous Work

To keep the paper self-contained, we briefly review pre-
vious approaches to exact minimization of BDDs. Since
the problem of improving a variable ordering is NP-
complete [1], the runtime complexity of all exact mini-
mization algorithms presented so far has been significantly
higher (i.e. exponential) than that of mere “rules of thumb”
to find a “good” variable ordering, i.e. heuristics.

In [9] an approach working on truth tables has been pre-
sented, where the number of considered variable orderings
has been reduced to 2n, a significant improvement over
the “naive” approach considering all n! variable orderings.
Next, in [12] two new ideas have been introduced: the use
of BDDs instead of truth tables and the use of upper and
lower bounds on BDD sizes. The idea is to skip exami-
nation of BDDs as soon as a lower bound on the sizes of
BDDs achievable from that BDD already exceeds an up-
per bound for the minimal size. The problem now is seen as
a search problem in a state space, where states are subsets
of Xn. A branch&bound technique is used to skip large parts
of the state space. This approach has been further enhanced
in [13]. In [6], a lower bound known from VLSI design
has been adapted for exact minimization. The approach is
the fastest known so far with a speed-up factor up to 400
compared to [13].

Next we give the basic minimization algorithm following
this top down approach. Suppose we minimize the BDD for
a multi-output function f : Bn → Bm. In brief, we compute

the optimal variable ordering iteratively by computing for
increasing k’s min costI for each k-element subset I of Xn,
until k = n: then, the BDD has a variable ordering yield-
ing a BDD size of min costXn . This is an optimal variable
ordering.

At step k of the algorithm, a state I with |I| = k−1 is re-
trieved from a hash table (which holds all states of the pre-
vious step k − 1). The algorithm now builds transitions
I

xi−→ I ∪{xi} =: I′ for xi ∈ Xn \ I1. The subject is to com-
pute min costI′ for each successor I′. This is done by a grad-
ual scheme of continuous minimum updates. Following [6],
this scheme uses the interrelation

min costI′ = min
xk∈I′

(

min costI′\{xk} + label(Fk,xk)
)

,

where Fk is a BDD representing f with variable ordering πk
such that πk(I′ \ {xk}) = I′ \ {xk} and πk(|I′|) = xk. This
recurrent interrelation uses an argument of [9], informally:
the number of nodes in a level is constant, if the correspond-
ing variable is fixed in the variable ordering and no vari-
ables from the lower and upper part are exchanged. Note,
that this holds independently of the ordering of the vari-
ables in the upper and lower part of the BDD. The terms
min costI′\{xk} have been saved to the hash table in the pre-
vious step k− 1, since |I′ \{xk}| = k− 1. Their values are
simply retrieved from the hash table. The only terms still
left to compute are label(Fk,xk) for each xk ∈ I′.

For I := I′ \ {xk}, suppose FI is a BDD representing
f with a variable ordering πI such that πI(I) = I. Then
Fk can be constructed from FI by shifting variable xk to
the (|I|+1)-th level. That way, the minimized BDD is built
top down, starting with the first level and, as k increases,
repeatedly adding another level below the current level. In
[6], the variable ordering πI∪{xk} resulting by this variable
shifting of xk is saved in a hash table for later steps. Since
I ∪{xk} is again a fixpoint for πI∪{xk}, this ordering can be
used in the next step like πI was used for I.

At the end of step k, all states of which the lower bound
exceeds or equals the current upper bound, are excluded.

Remark 1 In fact the BDD can also be built bottom up
following the same outline. In this case the interrelation
Π(I) = Π(Xn \ I) is used. Note, that the approaches in [12,
13] are bottom up only, whereas the approach in [6] is top
down only.

4. Lower Bound Technique

In this section, we generalize a lower bound known from
VLSI design such that it can be also used for bottom up
construction of a minimized BDD. So the new approach is
not restricted to a top down construction like the approach
in [6]. Moreover, combining the two lower bounds yields
a new lower bound, that is used to exclude states earlier than
in previous approaches, resulting in a further speed-up.

