
Time Domain Multiplexed TAM: Implementation and Comparison
Zahra sadat Ebadi and Andre Ivanov

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, BC, Canada V6T 1Z4
{zahra, ivanov}@ece.ubc.ca

Abstract
One of the difficult problems which core-based system-

on-chip (SoC) designs face is test access. For testing the
cores in a SoC, a special mechanism is required, since they
are not directly accessible via chip inputs and outputs. In
this paper we introduce a novel Test Access Mechanism
(TAM) based on time domain multiplexing (TDM-TAM).
This TAM is P1500 compatible and uses a P1500 wrapper.
The TAM characteristics are its flexibility, scalability, and
reconfigurability. The proposed TAM is compared with two
other approaches: a serial threading approach analogous
to the IEEE1149.1 standard (Serial TAM)[7]and a packet-
switching test network (NIMA)[9]. A network-processing
engine SoC is used as a platform to compare the different
TAMs [6]. Results show that in most cases, TDM is the most
effective TAM in both test time and overhead area.
Keywords: SoC testing, Embedded core testing, Test Ac-
cess Mechanism (TAM), Time domain multiplexed TAM,
Optimal test time.

1 Introduction
Embedded cores are now being used in large SoC de-

signs. They facilitate design and lead to shorter product
development cycles. However, the manufacturing tests and
debug of SoCs are major challenges. Since cores in an SoC
are not directly accessible via chip inputs and outputs, spe-
cial access mechanisms are required to test them at the sys-
tem level. Zorian et al. proposed a generic conceptual test
access architecture for embedded cores, with the following
components: Source, Sink, and Test Access Mechanism.
The test access mechanism (TAM) is used to deliver test
stimuli from the source (which generates test stimuli) to
cores and also to deliver responses from cores to the sink
(which evaluates test responses).

There are several proposed TAM architectures in the lit-
erature. These architectures can be classified in four cat-
egories: 1) multiplexing, 2) serial connection, 3) indirect
access and 4) bus-based connection.

In the first category, multiplexing is used to access the
cores. The simplest method in this category directly multi-
plexes the test pins to the primary inputs/outputs (I/O). An-
other method modifies the cores such that each core has a
transparent mode for testing [4]. There are several problems
with the multiplexing TAM methods, such as limited scope
of use for future complex SoCs, large overhead area, long

test time, and non-scalability of the architecture.
TAMs in the serial connection category [10][7] use the

established IEEE 1149.1 standard. For a few cores on an
SoC, it may be possible to spend time transporting the test
vectors serially to the cores. However, as the number and
complexity of the cores increases, a serial solution based
on the IEEE 1149.1 standard or its variants will prove too
costly in terms of test time.

A Networked Indirect and Modular Architecture
(NIMA) for TAM was proposed in [9], where emphasis is
placed on modularity, generality, and configurability of the
architecture to exploit the advantages offered by the reuse
paradigm. A number of different variations of the bus-
based connection schemes for TAM have been proposed.
[8] and [11] are examples of this type of TAM connection.
In terms of trading-off increased overhead area for reduced
test access time, bus-based architectures are the most effi-
cient TAM schemes suggested to date.

Here we present a novel bus-based TAM which not only
has all the advantages of common bus-based TAMs like
scalability, efficiency in time and area, but also it is flexi-
ble, reconfigurable and handles cores with BIST efficiently
and needs less global routing than common bus-based. Us-
ing time domain multiplexing, our TAM uses test buses ef-
ficiently, so testing time decreases. Also using a method
of dynamic masking gives flexibility to the tester to change
the test scheduling and change the test strategy after fabri-
cation.The proposed TAM is compared with two other TAM
architectures for SoC design.

2 Time Domain Multiplexed TAM

TDM-TAM is a bus-based TAM that uses logic situated
locally at each core to enable or disable the core such that
bus contention not occur. This architecture eliminates the
necessity of global address lines, which are normally re-
quired in a bus-based architecture. In our TDM-TAM, the
data to be sent on the TAM bus is divided into frames. Each
core is assigned a specific mask enabling the cores to extract
the appropriate data bits from the frames.

