
Layout-Driven SOC Test Architecture Design
for Test Time and Wire Length Minimization

Sandeep Kumar Goel Erik Jan Marinissen

Philips Research Laboratories
IC Design – Digital Design & Test

Prof. Holstlaan 4, M/S WAY-41
5656 AA Eindhoven, The Netherlands

fSandeepKumar.Goel, Erik.Jan.Marinisseng@philips.com

Abstract

This paper extends existing SOC test architecture design approaches
that minimize required tester vector memory depth and test application
time, with the capability to minimize the wire length required by the
test architecture. We present a simple, yet effective wire length cost
model for test architectures together with a new test architecture de-
sign algorithm that minimizes both test time and wire length. The user
specifies the relative weight of the costs of test time versus wire length.
In an integrated fashion, the algorithm partitions the total available
TAM width over individual TAMs, assigns the modules to these TAMs,
and orders the modules within one TAM such that the total cost is mini-
mized. Experimental results on five benchmark SOCs show that we can
obtain savings of up to 86% in wiring costs at the expense of <4% in
test time.

1 Introduction

Modular testing is becoming increasingly popular for large SOCs. In
order to enable modular test development, an embedded module should
be isolated from its surrounding circuitry and electrical test access
should be provided. Zorian et al. [1] introduced a generic concep-
tual test architecture that enables modular testing of SOCs. It con-
sists of three elements per module-under-test: (1) a test pattern source
and sink, (2) a test access mechanism (TAM), and (3) a wrapper. The
TAM provides electrical access to the module-under-test. The wrapper
provides the isolation facility, by implementing switching functionality
between functional access to the module, and test access (both inward-
and outward-facing) through a TAM.

Various wrapper/TAM architectures [2, 3, 4] and automated design pro-
cedures for these architectures [5, 6, 7, 8, 9, 10, 11, 12, 13] have been
proposed. These design procedures determine the number of distinct
TAMs, their widths, the assignment of modules to TAMs, and the wrap-
per design per module. Most of these design procedures use the SOC
test time as minimization criterion. This is motivated by the fact that
a large SOC typically has a large test data set, which requires a large
test application time on an ATE with deep, and hence expensive, vec-
tor memories. However, the wiring of TAMs is another important cost
factor, which, until now, has received little attention in the publica-
tions on automated TAM design. Nowadays, many SOCs implement
quite wide, dedicated TAMs, and especially for such SOCs, it pays
off to minimize the TAM wire length while designing the TAM archi-
tecture. Short TAM wires reduce the required area cost, performance

impact, power dissipation, and cross coupling. Optimizing the TAM
wire length requires to take the layout positions of the various modules
into account.

This paper presents an SOC wire length cost model for TAMs. Subse-
quently, we formulate the layout-driven test architecture design prob-
lem, in which we assume that the layout positions of all modules of
the SOC are given. Next we present a new test architecture design
algorithm that combines two costs i.e., total test time and total wire
length into one cost function and depending on the weight associated
with each cost, computes an optimized test architecture. The presented
algorithm minimizes the total wire length by assigning neighboring
modules as much as possible into the same TAM and by determining a
layout-driven optimal ordering of modules connected to the TAM. We
show that the problem of determining an optimal ordering of modules
connected to a TAM is equivalent to the well-known Traveling Sales-
man Problem (TSP) [14] and present a greedy algorithm to solve it.

The sequel of this paper is organized as follows. Section 2 reviews
the prior work in this domain. Section 3 describes a wire length cost
model. In Section 4, we formulate the layout-driven test architecture
design problem and present a heuristic algorithm to solve it. Section 5
contains experimental results. Finally, Section 6 concludes this paper.

2 Prior Work
Most SOC test architecture optimization algorithms published so far
have concentrated only on test time minimization of the Test Bus Ar-
chitecture [3]. Chakrabarty [5] described a Test Bus Architecture de-
sign approach that minimizes test time through Integer Linear Pro-
gramming (ILP). Ebadi and Ivanov [6] replaced ILP by a genetic algo-
rithm. In [7], Huang et al. mapped Test Bus Architecture design to the
well-known problem of two-dimensional bin packing and used a Best
Fit Decreasing algorithm to solve it. Iyengar et al. [8] were the first to
formulate the problem of designing TAMs and wrappers in conjunc-
tion, in order to minimize test time. Despite itsNP-hard character,
they solved the problem using ILP and exhaustive enumeration. In [9],
the same authors presented efficient heuristics for the same problem. In
[10], Iyengar et al. describe a heuristic algorithm for co-optimization
of wrappers and TAMs based on rectangle packing for an architecture
in which each module connects to a subset of the wires of one common
test bus. Later, this approach was extended with precedence, preemp-
tion, and power constraints [15].