1The transition is built only, if I ′ has not already been excluded (see
Section 4.2).

01

a

b

d

c

e

f

Figure 1. BDD for Example 4.1.

4.1. A Generalized Lower Bound

Before the generalized lower bound is presented, we give
a brief review of the lower bound used in [6], which is an
adaptation of a lower bound known from VLSI design [3].

For k > 0, let ref(F,k) denote the set of nodes in levels
k+1, . . . ,n of the BDD F referenced directly from the nodes
in levels 1, . . . ,k of F . If a node has no direct, i.e. only exter-
nal references, it is not contained in ref(F,k). Let ref(F,0)
denote the set of externally referenced nodes, i.e. the set of
nodes which represent user functions. The size of ref(F,0)
is equal to the number of output nodes in F .

Example 4.1 Consider the BDD F given in Figure 1.
The two outputs are represented by nodes a and d, thus
ref(F,0) = {a,d}. The other sets are given by
ref(F,1) = {b,c},
ref(F,2) = {d,e, f},
ref(F,3) = { f},
ref(F,4) = /0.

Lemma 4.1 Let f : Bn → Bm be a multi-output func-
tion. Let (L,R) be a partition of Xn, π ∈ Π(L) and
F := BDD(f ,π). If |ref(F, |L|)| = c, then each BDD with
a variable ordering in Π(L) representing f has at least c
nodes in levels |L|+1, . . . ,n.

In exact minimization, this argument is used to obtain
a lower bound based on ref(F, |I|) at each step, a state I ⊆Xn
is considered. Suppose that the minimized BDD F is con-
structed top down. Further assume that, when computing
the lower bound for a multi-output function f : Bn → Bm,
the minimal number min costI of nodes in levels 1, . . . , |I| is
already known. Let cα = |ref(F, |I|)|. Then by Lemma 4.1,
the lower bound can be computed as

l bα = min costI +max{cα + r lower,n−|I|}+1,

In order not to count some output nodes twice, r lower
is the number of output nodes in levels |I|+ 1, . . . ,n not
already representing a node in ref(F, |I|) and n − |I| is
the number of variables with an index in Xn \ I, since
there will be at least one node for each of these variables.
The constant node is always needed.

The next result enables us to generalize this lower bound
such that it can be also used for bottom up construction.

Lemma 4.2 Let f : Bn → Bm be a multi-output func-
tion. Let I ⊆ Xn, π ∈ Π(I) and F := BDD(f ,π). Then
we have |ref(F, |I|)| − r upper ≤ min costI , where r upper
is the number of output nodes in levels 1, . . . , |I| of F .

The idea is to calculate the minimal number of nodes
needed to connect the output nodes with the nodes in
ref(F, |I|). Suppose now the minimized BDD is constructed
bottom up. The BDD must respect a variable ordering in
Π(Xn \ I). Let cω = |ref(F,n−|I|)|. Then a lower bound
can be computed as

l bω = min costI +max{cω − r upper,n−|I|}+1,

where r upper is the number of output nodes in levels
1, . . . ,n − |I|. This lower bound holds, since, by Lemma
4.2, cω − r upper is a lower bound for min costXn\I , which
is the minimal size of the upper part of the BDD.

In the next section, the introduced lower bounds l bα and
l bω will be combined to a new lower bound, which is used
to exclude states at an early stage of the algorithm.

4.2. Early Pruning

We describe two techniques to exclude states from fur-
ther examination as early as possible. These techniques
save a significant number of transitions from one state to
another. As transitions involve variable shiftings at high
computational cost, this is a significant gain for the new al-
gorithm.

The situation, in which the techniques are applied, is
briefly described. In step k, the algorithm expands all states
I with |I| = k − 1, that have not been excluded in the last
step, to all possible successors. Successor states are being
revisited frequently in the progress of step k, since many
distinct states I, I′ have successors in common. When re-
peatedly revisiting such a successor J, min costJ is gradu-
ally computed by continuously updating the previous small-
est number of nodes labeled with a variable in J. This num-
ber reaches min costJ at the end of step k.