For example in Fig. 1, a frame is assumed to consist of
four bits. Core A uses the first bit of each frame, core B
uses bits 2 and 4, while core C uses bit 3. For this specific
configuration, assume that we wish to send the data “11”
to core A, “00” to core B and don’t care bits “XX” to core
C. The two required frames to be sent on the TAM bus in

1530-1591/03 $17.00  2003 IEEE

Core A
mask=1000

Core B
mask=0101

Core C
mask=0010

Frame A BCB

A BC A BCBA BCB

Frame1 Frame3Frame2

B

Figure 1. Example illustrating the Time Domain
Multiplexing (TDM) TAM concept.

this case must therefore be “10X0” followed by “1XXX”.
Optimal frame and mask assignment is obviously critical
for the efficiency of the scheme. This is addressed later in
this paper.

In our case, to implement the TDM-TAM, a P1500 wrap-
per (Fig. 2) is used to wrap each core.The P1500 wrap-
per connects to one mandatory one-bit wide TAM, i.e.,
the Wrapper Serial Input/Output (WSI/WSO), and zero
or more scalable-width TAMs (TAM-in/TAM-out) (TAM-in
and TAM-out need not to be the same width).

Core

WIR

P1500 Wrapper

Wrapper Control
signals

4

WSI WSO

Inputs Outputs

WRSTNWRCK

Scan chain 0

Scan chain 1

Wrapper
Boundary

Cell

TAM-in TAM-out

WBR

16 State
TAP FSM

TCK TRSTN TMS

Figure 2. Conceptual view of the IEEE P1500
wrapper and TAP controller.

In the standard 1149.1 TAP controller, a 16-bit finite
state machine generates the wrapper control signals from
the serial TMS bit stream. For our TDM-TAM, we trans-
formed the original 1149.1 TAP controller into a TDM-TAP
controller (Fig. 3). This controller includes the original
1149.1 FSM as well as some minimal extra logic, referred
to as a Time Domain Multiplexer (TDM) Block , which
creates the Enable signal for the core according to a preas-
signed mask.

Here, we assume that the masks are assigned, before lay-
out and fabrication. In this case, the mask for each core is
said to be local. This means the mask lines for each core are
hard-wired ground or Vdd. However, in Sec. 2.3, we show
that it is useful to have the ability to change a mask after

fabrication. We refer to this feature as Dynamic masking.

Time
Domain

Multiplexer
Block

Ctag TAP
Controller

TMSReset

Clock

Mask

Enable 1 2 3 4

1: CaptureWIR
2: ShiftWIR
3:UpdateWIR
4:SelectWIR

N

Wrapper Control Signals

mask[N-1]

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

mask[N-2]

mask[0]

Reset

Clock

Enable

Figure 3. Block diagram for TDM-TAM TAP con-
troller.
The TDM block operates as follows. When the Reset

signal goes low, the mask is loaded into the flip flop chain.
When Reset is high, the mask is shifted by one bit on ev-
ery falling edge of the clock. Using the falling edge allows
the Enable signal to be stable before the rising edge of the
clock thus avoiding glitching when used to gate the clock.
The Enable signal generated for each respective core is used
to enable three different components. When a core’s Enable
is active (high), the TMS control signal is read by the core’s
TAP controller, the core’s P1500 wrapper and the core is
clocked allowing it to read data from the WSI and TAM-in.
Moreover, the tri-state buffer is enabled, thereby allowing
the core to write to the WSO and TAM-out. When Enable
is deactivated (low) all these components are deactivated,
thus allowing other cores on the same TAM bus to use the
bus. Cores tested by a full BIST scheme may not be dis-
abled such that their test be executed as quickly as possible,
though their TAP controller, P1500, and tri-state buffer may
still be deactivated. Test power considerations may how-
ever require that BISTed cores be disabled at times as well.
Fig.4 illustrates what we refer to as a single branch TDM-
TAM with multiple cores, where a branch includes the one-
bit wide TMS, a one or more bit-wide TAM-in bus (to ac-
commodate at least the WSI signal) and a one or more bit-
wide TAM-out bus. Hence, the minimum data line width of
a branch is three. Each branch also includes a global Clock
and Reset signals. All the cores connected to a branch have
a local TDM-TAP controller and associated logic, and a tri-
state buffer, and all the cores share the TMS, Clock, Reset,
TAM-in, and TAM-out lines.

