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Abstract— For wireless embedded systems, the power consump-
tion in the network interface (radio) plays a dominant role in deter-
mining battery life. In this paper, we explore transport protocol op-
timizations for reducing the energy consumption of wireless LAN
interfaces. Our work is based on the observation that, the trans-
port protocol, which implements flow control to regulate the net-
work traffic, plays a significant role in determining the workload of
the network interface. Hence, by monitoring run-time parameters
in the transport protocol, coarse-granularity idle periods, which
present the best opportunities for network interface power reduc-
tion, can be accurately identified. We further show that, by tuning
parameters in the protocol software implementation, we can shape
the activity profile of the network interface, making it more energy
efficient while remaining compliant to the TCP standard. We have
performed extensive current measurements using an experimental
testbed that consists of a Compaq iPAQ PDA with a Cisco Aironet
wireless network adapter, to validate the proposed techniques. Our
measurements indicate energy savings ranging from 28% to 69%
compared to the use of state-of-the-art MAC layer power reduction
techniques, with little or no impact on performance.

I. INTRODUCTION

The widespread use of battery-driven embedded systems with wire-
less communication capabilities (e.g., PDAs, palmtop computers, cell
phones, networked sensors, etc.) has generated significant research
interest in energy efficient design techniques for such systems. Re-
searchers have shown that, in most wireless embedded systems, the
communication subsystem (the network interface card or radio), ac-
counts for a large portion of the system’s total energy consumption [1],
[2]. Hence, energy efficiency needs to be addressed in the network
protocols, in addition to the design of the hardware and software that
implement them. In this work, we focus on the optimization of the
transport protocol for energy efficiency, by adapting it to judiciously
regulate the operation of the network interface.

The significance of network interface power consumption has led to
the development of network interface cards with the ability to work in
different power modes, e.g., receive mode, transmit mode, idle mode
and sleep mode, exploiting the principles of power management that
are well-known in the hardware and system design domains [3]. The
challenge in developing an effective power management strategy is to
identify the times during which the sub-system can be placed in a par-
ticular power mode, since switching between power modes incurs sig-
nificant latencies and power overheads 1. Network protocols, therefore,
must efficiently exploit the available power modes, by regulating the

1In the context of communication sub-systems, it is worth mentioning that
these overheads are even higher than in computation sub-systems, since the
wireless client may need to re-associate with the network for continued service.
For example, the wake-up time of a Cisco Aironet wireless LAN card is almost
twice the wake-up time for an Intel StrongARM SA-1110 processor.

operation of the communication sub-system based on the application
requirements, channel characteristics, and network conditions.

Developing an effective energy reduction strategy for network inter-
faces requires us to examine their workload, which is determined by
the network protocols that regulate the overall traffic flow. Knowledge
that is commonly available at each layer of the protocol stack can be
used to identify periods in which the network interface can be placed in
each power mode, resulting in significantly higher energy savings than
conventional approaches. Here, we note that a trade-off exists between
awareness of the application-generated workload, and knowledge of
channel conditions. The higher layers of the protocol stack have full
control of the workload of the network adapter, but as we move down
the protocol stack, the availability of more refined information about
the channel status (received signal strength, number of corrupted pack-
ets, etc.) comes at the cost of greater uncertainty about how the channel
is going to be used in the long term. Most work on low power proto-
cols has been at the medium access control (MAC) sub-layer. While the
MAC protocol is directly exposed to channel variations, it has relatively
little application visibility. For example, according to the IEEE 802.11
standard protocol for wireless local area networks (LANs), the network
interface card can transition into a low power sleep mode. However,
the card has to be periodically awakened to check whether outstanding
packets for the client are buffered at the access point [4], independent
of whether such packets are actually present, potentially leading to un-
necessary and significant energy overheads.

In this paper, we consider transport protocol optimizations to in-
crease energy efficiency, specifically focusing on the popular Internet
protocol TCP. Power saving mechanisms at the transport layer have the
advantage of being application-independent, and as most network ap-
plications run on top of TCP, the optimization of its energy efficiency
allows a large range of applications to make an energy-aware use of the
network interface. Note that, modifying the applications themselves to
be power-efficient is another alternative, albeit much less applicable,
since such an approach would require modifications of widely used
legacy applications (telnet and FTP clients, web browsers, streaming
media players, etc.).