It is desirable to

1) avoid transitions to successors, which are already
known not to contribute to the actualization of
the smallest node number,

2) find a means, which allows to test every successor for
a possible exclusion right after it was generated: in
this way, unnecessary repeated movements to succes-
sor states can be avoided.

- 1): Consider a transition I
xi−→ I ∪{xi}, where I ∪{xi} is

a state, that has already been visited before.
Let FI be the BDD for I. Since state I was processed in

the previous step, we already have label(FI , I) = min costI .
The potential successor state would be built by e.g. shift-
ing variable xi to level |I|+ 1, resulting in a new BDD F ′.
A lower bound on label(F ′, I ∪{xi}) is

l bcost = min costI +1,

since there will be at least one node labeled by the variable
xi. Note, that this lower bound can be computed in constant
time.

If this lower bound is not smaller than the previous
smallest number of nodes labeled by a variable in I ∪{xi},
neither is the exact value label(F ′, I ∪ {xi}). In this case
this transition is skipped, since revisiting this state does not
contribute to the actualization of its previous minimum.
- 2): At an early stage of step k min costI cannot be used to
compute a lower bound, since the exact value of the mini-
mum is not known until step k finishes. Therefore min costI
must be estimated.

This can be done both efficiently and effective by com-
bining l bα and l bω. The idea is to estimate the (yet) un-
known exact part of the lower bound, i.e. min costI , with
the according estimated part of the opposite lower bound.

The next definition uses a partition (L,R) of Xn rather
than states I ⊆ Xn such that it applies for both the top down
and the bottom up approach of exact minimization. In case
of starting the minimization from above, we have I = L at
a step considering state I (starting from below, we have I =
R and L = Xn \ I).

A lower bound on the minimal size of the BDD achiev-
able from a partition (L,R) can be computed as follows. Let
F be the considered BDD and cαω = |ref(F, |L|)|.

l bcombined = max{cαω + r lower, |R|}+1+

max{cαω − r upper, |L|},

where r lower is the number of output nodes in levels |L|+
1, . . . ,n not already representing a node in ref(F, |L|) and
r upper is the number of output nodes in levels 1, . . . , |L|.

All states already excluded “early” by this lower bound
are marked by the new algorithm. Transitions leading to
such a marked state are not followed by the algorithm, sav-
ing again the computational cost for a variable shifting.

5. Algorithm

In this section we describe the implementation tech-
niques used in the new approach. A sketch of the new algo-
rithm called JANUS is given in Figure 2.

The algorithm is based on the implementation of [6],
a top down approach, where only one lower bound was
used. We assume the presence of all techniques applied
there without further mentioning. Next, we describe some
new unique implementation techniques applied in the new
approach.

5.1. Lower Bound Computation

To determine the lower bounds introduced in Section 4.1
for the current BDD F , |ref(F,k)| must be computed, where
k = |I| for l bα and k = n−|I| for l bω.

Computation of |ref(F,k)| is done with two different
methods: one touches only the nodes in the “upper part”,
i.e. in the first k levels, the other touches only the nodes
in the “lower part”, i.e. in the last n− k levels. If the size
of the upper part is smaller than that of the lower part,
the first routine is called (since this is more promising in
terms of expected runtime) and vice versa. Since commonly
used BDD packages keep and continously update the level
sizes in dedicated variables, the time needed to determine

the size of the upper and lower part is very small, i.e. it can
be neglected.

It is sufficient to calculate the lower bounds only once
the first time a state I is encountered: assuming |I| = k,
π ∈ Π(I) and F := BDD(f ,π), the nodes in ref(F,k) rep-
resent the cofactors in all variables in I. The number
of nodes representing such a cofactor must equal the arity
of the cofactors range, i.e. it does not depend on which vari-
able ordering in Π(I) is used for F . The algorithm gains
from this as follows: the invariant terms of the lower bounds
are computed separately from min costI . This saves the cost
of unneccessary repeated computations.