Different SoCs can have different number of TDM-TAM
branches. The case where all the cores are connected to the
same branch constitutes the simplest, single-branch case il-
lustrated in Fig. 4. The other extreme is to have as many
branches as there are cores on the SoC, with each core con-

P1500

Core

TMS

TDM
TAP Controller

Reset

Clock

TAM-in

WSI

TAM-
out

WSO
WCK

Enable WRSTN

P1500

Core

TDM
TAP Controller

TAM-in

WSI

TAM-
out

WSO
WCK

Enable WRSTN

Figure 4. Single Branch TDM-TAM.

nected to its own private branch.

2.1 Timing Model

In this section, a model for test time for the TDM-TAM
is developed. A core’s test time tc (in clock cycles) is deter-
mined by the scan-in cycles, si, the scan-out cycles, so, and
the number of test patterns, p. according to the following
equation [5].

tc = {1 + max(si, so)} ∗ p + min(si, so) (1)

To refine the test time model, we consider the time re-
quired to send instructions to the wrapper and required to
put the wrapper in test mode, as well as the time required for
loading/capturing a signature (if required). We assume that
the cores are tested using either test patterns provided ex-
ternally via the TAM, or using patterns generated and eval-
uated within the core, i.e., using a form of built-in self test
(BIST). For BISTed cores, the TAM is assumed to be used
only to send a form of “start BIST” instruction, and to sub-
sequently communicate a BIST result, e.g., signature. The
cores that are not BISTed require not only test instructions
but test pattern data to also be sent via the TAM. Based on
the latter observations, we define two parameters for each
core: tI and tD. tI is the portion of the core test time dur-
ing which the core does not need to control or use the TAM,
and is therefore independent of the mask assignment, e.g.,
the time a BISTed core requires for the BIST test patterns
to be generated, applied and evaluated. tD is the part of a
core’s test time that requires the control/use of the TAM and
which is therefore dependent on the mask assignment, e.g.,
the time required to send a specific test instruction to a core.

Let the SoC design consist of NC cores and NB

branches, and assume that core j, 1 ≤ j ≤ NC is assigned
to branch k, 1 ≤ k ≤ NB . The tI portion of the test time
of core j, tIj

, does not depend on the mask assignment.
Hence the core-branch connections do not affect this part of
the core test time. On the other hand, the tD portion of the
core test times depend on the cores’ mask assignments and
frame lengths, i.e., tDj

depends on mask assignments and
frame lengths. From the example of Fig. 1, it is obvious
that as the number of ones in a core’s mask increases, the
proportion of data from each frame used by the correspond-
ing core increases accordingly. Hence, the test time for core
j when assigned to branch k is:

Tjk = � tDj

‖maskj‖� ∗ Mk + tIj
1 (2)

where, Mk is the number of bits in a frame for branch k and
‖maskj‖ is the number of ones in the mask assigned to core
j. To illustrate, reconsider the example in Fig. 1 and assume
that core B is not BISTed and that the TAM-independent
test time is 20 cycles, while tDB

= 15. From the same
Fig., M for the bus is 4, ‖maskA‖ = ‖maskC‖ = 1
and ‖maskB‖ = 2. Core B can use two bits of every 4-
bit frames. Therefore, testing core B requires �15

2 � time
frames. In turn, this implies a total of 8*4 clock cycles
where core B is connected to the TAM bus.