Based on an extensive analysis of TCP buffering and flow control
mechanisms, we have observed that energy saving measures targeting
a specific traffic profile can be triggered easily by automatically mon-
itoring various statistics related to the TCP send and receive buffers.
Further, we show that tuning knobs provided in the protocol’s software
implementation allows us to regulate the activity profile of the network
interface, making it more suitable for energy reduction. We exploit
in-built signaling mechanisms of TCP, such as window advertisement
and silly window syndrome (SWS) avoidance [5], to identify scenar-
ios where low power modes can be triggered with minimal overheads.
We study the impact of varying relevant TCP parameters on energy
efficiency and performance. These tradeoffs are exploited to increase
the energy savings obtained, with reduced performance penalty, while
remaining compliant to the TCP standard.

The energy savings provided by our technique range from 28% to
69% compared to the use of state-of-the-art MAC layer power man-
agement policies, with very little performance degradation. All results
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come from actual current measurements performed on an experimen-
tal testbed that consists of a Compaq iPAQ H3800 PDA running the
Linux OS [6], connected to a wireless LAN through a Cisco Aironet
350 adapter.

The rest of this paper is structured as follows. Section II discusses
previous work in the area of low power protocols. Section III dis-
cusses the proposed transport protocol energy optimization strategy.
Section IV details the experiments performed to validate the proposed
techniques, and discusses the results and tradeoffs obtained.

II. RELATED WORK

Protocol optimizations for low power embedded systems have been
proposed for different layers of the communication protocol stack [7].
At the physical layer, energy efficiency can be achieved by choosing ap-
propriate modulation, coding, and transmission power control schemes,
based on the channel characteristics [8], [9]. Several options have also
been presented for energy efficient media access control (MAC) pro-
tocol design [10]. At the network layer, attempts have been made to
develop low power, scalable, and fault-tolerant routing algorithms, and
to enable longer network survivability [11], [12].

As we move to the upper (transport and higher) layers of the proto-
col stack, innovative protocols can be designed to exploit application-
specific information and reduce power usage [13]. Using application-
specific information, it becomes easier to identify or predict periods of
zero workload (idle periods) with respect to the channel utilization in
order to shut down the network interface. These idle periods can be
forced by traffic shaping techniques [14] or application-level buffering
policies [15], or predicted [16].

Our work targets the transport layer of the protocol stack, and deals
with the energy efficiency of TCP, the reliable end-to-end communi-
cation protocol. Most of the optimizations reported in the literature
attempt to enhance TCP for performance [17], [18]. In particular, TCP
exhibits very poor performance in a wireless scenario, because it im-
plicitly assumes that all losses are due to congestion and reduces the
sender window size accordingly. Since such a policy ignores the ef-
fects of the error-prone wireless channel, it may inefficiently reduce
throughput in the presence of non-congestion-related errors [19]. Tech-
niques such as Indirect-TCP [20] have been proposed to deal with this
problem [17].

The use of TCP on battery-driven systems has led researchers to in-
vestigate further optimizations for energy efficiency. An early study on
this topic [21] showed that the energy characteristics of TCP signifi-
cantly depend on the error correlations and, unlike throughput, on the
particular TCP implementation (e.g., Tahoe, Reno, NewReno, Vegas).
Since then, a number of suggestions have been documented to improve
the energy efficiency of TCP [14], which include:
• The power-constrained side of a TCP connection (the wireless termi-
nal) can be made simpler, by transferring functionality such as timers
and state to the other side [22]. This optimization targets the processor
energy expended in executing the TCP implementation.
• TCP can be made aware of non-congestion-related losses, improv-
ing both performance and energy. Techniques used for this purpose are
local re-transmissions, split connections, and additional forward error
correction. In this work, we assume that such well-known techniques
are already implemented, and investigate further optimizations for en-
ergy reduction.
• TCP can also be used to make the sender transmit in a predictable
manner [23]. By making the sender transmit data in bursts with suffi-
cient separation to one another, the receiver is provided the opportunity
to sleep in the idle periods.