5.2. Partial BDD Reconstruction

The BDD corresponding to a state is kept in mem-
ory only until the next state is considered, since otherwise
the memory requirement would be much too large. Every
BDD for the next state processed (i.e. expanded to its suces-
sors) must be reconstructed by variable shiftings.

Reconsidering the exact minimization algorithm de-
scribed in Section 3, we observe: at step k, a BDD F is
appropriate to represent a state I with I = |k−1|, iff F has
a variable ordering π such that π(I) = I.

In [6] the variable ordering used for reconstruction of
a BDD for a state I is that of the BDD for I in the previ-
ous step k− 1. This variable ordering π respects the above
condition π(I) = I. The BDD is reconstructed by a series of
n upward variable shiftings: from left to right, the variables
π(1), . . . ,π(n) are shifted to levels 1, . . . ,n.

Now suppose, this sequence of variable shiftings is re-
duced to only shifting, from left to right, the variables
π(1), . . . ,π(|I|) to levels 1, . . . , |I|. This yields a variable
ordering πI , which also respects the condition πI(I) = I.
The advantage is, that much less shifting operations are
needed. A problem is the higher risk of “BDD explosions”:
since only the “upper parts” of the partially reconstructed
BDD and the old BDD for state I coincide, the node num-
ber in the “lower part” of the partially reconstructed BDD
can “blow up”, which would result in a slow down of run-
time and an increase of memory requirement. In our ap-
proach, this problem is addressed straightforwardly: when-
ever 0.7 times the size of the partially reconstructed BDD
exceeds the size of the old BDD, we return to the old vari-
able ordering π, which was used to represent state I in the
previous iteration. Note, that this technique transfers di-
rectly to the case of bottom up minimization.

Additionally, before reconstruction, the algorithm com-
putes the BDD in a cache of 10 BDDs with the smallest
number of variable exchanges to set a required ordering.
This is done in CPU time much less than the variable ex-
changes in fact would require. The idea of a BDD cache
was introduced in [11] and is used here in exact BDD min-
imization for the first time.

The new approach significantly gains efficiency by using
these techniques of partial reconstruction.

6. Experimental Results

All experimental results have been carried out on
an Athlon processor running at 1.4 GigaHz using an up-
per memory limit of 300 MByte and a runtime limit

(1) compute optimal ordering(BDD F , int n) {
(2) minguess[hash(/0)] := 0;
(3) π[hash(/0)] := an arbitrary initial order;
(4) states[hash(/0)] := /0;
(5) clear next states;
(6) for k := 1 to n do
(7) for each I ∈ states do /* update minguess[hash(I)] until it reaches min costI */
(8) reconstruct(F,π[hash(I)], |I|);
(9) for each xi ∈ Xn \ I do

(10) I′ := I ∪{xi}; if I′ /∈ next states then minguess[hash(I ′)] := ∞;
(11) if I′ already excluded or lb costI′ ≥ minguess[hash(I′)] then continue with for-loop;
(12) shift xi to level |I|+1; /* Note, that k = |I|+1 */
(13) newcost := label(F, |I|+1)+minguess[hash(I)];
(14) if (I′ /∈ next states or newcost < minguess[hash(I ′)]) then
(15) minguess[hash(I′)] := newcost;
(16) π[hash(I′)] := current ordering;
(17) upper bound := update upper bound();
(18) if I′ /∈ next states then
(19) states[hash(I′)] := I′;
(20) lower bound[hash(I ′)] := compute lower bound(I ′);
(21) if lb combinedI′ ≥ upper bound then exclude I ′;
(22) end–if
(23) end–if
(24) end–do
(25) exclude all states I′ in next states with lower bound[hash(I ′)] ≥ upper bound;
(26) states := next states;
(27) end–do
(28) reconstruct the ordering of upper bound;
(29) end–do
(30) }

Figure 2. The new algorithm JANUS (sketch)

of 20.000 CPU seconds. The new algorithm is called
JANUS↑, if minimization progresses bottom up using l bω
and JANUS↓, if minimization progresses top down using
the lower bound l bα. Both approaches use the “early prun-
ing” techniques of Section 4.2. The implementation of the
new algorithm is based on the implementation of the algo-
rithm in [6], called FizZ. Both algorithms have been inte-
grated in the CUDD package [17], which also contains an
implementation similar to the algorithm JUNON [13]. By
this we guarantee that all algorithms run in the same system
environment.