Let Xij be a 0-1 variable defined as follows:

Xjk =
{

1, core j is assigned to bus k
0, else

(3)

Using Equation 2, the test time for each core can be deter-
mined such that the total test time for testing all the cores
assigned to bus k amounts to Tk = maxNC

j=1(Xjk ∗ Tjk)
since all the cores can be tested concurrently due to time
division multiplexing. Also, assuming that all the TAM
branches can be exercised simultaneously, then the total test
time amounts to T = maxNB

j=1(Tk) or

T = MaxNB
j=1(maxNC

j=1(Xjk ∗ Tjk) (4)

2.2 Area Overhead Model

Modeling area for the TDM-TAM is straightforward
since the same additional logic is required for each core.
In our area modeling, we neglect wiring area. Over-
head for each core is due to the TDM-TAP controller
and a tristate buffer. Hence, for an SoC with NC

cores, the total area overhead ATDM−TAM = NC ∗
(Abuffer + ATDM−TAP controller) where Abuffer and
ATDM−TAPcontroller correspond to the area of the buffer
and TDM-TAP controller, respectively. The TDM-TAP
controller, illustrated in Fig. 3, includes a CTAG
TAP Controller block and a Time Domain Multi-
plexer (TDM) block. Therefore, the area required
is ATDM−TAM = NC(Abuffer + ATDM−TAP) =
NC(Abuffer + ACTAG−TAP + ATDM block).

In the TDM block, there are M flip flops and M 2 ×
1 multiplexers. Therefore, ATDM block = M ∗ (AFF +
A2×1MUX), where AFF and A2×1MUX is the area of the
flip flop and multiplexer, respectively. From the above, the
area overhead for the scheme, neglecting wiring area, can
be expressed as follows:

A = NC(Abuffer + ACTAG−TAP + ATDM block) (5)

Estimates of actual area for the constituent blocks ap-
pear in Table 2.2 (for a 0.18µm CMOS technology).From
Equation 5, the area overhead is proportional to the num-
ber of cores in the SoC and proportional to the length of
the data frames, M (also corresponding to the number of
bits required to encode the mask associated with each core).
As the frame length increases, the area overhead increases.

1�.� denotes rounding to the closest larger integer

Table 1. Area Estimates for TDM-TAM Con-
troller Block
Circuit Area(µm2) Description
Buffer 37 tri-state buffer
CTAG-TAP 1142 CTAG TAP controller
FF+MUX 123 Flip Flop+2 × 1 MuX

However, test time will generally decrease with increased
frame length, thereby resulting in a usual tradeoff between
area and test time.

2.3 Dynamic Masking

The preceding discussion includes an underlying as-
sumption that the mask associated with each core is hard-
wired prior to fabrication by making appropriate ground
and power-line connections. However, it is possible to im-
plement the scheme such that the masks be programmed at
arbitrary times post-fabrication. We refer to this scenario
as Dynamic Masking. Dynamic Masking can be realized at
the expense of little additional logic over that required for
the Static case. Dynamic masking offers many potential ad-
vantages, primarily that of flexibility allowing for better and
more effective post fabrication test resource optimization.

One example of an advantage offered by dynamic mask-
ing is that of increased core diagnostics, deemed necessary
only post fabrication and possibly subsequently to an initial
test phase. For example, a given core under test may require
further diagnosability. This may be achieved a posteriori by
modifying the core’s mask to allow for more test data to
reach and leave the core per given test time. Also, dynamic
masking can accommodate test data/pattern alterations that
occur post fabrication and therefore allowing for better test
resource optimization, e.g., test time minimization, subse-
quently to such changes and fabrication. Dynamic masking
can also be exploited to modify the mask assignments to ac-
commodate different core test times/data requirements for
cores connected on the same or different branches. Finally,
power dissipation, coupling, and other noise or performance
related post-fabrication effects, can be more easily handled
by virtue of the versatility introduced by dynamic masking.

Dynamic masking can be implemented by adding a new
state in the TDM TAP Controller that controls the shift-
ing in of a mask into the flip flop chain of the Time Do-
main Multiplexer Block in Fig. 3. Note that for realizing
dynamic masking, the only additional logic required in the
Time Domain Multiplexer Block is a multiplexer. This
multiplexer needs to be controlled by the TAP Controller
to select between the WSI (for shifting in a new mask) and
the feedback signal (for normal operation).