Tuning TCP’s parameters is the most straightforward way to improve
its efficiency. The default parameters of TCP have been consciously
designed to sacrifice throughput, in exchange for fair sharing of band-
width on congested networks. One of the most critical parameters is
certainly the TCP buffer size, and techniques for determining the opti-
mal size for performance are reported in [24]. The TCP buffer size can
also be dynamically adjusted to the connection and server characteris-
tics [25], [26].

The goal of this work is to show that the TCP buffering mecha-
nisms can be exploited to significantly increase energy efficiency of
the transport layer with minimum performance overheads. The energy
savings obtained are over and above those possible using MAC layer
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Fig. 1. Buffer occupancy for an FTP download to FLASH memory

techniques, and the proposed techniques can result in beneficial energy
vs. performance trade-offs.

III. LOW-POWER TCP BUFFERING

We target the receiver side of a TCP connection, and make the
assumption of a single application scenario for the ease of explana-
tion. By monitoring the TCP receive buffer occupancy or utilization,
we want to identify periods of inactivity so that the network interface
card can be sent into a low power mode. Unlike lower-layer (e.g.,
MAC layer) techniques, we are looking for coarse-grained opportuni-
ties, where the network interface does not need to periodically wake up
to synchronize with the access point or base station.

The idea to exploit TCP-generated idle periods for network interface
shutdown is already present in [14]. However, the authors claim they
get idle periods of the order of the round trip time (RTT), but in real
scenarios this idle period is often too small to make the network adapter
switch to sleep mode. For example, with a Cisco Aironet 350 card, we
noticed a wake-up time of about 300 ms. This is mainly due to re-
association with the LAN, which is quite time consuming. Such an
overhead prevents us from shutting down the card when the available
sleep time is less than 300 ms (even if we neglect the time overhead to
switch off the card), and the RTT is very often not that high.

Our approach is complementary, since we identify or somehow gen-
erate TCP idle periods with a much higher granularity than the RTT.
In particular, there are two relevant cases wherein TCP experiences
coarse-grained inactivity: when the buffer is full and when the buffer
is empty. It bears mentioning that the TCP optimizations that target
these two conditions are fairly orthogonal, and complement each other
in the sense that they are typically useful for applications with different
characteristics (bulk download oriented vs. interactive).

A. TCP receive buffer full

To demonstrate the TCP buffer full condition, we report in Fig. 1 the
TCP receive buffer occupancy at the client, during an FTP download
to the FLASH memory of an iPAQ handheld device. The iPAQ runs
the Linux (Familiar Distribution) operating system, which contains an
implementation of TCP that we subsequently refer to as linuxTCP.

Writing a FLASH memory is a slow operation, mainly because of
the cell erasure overhead: the Linux garbage collector thread, that is in
charge of this task, on average takes 70% of the FTP transfer execution
time. This explains why the average buffer occupancy is very high: the
application is very slow in reading data out of the TCP receive buffer
with respect to the available network bandwidth, and this causes the
buffer to be frequently full. The high average buffer occupancy during
the socket lifetime is typical of download oriented applications such as
FTP to a FLASH file system, or TCP-based streaming multimedia [27].
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Fig. 2. Buffer occupancy profile for FTP with our low-power TCP
implementation

It is important to note that TCP provides a mechanism that pre-
vents the receive buffer from overflowing. The receiver advertises a
receive window by piggy-backing this information onto acknowledg-
ment (ACK) packets it transmits to the sender. The sender also esti-
mates the amount of data that can “live” in the network. The number of
bytes transmitted by the sender against receipt of an ACK is computed
as

txbyte = min(rxwnd, cwnd);

where rxwnd is the receive window advertised by the receiver (in-
dicating the buffer space availability), and cwnd is the contention win-
dow (the sender’s estimation of the amount of data that the network can
sustain without causing congestion).

When the receive buffer is full, the receiver side of a TCP connec-
tion advertises a zero window, thus preventing further transmissions at
the sender side. As the application reads data out of the receiver buffer,
the window becomes non-zero, but it is not immediately advertised to
avoid the “silly window syndrome” (SWS) [5]. In fact, the receiver has
to wait until its window has considerably increased, to prevent the in-
efficient exchange of small amounts of data across the connection (in-
stead of full-sized segments). The normal algorithm is for the receiver
to advertise a larger window only when the window can be increased by
either one full-sized segment or by one-half the receiver’s buffer space,
whichever is smaller [5].