In a series of experiments we applied both algorithms to
the set of Benchmark circuits from LGSynth93 [5]. The re-
sults are given in Table 1. In the first column the name of
the function is given. in (out) denotes the number of inputs
and outputs of a function. Column opt shows the number
of BDD nodes needed for the minimal representation. In
columns time and space the runtime in CPU seconds and
the space requirement in MByte for JUNON and the new
approach JANUS↑ as well as for the approach FizZ and the
new approach JANUS↓ are given.

As the results show, the algorithm JUNON, which is
the best bottom up approach known so far, has much longer
runtimes than the bottom up approach JANUS↑. It can be
seen that JANUS↑ often accelerates runtime by a factor up
to two orders of magnitude (see e.g. sct, pcle, tcon) in com-
parison to JUNON. However, JANUS↑ has longer runtimes

than the top down approaches in most cases.
The new top down approach JANUS↓ is faster than FizZ,

especially for larger examples achieving a reduction in run-
time by up to 49% (see e.g. mux). On average, the reduc-
tion in runtime is 35.4%. The results show that the new
threefold lower bound technique together with efficient im-
plementation techniques is a very robust improvement, that
significantly outperforms the original algorithm FizZ.

7. Conclusions

We presented an exact algorithm for determining the op-
timal variable ordering for BDDs. It uses an extended
branch&bound technique to prune the state space by the use
of three lower bounds. This technique enables us to often
avoid repeatedly visiting states. The lower bounds have
been derived by generalization of a lower bound known
from VLSI design. Moreover, we described a faster method
of lower bound computation as well as an efficient method
of partial BDD reconstruction, which avoids many time
consuming variable shiftings. Experimental results are re-
ported that clearly demonstrate the efficiency of both the
presented top down and bottom up approach. A compari-
son to the best minimization algorithm known so far shows
that runtime can be reduced by up to 49%.

Table 1. Comparison of JUNON, FizZ and JANUS.

bottom up top down
name in out opt JUNON JANUS↑ FizZ JANUS↓

time space time space time space time space
cc 21 20 46 – 62M 412s 40M 117s 32M 84.9s 34M
cm150a 21 1 33 – 62M 348s 35M 610s 32M 311.1s 34M
cm163a 16 5 26 5.23s 2M 1.87s < 1M 1.17s < 1M 0.78s < 1M
cmb 16 4 28 0.02s 2M 0.04s < 1M 0.01s < 1M 0.05s < 1M
comp 32 3 95 – – 8684s 146M 5606s 99M 3900s 125M
cordic 23 2 42 11.2s 258M 5.57s < 1M 3.05s < 1M 1.82s < 1M
cps 24 102 971 – 537M 9130s 85M 4396s 48M 2751s 58M
i1 25 16 36 – – 74.1s 19M 29.4s 9M 18.77s 10M
lal 26 19 67 – – 3818s 256M 677s 64M 504.4s 75M
mux 21 1 33 – 62M 348s 35M 610s 32M 310.8s 35M
parity 16 1 17 < 0.01s 2M 0.01s < 1M < 0.01s < 1M 0.03s < 1M
pcle 19 9 42 7584s 15M 60.9s 8M 9.02s 2M 5.18s 3M
pm1 16 13 40 1.26s 2M 0.64s < 1M 0.55s < 1M 0.34s < 1M
s208.1 18 9 41 2116s 8M 42.2s 4M 8.44s < 1M 5.62s 2M
s298 17 20 74 934s 4M 25.6s 4M 13.46s 2M 9.06s 3M
s344 24 26 104 – 537M 3476s 229M 1446s 99M 950s 105M
s349 24 26 104 – 537M 2921s 229M 1447s 99M 950s 105M
s382 24 27 119 – 537M 3318s 263M 802s 67M 461s 71M
s400 24 27 119 – 537M 3322s 263M 802s 67M 456s 71M
s444 24 27 119 – 537M 3331s 263M 779s 67M 508s 78M
s526 24 27 113 – 537M 6017s 284M 1196s 93M 924s 105M
s820 23 24 220 – 258M 2467s 76M 2034s 53M 1235s 56M
s832 23 24 220 – 258M 2541s 69M 2076s 53M 1288s 56M
sct 19 15 48 8453s 15M 53.3s 8M 8.62s 2M 5.97s 3M
t481 16 1 21 0.16s 2M 0.15s < 1M 0.16s < 1M 0.13s < 1M
tcon 17 16 25 635s 4M 6.61s 4M 0.52s < 1M 0.28s < 1M
ttt2 24 21 107 – 537M 5281s 277M 950s 74M 578s 78M
vda 17 39 478 822s 5M 99.9s 5M 65.4s 3M 34.4s 3M