3 Optimization

In Section 2, we described the basic concept of TDM-
TAM, as well as a developed a test time model and a model
for area overhead. One of the most important issues associ-
ated with TAM architectures is SoC test time minimization.
This section focuses on this issue assuming that core de-

Table 2. U226 from ITC SoC’02 Benchmarks
No. of No. of No. of Scan TAM

Core primary test scan chain use
I/Os patterns chains lengths

1, 2, 3 2/1 1363968 0 - n
4, 5, 6 3/17 2666 0 - y

7 97/64 76 20 52 y
8 34/32 1048576 0 - n
9 17/10 15 0 - y

signs and their test requirements are fixed, i.e., we focus on
the optimal assignment of cores to test buses and the opti-
mal assignment of masks to individual cores assuming the
TDM-TAM architecture.

More specifically, we address the following problems:
Mask Assignment: assuming an SoC using the TDM-TAM
scheme, assuming NC cores assigned to NB branches, de-
termine the optimal mask assignment for each of the NC

cores; and Core-Branch Pairings: assuming an SoC using
the TDM-TAM scheme, assuming a total of NC cores hav-
ing to be assigned to NB branches, determine the optimal
core-branch pairing for each core. These problems are in
fact revised problems from earlier TAM optimization works
[3] where the objectives are to find the optimum configura-
tion, for a specific TAM, [8], to achieve a minimum test
time. In our special TDM-TAM, the problem is not only
(1), finding the best assignment of cores to buses, but also
(2) finding the best mask assignments for each of the cores.

Toward solving the aforementioned optimization prob-
lems, here we used a Genetic Algorithm (GA)-based
method. Our program requires the following information as
input: number of cores, number of branches, the test strat-
egy for each core and whether any functional (non-scan)
test patterns need to be applied, the number and length of
the core scan chains, and the number of core input/outputs.
Our program outputs an optimal branch configuration and
core mask assignments.

Example 1: Consider the U226 SoC benchmark from
the ITC’02 SoC test benchmarks [2]. The characteristics
of this benchmark are reported in Table 2. We assume a
TDM-TAM design for this SoC and the application of our
optimization program to find the optimal parameters for
the TDM-TAM. We assume two branches with minimum
width, i.e., NB = 2, and the number of bits/frame to be
sixteen in both cases, i.e., M1 = M2 = 16. As five of the
nine constituent cores are assumed to be connected to the
TAM for this benchmark, the problem is optimally assign-
ing these five cores to two branches and making optimal
mask assignments for each of the cores. Applying our op-
timization program yields the assignment of cores 4, 5 and
9 to a first branch, and cores 6 and 7 to the second, as illus-
trated in Fig. 5 (a). For the first branch, the optimal mask
assignment is such that ‖mask4‖ = ‖mask5‖ = 7 bits,
and ‖mask9‖ = 2 bits, while those for the second branch
are such that ‖mask6‖ = 6 bits and ‖mask7‖ = 10 bits.
This configuration and assignment yields a total test time

core 4

mask(7)

1111111000000000

core 9

mask(2)

000000000000011

mask(7)

core 5

TAM-in 1

TAM-in 2

TAM-out 1

TAM-out 2

core 6

mask(6)

1111110000000000

core 7

mask(10)

0000000111111100

0000001111111111

core 6

mask(6)

1111110000000000

core 9

mask(1)

000000000000001

mask(9)

core 7

TAM-in 1

TAM-in 2

TAM-out 1

TAM-out 2

0000001111111110

(a)

core 4

mask(8)

1111111100000000

core 5

mask(8)

0000000011111111

(b)
Figure 5. Optimal configurations for SoC U266
assuming two branches, for total effective TDM-
TAM width of (a) 2 and (b) 3.

of 140160 cycles. This test time results for the case where
the branches are both of minimal width, i.e., such that each
TAM branch consists of only one available data line and
hence the total effective TDM-TAM width = 2. (Note that
we define the total effective TDM-TAM width as the total
number of input/output TAM lines excluding the necessary
control lines like TMS, Clock and Reset.) However, when
the total effective TDM-TAM width = 3 the optimal config-
uration differs. For a total effective TDM-TAM width = 3
, the optimal configuration is as illustrated in Fig. 5 (b),
i.e., branch one is attributed an effective width of one bit
(minimal width), with cores 4 and 5 are assigned to it and
such that ‖mask4‖ = ‖mask5‖ = 8; while branch two
is attributed an effective width of two bits, with cores 6,
7 and 9 are assigned to it and such that ‖mask6 = 6‖,
‖mask7‖ = 10 and ‖mask9‖ = 2. The total test time
for this configuration amounts to 95984 cycles. In Fig. 6,
the total test time (cycles) versus total effective TDM-TAM
width, assuming two-branch configurations is reported for
benchmark U226.