We propose to exploit this built-in client-driven flow control mecha-
nism for energy reduction: the network interface card can be completely
switched off between the zero and non-zero window advertisements, as
TCP itself ensures that the server will not transmit any packets during
that time. Further, we view the buffer occupancy threshold when a non-
zero window is advertised (immediately following a zero window) as a
tunable parameter, and consider the default value adopted by linuxTCP
as an upper bound. The lower bound is zero buffer occupancy, i.e., the
case wherein the card is recovered from sleep state only when the buffer
is completely drained by the application.

By using the aforementioned aggressive approach, we get the new
profile for buffer occupancy that is shown in Fig. 2. We clearly see
the effect of shutting down the network adapter when the buffer is full:
the buffer is progressively emptied at a rate which is affected by the
application speed (e.g., processing overhead) and operating system de-
lays (e.g., scheduling). On the other hand, buffer fill-up speed depends
on the relative ratio between network bandwidth and application speed.
On an average, the sleeping period between the buffer full and buffer
empty condition is of the order of seconds, which explains the signif-
icant energy savings that will be documented later in this paper. Note
that, since we exploit higher-layer protocol knowledge to avoid period-
ically waking up to contact the access point, this strategy achieves en-
ergy savings that are higher than conventional MAC layer techniques.
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Fig. 3. Buffer occupancy profile for an HTTP session

B. TCP receive buffer empty

Another idleness condition that can be exploited at the transport
layer occurs when the buffer is empty. Generally speaking, this con-
dition might be due to complete network inactivity (no open sockets),
or due to temporarily un-utilized sockets.

Power management actions have to be taken very carefully when the
TCP buffer is empty, because, even though no packets are presently
stored, they might be in transit over the network. Therefore, care has to
be taken to ensure that incoming packets are not dropped. This can be
ensured in two ways:

• The traffic can be regulated by using TCP control flow mechanisms
(e.g., by artificially advertising a zero window). This is a high-impact
approach, that can be employed whenever the vanilla protocol does not
exhibit good characteristics for energy optimization (e.g., long idle pe-
riods).
• The traffic flow can be predicted considering the status of the out-
standing TCP sockets. This approach is likely to have less impact on
the original TCP traffic, and can be used whenever the traffic profile
generated by an application can be directly exploited for energy mini-
mization with minimum performance overhead. Since TCP has built-in
mechanisms for re-transmission, any dropped packets will be automat-
ically recovered, as long as they are re-transmitted after the receiver’s
network interface is woken up.

For the buffer empty condition, we propose to take the second ap-
proach, based on traffic prediction. In fact, many applications display a
traffic profile consisting of bursts of network transfers followed by long
idle periods. This is often the case in interactive applications, such as
chat and web browsing. For example, in web browsing, since users
spend time reading a web page before clicking on a link to generate
a new HTTP request, web-pages are likely to be downloaded onto the
client terminal largely inter-spaced in time (see for example Fig. 3).

The idleness we suggest to exploit to shut down the network adapter
is not the one generated by network congestion or wireless channel
conditions, since they are often fine-grained and relatively difficult to
predict. Rather, we consider the more promising scenario that occurs
when the buffer is empty because no socket is actively using the net-
work. In other words, no packets are expected at the receiver side.
This situation is potentially detectable by TCP, and can be exploited to
switch off the card, provided we can restore it to seamlessly allow sub-
sequent network operations. The duration of time between one network
“transaction” and the next one determines the amount of energy reduc-
tion. A timeout mechanism can be efficiently employed in this context.
Therefore, the linuxTCP implementation was changed to support a new
low power feature related to the buffer empty condition, as described
next.
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B.1 Implementation

We activate a timer whenever the TCP receive buffer becomes empty.
This condition is checked after each transport layer read instruction is
completed, and when an ACK is received in response to a prior trans-
mission (both of these operations free up buffer space, and can poten-
tially result in an empty buffer). Subsequent read or write operations
can reset and re-activate the timer if they occur before it expires. Oth-
erwise, a timer handler is called that switches off the network interface
card, because we predict that the card is not likely to be used for a long
time.