A major drawback of the Test Bus Architecture is that the wrappers
connected to the same test bus cannot be accessed simultaneously,
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which complicates testing of the circuitry and wiring in between the
modules. The TestRail Architecture [4] does not have this drawback.
In [11], Goel and Marinissen described two heuristic algorithms for
co-optimization of wrappers and TAMs for the TestRail Architecture.
The algorithms in [11] work both for modules with fixed-length and
flexible-length scan chains, but have as limitation that the total TAM
width should be greater than or equal to the total number of modules
in the SOC. The same authors removed this limitation and presented
improved results for a new algorithm called TR-ARCHITECTin [12].

Most papers that address the issue of minimizing the wire length of
the on-chip test infrastructure focus on (module-level) scan chain de-
sign. Early papers in this field [16, 17, 18, 19] describe the ordering
of the flip flops in a single scan chain. This problem is equal to the
well-knownNP-hardTSP [14], for which many heuristic algorithms
are available. In many practical cases, multiple scan chains are de-
signed, in order to make better use of the available bandwidth over the
IC pins to bring test patterns in and out of the circuit, and hence reduce
the test application time. This leads to a Multi Traveling Salesmen
Problem (MTSP), in which the scan flip flops need to be both parti-
tioned and ordered. Barbagallo et al. [20] describe a genetic algorithm
to address this problem; their compute time complexity seems to be
an issue, as they report several hours compute time for modules with
less than 2,000 flip flops. Marinissen and Tap [21] developed an effi-
cient heuristic for assigning scan flip flops to scan chains, based on the
layout positions of the scan flip flops and the scan pins.

The only researchers, to the best of our knowledge, that have addressed
the SOC-level issue of TAM design while taking both test time as well
as TAM wire length into account are Chakrabarty and Iyengar [13, 22].
[13] extends Chakrabarty’s original TAM design approach that mini-
mizes test time through ILP [5] with a rudimentary form of TAM wire
length minimization. For every pair of modules, the user’s preference
for assigning the modules to the same TAM is expressed by a 0-1 con-
stant. The user also specifies how many of these preferences should
at least be rewarded in any solution generated by the ILP solver. [22]
extends this approach by adding another 0-1 constant for every pair of
modules, expressing the user’s preference fornot assigning the mod-
ules to the same TAM. While we acknowledge that these papers were
the first to add wire length optimization to TAM design, their proposed
solution approaches have many shortcomings. They are based on the
Test Bus Architecture, which does not allow for module-external test-
ing [11]. The approaches do not support optimization of TAMs and
wrappers in conjunction [8]. They work with a fixed user-specified
number of TAMs, whereas most users only want to specify the total
number of TAM wires, and leave the number of TAMs to the optimiza-
tion algorithm [8]. Both approaches lack a real wire length model.
The binary 0-1 constants only provide a very coarse way to express
preferences and do not allow for gradation of layout distances between
modules. Despite itsNP-hard character, the problem is addressed by
ILP, and hence only small problem instances can be handled within
practical compute time bounds [9]. And finally: the test time penalty
of taking the wire length preferences into account is rather high; up to
65% for the small examples described in [13].

3 Wire-Length Cost Model

Our test architecture optimization is handled by an iterative algorithm.
This algorithm needs to evaluate the wire length costs of many (partial)

test architectures during the course of its execution. The most accurate
wire length costs can be obtained by creating an actual layout of the
SOC and the proposed test architecture. However, layout generation
is a compute-intensive task, and certainly not one we can afford in our
iterative algorithm, in which many times wire length costs need to be
evaluated. Therefore, we have developed a wire length cost model,
which, on one hand, allows for fast computation, but, one the other
hand, is still sufficiently accurate to force our test architecture opti-
mization algorithm to put neighboring modules as much as possible
into the same TAM.

Our wire length cost model makes the following assumptions.