References

[1] B. Bollig and I. Wegener. Improving the variable ordering of
OBDDs is NP-complete. IEEE Trans. on Comp., 45(9):993–
1002, 1996.

[2] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[3] R. Bryant. On the complexity of VLSI implementations and
graph representations of Boolean functions with application
to integer multiplication. IEEE Trans. on Comp., 40:205–
213, 1991.

[4] P. Buch, A. Narayan, A. Newton, and A. Sangiovanni-
Vincentelli. Logic synthesis for large pass transistor circuits.
In Int’l Conf. on CAD, pages 663–670, 1997.

[5] Collaborative Benchmarking Laboratory. 1993 LGSynth
Benchmarks. North Carolina State University, Department
of Computer Science, 1993.

[6] R. Drechsler, N. Drechsler, and W. Günther. Fast exact min-
imization of BDDs. IEEE Trans. on CAD, 19(3):384–389,
2000.

[7] R. Drechsler and W. Günther. Towards One-Pass Synthesis.
Kluwer Academic Publishers, 2002.

[8] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, and
F. Somenzi. Symbolic algorithms for layout-oriented syn-
thesis of pass transistor logic circuits. In Int’l Conf. on CAD,
pages 235–241, 1998.

[9] S. Friedman and K. Supowit. Finding the optimal variable
ordering for binary decision diagrams. In Design Automa-
tion Conf., pages 348–356, 1987.

[10] H. Fujii, G. Ootomo, and C. Hori. Interleaving based vari-
able ordering methods for ordered binary decision diagrams.
In Int’l Conf. on CAD, pages 38–41, 1993.

[11] W. Günther and R. Drechsler. Improving EAs for Sequenc-
ing Problems. In Genetic and Evolutionary Computation
Conference, 175–180, 2000.

[12] N. Ishiura, H. Sawada, and S. Yajima. Minimization of bi-
nary decision diagrams based on exchange of variables. In
Int’l Conf. on CAD, pages 472–475, 1991.

[13] S.-W. Jeong, T.-S. Kim, and F. Somenzi. An efficient
method for optimal BDD ordering computation. In Inter-
national Conference on VLSI and CAD, 1993.

[14] L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout
generation for PTL macrocells. In Design, Automation and
Test in Europe, pages 546–551, 2001.

[15] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, and
S. Long. Wave steering in YADDs: A novel non-iterative
synthesis and layout technique. In Design Automation Conf.,
pages 466–471, 1999.

[16] R. Rudell. Dynamic variable ordering for ordered binary de-
cision diagrams. In Int’l Conf. on CAD, pages 42–47, 1993.

[17] F. Somenzi. CU Decision Diagram Package Release 2.3.1.
University of Colorado at Boulder, 2002.

[18] C. Yang and M. Ciesielski. BDS: a BDD-based logic op-
timization system. IEEE Trans. on CAD, 21(7):866–876,
2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