In further detail, we exploit the linuxTCP tcp recvmsg function,
that transfers data from the TCP buffer to the user buffer, and is called
by the application-level read instruction on a certain socket. The length
of data to be read is passed to this transport layer routine as a param-
eter. For non-blocking sockets, the execution flow does not get out of
tcp recvmsg until all data has been read. When this happens, received
packets are acknowledged and deleted from the receive buffer. At this
point, we carry out a buffer occupancy check, and activate the card
shutdown timer if the buffer is empty. The same check is performed
after an ACK is received 2.

The card is re-activated when a new TCP packet transmission or
read operation from the TCP buffer has to be carried out. The timeout
granularity should be much higher than the granularity of time periods
between network transactions so to efficiently detect exploitable idle
periods. Should the timeout expire between two successive buffer read
operations, for example, the second one would be delayed by the card’s
wake-up time.

As shown later, the policy described above can provide very high
energy savings for applications that generate bursty traffic. The intro-
duced overhead, i.e., the latency associated with card switching, must
not seriously affect user-perceived performance. Another network-
related overhead may occur when, after a card shutdown, new packets
try to reach the receive buffer before the TCP read operation is sched-
uled: in this case, they cannot be received because the interface is off,
and would be re-transmitted by the server at the expiration of the re-
transmission timeout. However, this would only affect the first few
packets in each burst. Overall, these factors lead to very minimal over-
heads.

IV. EXPERIMENTAL RESULTS

The experimental testbed used to validate the proposed protocol op-
timization policies consists of a Compaq iPAQ H3800 PDA, provided
with network connectivity by means of a Cisco Aironet 350 wireless
LAN adapter. A PC card extender from Sycard Inc. is used to mea-
sure the current drawn by the network interface: a 1 ohm resistor is
placed in series with the card’s power supply, and a data acquisition
board samples the current flowing through the resistor, allowing soft-
ware processing by means of Labview from National Instruments Inc.
The Linux Familiar Distribution (Linux 2.4) [6] runs on the iPAQ.

We compare the energy and performance of the proposed optimized
TCP (lpTCP) against the TCP implementation in the Linux distribution
(linuxTCP). To compare the utility of the proposed techniques in the
presence of MAC layer power reduction, the experiments have been
performed using the three in-built MAC layer power management poli-
cies of the Cisco Aironet network interface card:
• CAM (Constantly awake Mode): The client adapter is kept contin-
uously powered up, so as to have little lag in the message response
time. This approach consumes the most power but offers the highest
throughput.
• PSP (Power Save Polling): The access point buffers incoming mes-
sages for the client adapter, which wakes up periodically to retrieve
them. The energy consumption is minimized at the cost of low through-
put. This approach is recommended for battery-constrained devices.
• PSPCAM: The card switches between PSP and CAM modes, de-
pending on the network traffic. This mode switches to CAM when re-
trieving a large number of packets, and switches back to PSP after the
packets have been retrieved. This is an intermediate approach between
CAM and PSP, from the energy-performance trade-off viewpoint.

2We cannot trigger the timer immediately after a packet transmission, because
TCP is waiting for the corresponding ACK.
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Fig. 4. Energy savings of the proposed lpTCP compared to Linux TCP

A. Card shutdown at buffer full

We implemented the dynamic card shutdown policy, triggered when
the TCP receive buffer is full. The silly window syndrome avoidance
mechanism in linuxTCP was changed, so that a non-zero window is
advertised when the buffer has been emptied up to a certain (wake-
up) threshold. This threshold can be considered a tunable parameter
of the lpTCP implementation. Between the zero and non-zero window
advertisements, when the sender is not supposed to transmit packets,
the network adapter is completely shut down.

We execute a FTP transfer of a 600 kByte file from a wired server
on the Ethernet LAN onto the wireless client, which is connected to the
network through a wireless access point. We repeated the download 25
times (to eliminate spurious network and OS related variations), and
present the average energy and execution time measurements to evalu-
ate the performance of our technique.