1. Coordinate system

� We use only the first quadrant of an orthogonal coordinate sys-
tem. This assumption is without loss of generality; any SOC
layout can be made to meet this assumption with a simple trans-
lation. The fact that the SOC is in the first quadrant means that
all coordinates will be non-negative numbers, which simplifies
our calculations.

� All coordinates are (non-negative)integers. The unit of the co-
ordinates is not specified, but should be consistent for all coor-
dinates belonging to the same SOC. This assumption is again
without loss of generality, and meant to simplify our calcula-
tions.

2. SOC layout position

� The SOC layout is assumed to be a rectangle, of which the
bottom-left corner coincides with the origin(0; 0) of our coor-
dinate system. For rectangular SOCs, this assumption is without
loss of generality, as it can be met by applying a simple transla-
tion and/or rotation.

� The coordinates of the center of the SOC layout are specified as
(X;Y ). From this, and from the fact that the bottom-left cor-
ner is at(0; 0), we can calculate the positions of the horizontal
boundaries of the SOC layout to be aty = 0 andy = 2Y , while
the vertical boundaries of the SOC are atx = 0 andx = 2X.

3. Module layout position

� The position of each Modulem is specified by a pair of coor-
dinates(xm; ym), corresponding to the center of the bounding
box of the layout block ofm. All TAM wires to and fromm are
assumed to start and end in(xm; ym).

4. Layout distances

� For calculating distances between modules, we use the Manhat-
tan distance instead of the Euclidean distance. This is motivated
by the fact that SOC routing channels only allow horizontal and
vertical wiring. In addition, the Manhattan distance function
simplifies our distance calculations. The distance between Mod-
ulesm1 andm2 is d(m1;m2) = jxm1

� xm2
j+ jym1

� ym2
j.

� For calculating the distance between a module and the SOC
boundary, we use the shortest distance between that mod-
ule and any of the SOC boundaries. Hence,d(m) =
min(xm; ym; 2X � xm; 2Y � ym). This assumption is based
on the idea that the set of pins on which the TAM wires will be
multiplexed is not pre-determined.



Note that the assumptions above are compatible with the format of the
layout information of theITC’02 SOC Test Benchmarks [23].

In this paper, a TAMr is fully represented by its widthw(r) and an
ordered list of modules< m1;m2; : : : ;mjrj >. The wire length for
a TAM r is the sum of the distance between the SOC boundary and
Modulem1, the distances between all subsequent pairs of modules in
r, and the distance between Modulemjrj and the SOC boundary, mul-
tiplied by the number of wiresw(r). The total wire lengthl(r) of TAM
r can be written as follows.

l(r) = w(r) �
�
d(m1) +

jrj�1X
i=1

d(mi;mi+1) + d(mjrj)
�
:

The total wire length for an SOC with a setR of TAMs is the sum of the
wire lengths of the individual TAMs inR, i.e.,L(R) =

P
r2R

l(r).

A simple example SOC layout to illustrate our wire length cost model
is shown in Figure 1. The SOC contains four modules, namedA, B,
C, andD. The SOC has two TAMs; TAMr1 of width w(r1) goes
through ModulesA andD, while TAM r2 of width w(r2) connects
ModulesB andC.
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Figure 1: Example SOC layout to illustrate our wire length cost model.

4 Layout-Driven Architecture Design
In layout-driven test architecture design, we want to minimize both the
time necessary to complete all SOC tests, as well as the wire length
necessary for the TAMs. These two minimization criteria can be con-
flicting. Therefore, we require from the user to specify the relative
weight� of these two cost terms. The problem of layout-driven test
architecture design can be formally defined as follows.

Problem 1 [Layout-Driven Test Architecture Design]
Given an SOC with center layout coordinates(X;Y ) and a set of mod-
ulesM . Given for each Modulem 2 M its center layout coordinates
(xm; ym), the number of test patternspm, the number of functional
input terminalsim, the number of functional output terminalsom, the
number of bidirectional terminalsbm, the number of scan chainssm,
and for each scan chaink, the length of the scan chain in flip flops
lm;k. Furthermore, given the maximum number of SOC-level TAM
wireswmax and the relative cost function weight� (0 � � � 1).
Determine a set of TAMsR (i.e., the TAM widths and ordered lists of

modules assigned to those TAMs), and a corresponding wrapper design
per module, that satisfy the following conditions: (1)M =