4 Case Study

To evaluate the effectiveness and tradeoffs associated
with the proposed TDM-TAM, a network processor engine
(NPE) design was developed and used as a target test ve-
hicle. Our NPE is an OSI Layer 3 device that forwards
IPv4 packets [6]. The NPE’s major blocks include a pre-

2 3 4 5 6 7 8
0

5

10

15
x 10

4 Test Time vs. Width for U226

Width (bits)

T
ot

al
 T

es
t T

im
e

Figure 6. Benchmark U226: Test time (cycles) vs.
total effective TDM-TAM width, NB = 2.

processing unit, a classifier, an embedded processor, several
post-processing units, and various memory components.

In regards to the core-level test methodology, a full-
scan test methodology is assumed for the preprocessing and
the post-processing units. To emulate a heterogeneous test
methodology environment, the classifier and embedded pro-
cessor blocks are assumed to be tested using a logic BIST
methodology. The logic BIST uses a 32-bit linear feedback
shift register (LFSR) to generate pseudo-random test vec-
tors and uses a signature analyzer to compact the test result.
The memory modules use memory BIST that runs a March-
ing C algorithm. All the blocks and the associated test struc-
tures are encapsulated with P1500-compliant wrappers [1].

As illustrated in Fig. 7, we compared three different
TAM architectures using the NPE as a target design. A first
TAM that we investigated in our comparison, referred to
as Serial P1500, leverages the new P1500-compliant wrap-
pers. The proposed P1500 standard architecture resembles
the STD 1149.1 Test Access Port and Boundary Scan archi-
tecture. The second TAM that we included in our compari-
son is NIMA [9]. The basis of NIMA is the establishment of
indirect digital communication paths between cores through
the use of a packet-switching connections. In our specific
case, we use the on-chip network for test purposes. Finally,
the third TAM used in our comparison is the TDM-TAM.

Network
N

Serial P1500 NIMA TDM-TAM

Figure 7. TAM architectures (in comparison).
We derived specific test time and area overhead models

for the TDM-TAM when the latter is applied to the NPE de-
sign described above. For test time, we derived expressions
that depend on a core’s test methodology, i.e., whether full
scan or BIST. For BISTed cores, we assume that a given
set of instructions are required to initiate and complete the
BIST while the actual test (application of test patterns and

Table 3. Overhead area comparison.
TAM Type Overhead Area

µm2 %
TDM (with 16 bits mask) 18882 0.75
TDM (with 32 bits mask) 30690 1.22

NIMA 1343236 53.3
Serial 5041 0.2

signature generation) can proceed independently from the
specific TAM architecture. Hence, for a BISTed core, td
is the time required to send the BIST instructions while
ti is the core test time. Cores tested using a full-scan test
methodology must use the TAM throughout the entire test
session. Hence, ti = 0 for such cores and td is the time
to send all the test patterns, run the test and get the result.
For the area overhead associated with TDM-TAM when ap-
plied to our NPE, we used the area model described in Sec-
tion 2.2. Results for the frame lengths of 16 and 32 are
reported in Table 3, assuming the NPE design implemented
in a .18µm CMOS technology. The area overhead for dif-
ferent TAMs are compared in Table 3. The serial TAM has
the minimum area overhead, and that for TDM is very close,
while the test time for TDM is much shorter than that of the
serial TAM. The area overhead for the NIMA is very large.