A.1 Energy savings from buffer full: lpTCP vs. linuxTCP

Fig. 4 shows a comparison between the energy consumed by the pro-
posed lpTCP implementation (with the wake-up threshold set to one
fourth of the buffer size), with respect to the original linuxTCP imple-
mentation. As expected, in CAM mode, lpTCP achieves the highest
energy savings (almost 70%), because we put the card to sleep for pe-
riods of the order of seconds instead of keeping it in idle mode. The
large granularity idle periods are obtained by tuning the card wake-up
threshold, and hence by regulating the TCP traffic, to best exploit the
low power features of the card.

In PSPCAM mode, our technique still provides energy savings as
large as 55%. During periods of inactivity, PSPCAM switches the card
to sleep mode, but wakes it up periodically to have buffered packets at
the access point forwarded. Our technique relies on the fact that this
synchronization overhead is not necessary given the client-controlled
nature of the SWS mechanism: while the TCP receive buffer is being
emptied, no packets are expected to be buffered at the access point.

Finally, our approach exhibits 35% energy savings when PSP is ac-
tivated. This case leads to the least energy savings for our techniques,
since the effective network throughput is reduced, and the buffer full
condition occurs fewer times than in the case of CAM or PSPCAM.
Moreover, PSP itself spends a lot of time in sleep state, resulting in
an already low energy dissipation. However, even in PSP mode, lpTCP
demonstrates a sizeable energy improvement, due to the better exploita-
tion of coarse-grained idle periods when there is no need to poll the
access point for buffered packets (since the server has been prevented
from transmitting).

A.2 Impact of wake-up threshold

Fig. 5 plots the average energy consumed by the network adapter as a
function of the card wake-up threshold (under the default buffer size of
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Fig. 5. Energy consumed by the network adapter for a FTP transfer as
a function of the wake-up threshold

64 kBytes). From Fig. 5 we observe that a zero wake-up threshold is not
the most efficient solution, because in this case, the network interface
is restored only when the buffer is drained. At that time, the application
expects to read more data from the buffer, but the reading process has
to be suspended by the OS while the card is restored, an ACK with
a non zero-window is sent to the server, and finally new packets are
received and delivered to the application. For most of this period, the
card is active, and this partially depletes the energy savings obtained by
switching off the card.

On the other hand, if the threshold is set very high, a large number
of power mode transitions take place at the network adapter, and the
available sleep periods are very small (tens of milliseconds). This ex-
plains the increase in energy dissipation. The optimal threshold for the
considered application lies in between, where some buffer-empty over-
heads can be tolerated in order to have sleeping periods long enough to
shut down the card. This minimum energy point shifts to the left as we
move from CAM to more aggressive MAC layer power reduction. This
is due to the fact that PSP and PSPCAM reduce the throughput, par-
tially hiding the application-network speed gap that causes the buffer
full condition. This means that the buffer full condition occurs fewer
times, and the time for which the card can sleep decreases as well.

A.3 Impact of TCP buffer size

We investigated the energy trade-off as a function of the TCP receive
buffer size. This parameter, whose default value is 64 kBytes, was
statically varied from 37,500 Bytes to 150,000 Bytes.

Fig. 6 shows the energy consumed by the same 600 kByte FTP trans-
fer as a function of the buffer size, again comparing our implementa-
tion (lpTCP) against the original Linux TCP (linuxTCP). The wake-up
threshold for lpTCP was fixed at one-fourth of the buffer size. Energy
consumed by linuxTCP is almost constant except for the left-most part
of the plot, where the application process is frequently suspended by the
OS on a buffer empty condition, resulting in a slight energy increase.

The behavior of lpTCP is similar to Fig. 5, because increasing the
buffer size causes the absolute value of the wake-up threshold to be
proportionally increased, and since a larger buffer implies that the prob-
ability of the buffer full condition decreases. Again, for small buffer
sizes, we notice an increase in energy due to frequent power mode
switches of the interface card and smaller sleeping periods. Note that
the PSPCAM curve becomes closer to CAM, because in these condi-
tions, the communication takes place through a large number of small
transfers, and this effectively prevents the card from transitioning to
sleep state in the PSPCAM case.