S
r2R r

and8r1;r22R (r1 \ r2 = ;), i.e., every module is assigned to ex-
actly one TAM, (2)

P
r2R

w(r) � wmax, i.e., the summed widths of
the TAMs do not exceedwmax, such that (3) the cost functionC =
� �T (R)+ (1��) �L(R) is minimum (whereT (R) = maxr2R t(r)
represents the total test time). 2

TR-ARCHITECT [12] proved very effective in minimizing the total
test time of SOCs. The original version of TR-ARCHITECT was un-
aware of the layout-positions of the SOC and its modules, and conse-
quently did not minimize the TAM wire length nor order the modules
per TAM. In this paper, we propose a new, layout-driven version of
TR-ARCHITECTto minimizes the weighted sum of test time and wire
length. Our solution approach consists of two items.

� A procedure WIRELENGTH(r) that optimizes the ordering of
modules inr with respect to wire length and calculates the cor-
responding wire lengthl(r).

� Adaptations of TR-ARCHITECT, such that when determining
the number of TAMs, their widths, and the assignment of mod-
ules to TAMs, we avoid inclusion of modules which are far apart
from each other in the same TAM.

Both items are described in more detail in the subsequent sections.
Note that the procedure WIRELENGTH(r) is used as a subroutine in
the layout-driven version of TR-ARCHITECT. However, it can also
be used to optimize the wire length of any other TAM architecture,
e.g., one generated by the original, non-layout-driven version of TR-
ARCHITECT.

4.1 Optimized Ordering of Modules per TAM

The problem of determining an optimal ordering of modules that are
connected to a TAM, can be formulated as follows.

Problem 2 [OptimalOrderDesign]
Given are the set of modulesfm1;m2; :::; mjrjg connected to TAM
r and its widthw(r). For each Modulem, the center layout coordi-
nates(xm; ym) are given. Also given are the center layout coordinates
(X;Y ) of the SOC for which the TAM is designed. Determine an opti-
mal order of Modulesm1;m2; :::; mjrj such that the total wire length
l(r) required to connectw(r) TAM wires to the modules and the SOC
pins is minimized. 2

We approach this problem with a two-step solution. First, we deter-
mine an ordering of the modules, such that their TAM interconnect
wire length is minimized. In the second step, we calculate the over-
all TAM wire length by adding the wires from the head and tail of the
TAM to the SOC pins.

We look at Step 1 as to the problem of finding the shortest path through
all nodes in a complete undirected weighted graph. LetG = (V;E) be a
complete undirected weighted graph, where vertexvi 2 V corresponds
to Modulemi and weightW (eij) on edgeeij 2 E represents the wire
length cost of connecting Modulesmi andmj , i.e.,w(r) � d(mi;mj).
This problem is very similar to the well-knownTraveling Salesman
Problem TSP[14], in which a traveling salesman has to find the short-
est tour through a given set of cities with pre-defined distances. Our
problem is to find the shortestpath through all nodes, whileTSPis af-
ter the shortesttour through all cities. Our problem can be transformed



into an instance ofTSPby adding one node with equal distances to all
other nodes.TSPis known to beNP-hard [14]. In practical terms, this
means that the time needed to compute an optimal solution increases
exponentially with the problem instance size. In order to avoid in-
tractable compute times, we employ an efficient, yet effective heuristic
algorithm. Several efficient heuristic algorithms have been proposed
in literature to solveTSP. We use a simple greedy heuristic [17] for
Step 1. Algorithm 1 lists the pseudo-code of our algorithm.

Algorithm 1 [WIRELENGTH(r;w(r))]

1 /* Step 1: Ordering of modules */
2 create a complete graphG = (V;E) from modules inr;
3 for all edgeseij 2 E f
4 W (eij) := w(r) � d(mi;mj) g;
5 sum := 0;
6 while jV j > 1 f
7 find edgee�ij for whichW (e�ij) = mine2EW (e);
8 merge verticesvi andvj to form a super-vertexvfi;jg;
9 sum := sum + W (e�ij);
10 delete edges incident to verticesvi andvj ;
11 V := V nfvi; vjg [ vfi;jg;
12 assign new weights on edges connectingvfi;jg to other vertices;g
13 /* Step 2: Calculation of total wire length */
14 l(r) := sum +w(r) � (d(mv1 ) + d(mvjrj )