For the test time, the three TAMs were compared for six
different scenarios with each new scenario corresponding
to an increased number of cores tested using a full scan test
methodology, thereby corresponding to increased test data
volumes for each new scenario. Fig. 8 illustrates the total
test time (measured in clock cycles) required for testing the
NPE assuming full-scan DFT for NIMA and TDM of dif-
ferent widths (from 2 bit to 5 bits) and the serial TAM. The
horizontal axis indicates the total test data (in bits) trans-
ferred. The BIST execution time is approximately 530,000
cycles for all six scenarios, and it is chosen as the threshold
for total test time. From Fig. 8, it is obvious that the serial
TAM has the worst test time and TDM with width 5 has the
minimum test time. The test time of NIMA is very close to
that of the TDM, but the area overhead for NIMA is much
larger than for TDM-TAM.

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.5

1

1.5

2

2.5

3
x 10

6

Total bits transferred

T
es

tin
g

tim
e(

cy
cl

es
)

Serial TAM
NIMA
TDM

width=2

width=3

width=4

width=5
scenario 1

scenario 2

scenario 3

scenario 4

scenario 5

scenario 6

Figure 8. Test Time for Serial, NIMA, and TDM

5 Conclusion
We proposed a new bus-based TAM which is scalable

and that compares favorably to other proposed TAMs in
terms of test time and area requirements. The proposed
TAM uses the concept of time domain multiplexing (TDM)
to effectively reduce TAM area requirements while still
achieving good test time performance. This is possible by
making optimal assignments of cores to buses and optimal
assignment of time slots in the time domain multiplexing
scheme. We illustrated the use of a genetic algorithm-based
methodology to achieve such optimal assignments. We pre-
sented test time and area requirement models for our TDM-
TAM.

TDM-TAM not only generally offers excellent time and
area performance, but can also be implemented to enable
optimal reconfiguration of test resources post fabrication us-
ing dynamic masking. This feature is particularly attractive
for addressing test requirements that cannot be anticipated
pre fabrication, for example in cases requiring increased di-
agnostics due to one or more faulty cores on an SoC. We
implemented the TDM-TAM on a network processor engine
design, and compared area and test time of TDM-TAM to
other proposed TAMs. We illustrated how TDM-TAM of-
fers an attractive alternative to such TAMs, because of its
smaller area requirements and comparatively smaller test
time.
References

[1] IEEE P1500 web site. http://grouper.ieee.org/groups/p1500/.
[2] ITC’02 SoC Test Benchmarks.

http://www.extra.research.philips.com/itc02socbenchm/.
[3] Z. Ebadi and A. Ivanov. Design of an optimal test access

architecture using genetic algorithm. In Proc. of Asian Test
Symposium, pages 205–210, 2001.

[4] I. Ghosh, N. Jha, and S. Dey. A low overhead design for
testability and test generation technique for core-based sys-
tems. In Proc. of International Test Conference, pages 50–
59, 1999.

[5] S. Goel and E. Marinissen. TAM architecture and thier im-
plication on test application time. In Proc. of International
workshop on Test Embedded Core-based Systems, pages 3.3–
1–10, 2001.

[6] L. Hong, M. Nahvi, R. Fung, A. Ivanov, and R. Saleh.
Novel test methodologies for soc/ip design implementation
and comparison. In Proc. of IEEE International Workshop
on System-on-Chip for Real-Time Applications, 2002.

[7] L.Whetsel. An IEEE 1149.1 based test access architecture
for ic with embedded cores. In Proc. of International Test
Conference, pages 69–78, 1997.

[8] E. Marinissen. A structures and scalable mechanism for test
access to embedded reusable cores. In Proc. of International
Test Conference, pages 284–293, 1998.

[9] M. Nahvi and A. Ivanov. A packet switching
communication-based test access mechanism for sys-
tem chips. In Proc. of European Test Workshop, pages
81–86, 2001.

[10] N. Touba and B. Pouya. Testing embedded cores using par-
tial isolation rings. In Proc. of International Test Conference,
pages 10–16, 1997.

[11] L. Whetsel. Addressable test ports: an approach to testing
embedded cores. In Proc. of International Test Conference,
pages 1055–1064, 1999.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