If we observe the differences between linuxTCP and lpTCP for any
given MAC layer policy, we note that our technique is more effective
for medium sized buffers. At very large buffer sizes, we can expect
lpTCP to behave similarly to linuxTCP, since the buffer full condition
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Fig. 7. Impact of our technique on performance, as a function of the
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will never be activated. At very small buffer sizes, in theory, it is pos-
sible that lpTCP will actually incur energy overheads due to frequent
power mode switching, very small sleep periods, and the overhead of
application wait during buffer empty. In practice, however, we did not
observe this for reasonable values of the buffer size. In Fig. 6, at the
minimum buffer size of 37,500 Bytes, lpTCP with PSP breaks even
with linuxTCP with PSP.

A.4 Performance Impact

The impact of the proposed lpTCP implementation on performance
is reported in Fig. 7 3. For each MAC layer power management mode,
the average execution time for the same FTP transfer is reported, for
both linuxTCP and lpTCP. For high wake-up thresholds, the execution
times tend to converge, because the card activation overhead is hidden
by the high value of the TCP buffer occupancy when the threshold is
crossed. While the card is coming up, the application can still rely on
a large amount of buffered data to read. On the contrary, as the wake-
up threshold becomes smaller, the remaining buffered data might not
be sufficient (depending on the application consumption rate and the
network bandwidth at card wake-up), and the application might end
up waiting for new packet arrivals. In all cases, the delay overhead

3Note that the y-axis range has been zoomed to make the small performance
variations clearly visible.
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Fig. 8. Power consumption of lpTCP vs. linuxTCP for a HTTP session.

introduced by our energy-aware implementation is at most 5.3%, which
occurs when lpTCP is used with PSP, and with zero wake-up threshold.

B. Card shutdown at buffer empty

We validated the energy optimization technique that exploits the
buffer empty condition for a web browser session on the iPAQ. An
open-source web browser, called Dillo [28], was used for our exper-
iments.

We traced a web browsing session of 25 minutes, and repeated the
access trace with lpTCP and linuxTCP as the underlying transport pro-
tocols to measure energy consumption. The sequence of web pages
was chosen to contain a mix of text oriented as well as image oriented
pages. lpTCP is expected to give maximum energy savings with text
dominated content, where the card enters sleep state immediately af-
ter a quick download, as opposed to image dominated content, where
the download operation is time-consuming and the user reads the text
while the image transfer is being completed, leaving the card awake and
active for longer periods. In the extreme case when the user starts a dif-
ferent transfer while the previous one is still in progress, the card does
not sleep at all, resulting in identical behavior for lpTCP and linuxTCP.

The power consumption results for the network interface are re-
ported in Fig. 8. The proposed lpTCP outperforms linuxTCP by al-
most 70% from an energy viewpoint in CAM mode. Fig. 8 also shows
that with aggressive MAC layer power management enabled, the en-
ergy savings still amounts to 27-28%. Furthermore, there is not much
difference between PSPCAM and PSP. This also holds for linuxTCP,
and is a consequence of the bursty traffic, which keeps the card inactive
for most of the time.

For these experiments, the timeout was fixed to 4s, but it could easily
be tailored to the user or application, by exposing it as a tunable param-
eter, or by employing a dynamic learning technique within lpTCP itself.
Finally, we noticed that the performance degradation represented by the
card switching overhead is hardly perceivable by the user, similar to the
performance results presented earlier.

V. CONCLUSIONS

The realization of energy efficient wireless embedded systems re-
quires optimization of the network protocols and their implementation,
in addition to the design of an optimized system architecture. In this
work, we have developed standards-compliant techniques for optimiz-
ing transport layer protocols, so as to enable efficient energy reduc-
tion of the network interface. We have demonstrated the proposed
concepts by implementing an energy efficient version of the Internet
transport protocol, TCP. Power measurements on a PDA with a wire-
less LAN interface indicate that the proposed techniques can lead to
significant energy savings compared to current TCP implementations.
Further, these techniques are complementary to power reduction tech-

niques implemented in lower-layer (e.g., MAC) protocols. We believe
that several popular applications (e.g., file download, web browsing,
etc.) employed on wireless handhelds can benefit from the proposed
techniques.
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