Algorithm 1 consists of Step 1 (Lines 1–12) and Step 2 (Lines 13–14).
Step 1 consists of an initialization, followed by an iterative loop. In the
initialization (Lines 2–5), graphG = (V;E) is built, and the summed
wire length so far is set to zero. In the main loop (Lines 6–12), in a
greedy fashion every time two vertices are merged into a super ver-
tex. The merge order corresponds to the ordering of modules in the
TAM. Once a super-vertex is formed, the two vertices and the edges
incident to them are deleted from the setV andE respectively. The
weights on the edges connecting the super-vertex to other vertices are
re-calculated and re-assigned. This step continues until a single vertex
is left. A super-vertex represents a chain of vertices and only the ending
vertices of the chain sequences can be connected to other vertices. For
example, to connect one super-vertex to another vertex, there are two
possible connections. We consider the minimum cost of all possible
connections as the weight on the edge connecting the two vertices.

4.2 Architecture Design Algorithm

The new layout-driven version of TR-ARCHITECTuses the same four
steps as in the original version [12]: (1) CREATESTARTSOLUTION, (2)
OPTIMIZEBOTTOMUP, (3) OPTIMIZETOPDOWN, and (4) RESHUF-
FLE. However, instead of optimizing the test time in each step, the new
version optimizes the total costC. The details of all four steps are
given below.

In the step CREATESTARTSOLUTION,an initial test architecture is cre-
ated which is then further optimized by the steps to follow. In this step,
modules are assigned to one-bit wide TAMs. If there are more TAM
wires than modules, each module gets assigned. Otherwise, only the
largestwmax modules get assigned. ‘Large’ is here defined by the test
data volume for each module. If we have some modules left unas-
signed, modules are added iteratively to the TAMs which results in
minimum overall cost. Similarly, if some TAM wires are left, these
wires are added to the TAMs provided there is no increase in the over-
all costC. This step returns a number of unused wires and a set of

TAMs R.

The next two steps, i.e., OPTIMIZEBOTTOMUP and OPTIMIZETOP-
DOWN, try to merge the modules of two TAMs into one new TAM,
such that the wires that are freed up in the process can be utilized for
an overall cost reduction. The freed up wires can reduce the overall cost
in two ways: (1) freed up wires can be used by the bottleneck TAM to
minimizeT , or (2)L is reduced as less wires need to be routed.

In the step OPTIMIZEBOTTOMUP, the TAM with the shortest test time
is merged with another TAM such that there is no increase inC andC
is minimum. The procedure assigns the maximum of the widths of the
merged TAMs to the newly formed TAM. In this way, the minimum
width of the merged TAMs is free for reduction ofC. This procedure
ends if all TAMs have been merged into one single TAM, or when no
further decrease ofC can be obtained. Similarly, in step OPTIMIZE-
TOPDOWN, the TAM with the largest test time is merged with another
TAM. This step might reduceT as the width assigned to the merged
TAM is the summed widths of the merging candidate TAMs.

In the step RESHUFFLE, an individual module is moved from the bot-
tleneck TAM to another TAM, if and only if this decreases the overall
cost. It is important to note here that, due to weight dependency on
the wire length and the test time in the overall cost function, it is pos-
sible that for small values of�, a large number of TAM wires remain
unassigned. This is due to the fact that adding one more wire to a
TAM directly increases the wire length but does not necessarily de-
creases the test time. However, it is also possible that if all the wires
are added iteratively to the TAM with the largest test time, then the
decrease in the overall test time might be larger than the increase in
the total wire length. To account for this phenomenon, the proposed
TR-ARCHITECTtries to assign all unused wires remained after every
step to the TAMs to minimize the overall cost.

5 Experimental Results
In this section, we present experimental results for the proposed layout-
driven version of TR-ARCHITECT. For experiments, we used the
ITC’02 SOC Test Benchmarks [23]. As the original benchmark SOCs
do not have any data related to the positions of modules in the SOC
layout, we used randomly-generated, but feasible floor plans for the
benchmark SOCs. The proposed layout-driven TR-ARCHITECT is
able to generate both Test Bus and TestRail Architectures like the orig-
inal algorithm in [12]. Here, we present Test Bus Architecture results
only, but similar results were obtained for TestRail Architectures.

We compare test time and wire length results for three approach.
The baseline approach is obtained by the original version of TR-
ARCHITECT, followed by a lexicographical ordering of the modules
per TAM. The lexicographical ordering represents a random ordering
with respect to the layout positions of the modules. The second ap-
proach uses the test architecture design obtained by the original version
of TR-ARCHITECT, followed by a layout-driven ordering of modules
per TAM (as described in Section 4.1). The third, and best approach
is based on the new, layout-driven version of TR-ARCHITECT, and
includes both layout-driven test architecture design and layout-driven
module ordering.

The table in Figure 2(a) presents results for a range ofwmax val-
ues for five of the twelve benchmarks SOCs [23]. These five SOCs
were selected, as they are the only ones for which test time contin-



ues to decrease for increasing values ofwmax upto64 [12]. Columns
3 and 4, present the test timeT and wire lengthL for the original
TR-ARCHITECT with random ordering of modules per TAM respec-
tively. Column 5 presents the wire length results for the original TR-
ARCHITECT with layout-driven ordering of modules per TAM. Test
times are not listed for this approach, as they are the same as the test
times in Column 3.

Columns 6, 7, and 8 present the results for the new layout-driven TR-
ARCHITECT. For the new layout-driven approach, we tried all values
of � from 0:1 upto 0:9 with increments of0:1. The sixth column of
the table lists the values of� for which the new layout-driven TR-
ARCHITECTyields the best test time results. For most cases, the min-
imum test time was achieved for� = 0:9. This was to be expected,
as this value of� most strongly emphasizes test time. The percentages
shown in Columns 5, 7, and 8 express the savings in test time resp.
wire length compared to the baseline approach.

For SOC d695, the savings inL vary from16 to 65%. It is interesting
to note here, that forwmax = 16, the new layout-driven approach also
improves the test time with4%. For SOC p22810, the saving in wire
length is58 to 81%, at the cost of an increase of between�3 and10%
in test time. Similarly for SOCs p34392 and p93791, the savings in
the wire length vary from50 to 80% and48 to 86% respectively, at

a penalty in test time in the range of2 to 6%. For SOC a586710, the
savings in wire length are also comparable to the other SOCs, and are
in the range of21 to 61%.

Figures 2(b) and 2(c) show the variation of test timeT and wire length
L with � for SOCs d695 and p22810 with TAM widthswmax = 24
andwmax = 48 respectively. The figures confirm that� indeed works
as a weighting factor between the two, often conflicting, cost factors.

Figure 3 shows an example of the module assignment to TAMs for
SOC p93791 withwmax = 32 as obtained by the original TR-
ARCHITECT(Figure 3(a)) versus the one obtained by our new layout-
driven TR-ARCHITECT with � = 0:7 (Figure 3(b)). Modules with
the same color and pattern are connected to the same TAM. The origi-
nal version of TR-ARCHITECTdivides the total TAM width over three
TAMs as shown in Figure 3(a). In this case, modules placed in differ-
ent corners of the layout are assigned to the same TAM; for example
Modules6, 20, 14, 29 32 and 5, are being put into one TAM. The
same is true for other TAMs also. This results in a large wire length for
each TAM. The layout-driven version of TR-ARCHITECTgenerates a
TAM architecture as shown in Figure 3(b). The total TAM width is
partitioned over nine TAMs. It is clear from Figure 3(b), that only the
modules that are physically close to each other are connected to the
same TAM, which minimizes the total wire length.

Original Layout-Driven Layout-Driven TR-Architect
SOC wmax TR-Architect Module Ordering with Module Ordering

[12]
T L L � T L

d695 16 44307 86451 63339 -26.7% 0.9 42548 -4.0% 49404 -42.9%
24 28576 78908 69344 -12.1% 0.9 30132 5.4% 32892 -58.3%
32 21518 87860 80430 -8.5% 0.9 22438 4.3% 39241 -55.3%
40 17677 146120 137044 -6.2% 0.9 17677 0.0% 57132 -60.9%
48 14608 163444 134697 -17.6% 0.9 16194 10.9% 56492 -65.4%
56 12462 136828 136828 0.0% 0.9 13354 7.2% 66024 -51.7%
64 11033 87837 87837 0.0% 0.9 11274 2.25% 73736 -16.1%

p22810 16 458068 541750 338608 -37.5% 0.8 462030 0.9% 104189 -80.8%
24 299718 388607 331032 -14.8% 0.9 298054 -0.6% 147340 -62.1%
32 222471 288573 234779 -18.6% 0.9 243791 9.6% 120342 -58.3%
40 190995 415412 355063 -14.5% 0.9 194193 1.7% 94460 -77.3%
48 160221 358205 310436 -13.3% 0.9 156472 -2.3% 143297 -60.0%
56 145417 427962 316938 -25.9% 0.9 145417 0.0% 105952 -75.2%
64 133405 444676 338647 -23.8% 0.9 135571 1.6% 126948 -71.5%

p34392 16 1010821 118596 100316 -15.4% 0.9 1010821 0.0% 59007 -50.2%
24 680411 263968 211415 -19.9% 0.9 698844 2.7% 137900 -47.8%
32 551778 259450 219562 -15.4% 0.9 584524 5.9% 78771 -69.6%
40 544579 474171 362181 -23.6% 0.9 544579 0.0% 93499 -80.3%
48 544579 474171 362181 -23.6% 0.9 544579 0.0% 93499 -80.3%
56 544579 474171 362181 -23.6% 0.9 544579 0.0% 93499 -80.3%
64 544579 474171 362181 -23.6% 0.9 544579 0.0% 93499 -80.3%

p93791 16 1791638 649338 406713 -37.4% 0.9 1791638 0.0% 289826 -55.4%
24 1185434 513619 376939 -26.6% 0.9 1211149 2.2% 263828 -48.6%
32 912233 1054240 759708 -27.9% 0.7 946879 3.8% 151676 -85.6%
40 718005 704481 543507 -22.9% 0.9 745824 3.9% 313788 -55.5%
48 601450 690570 538308 -22.0% 0.9 617782 2.7% 286215 -58.6%
56 528925 1125430 904718 -19.6% 0.9 538346 1.8% 291288 -74.1%
64 455738 764913 662107 -13.4% 0.9 480003 5.3% 181099 -76.3%

a586710 16 41523868 132700 132700 0.0% 0.9 42117536 1.4% 52765 -60.2%
24 28716501 112157 98547 -12.1% 0.9 28716501 0.0% 82064 -26.8%
32 22475033 228561 228561 0.0% 0.9 22475033 0.0% 88961 -61.1%
40 19048835 303370 303370 0.0% 0.8 19048835 0.0% 118018 -61.1%
48 15212440 411104 377216 -8.2% 0.8 15212440 0.0% 323372 -21.3%
56 13401034 206520 206520 0.0% 0.9 13401034 0.0% 137550 -33.4%
64 12510356 232168 232168 0.0% 0.9 12700205 1.5% 182267 -21.5%
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Figure 2: Experimental results for (a) test timeT and wire lengthL of original and layout-driven TR-ARCHITECT, and variation ofT andL with � for (b) SOCs
d695,wmax = 24, and (c) p22810,wmax = 48.
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Figure 3: TAM module assignments for SOC p93791 withwmax = 56,
for (a) the conventional TR-ARCHITECT, and (b) the new layout-driven TR-
ARCHITECTwith � = 0:9.

6 Conclusion
In this paper, we have extended an existing SOC test architecture de-
sign approach that minimizes test time with the capability to minimize
the wire length required for the TAMs. We presented a wire length cost
model for TAM design, in which we assume that the layout positions
of all modules in the SOC layout are given. Subsequently, we showed
that the minimization of test time and TAM wire length for an SOC
should be done in conjunction and formulated the layout-driven test
architecture design problem.

To calculate the wire length of a TAM, an ordering of modules con-
nected to the TAM has to be found. We show that the problem of deter-
mining an optimal ordering of modules with respect to wire length of
the TAM is equivalent to the well-known Traveling Salesman Problem
(TSP). We used a simple greedy algorithm to solve this problem. Fi-
nally, we presented a layout-driven version of TR-ARCHITECT, that
minimizes the total wire length by putting neighboring modules as
much as possible into the same TAM. Our new approach is based on
a user-defined weight� for the two, often competing, cost factors test
time and wire length.

For five benchmark SOCs, we compared results obtained from the orig-
inal TR-ARCHITECTwith both random and layout-driven ordering of
modules per TAM, with our new layout-driven version. We showed
that for all SOCs and a range ofwmax values, the new approach results
in savings of up to86% in TAM wire length at the expense of< 4%
additional test time.
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