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Abstract

This paper presents an efficient methodology for estimating the
energy consumption of application programs running on extensible
processors. Extensible processors, which are increasingly popular
in embedded system design, allow a designer to customize a base
processor core through instruction set extensions. Existing proces-
sor energy macro-modeling techniques are not applicable to exten-
sible processors, since they assume that the instruction set architec-
ture as well as the underlying structural description of the micro-
architecture remain fixed.

Our solution to this problem is an energy macro-model suitably
parameterized to estimate the energy consumption of a processor
instance that incorporates any custom instruction extensions. Such
a characterization is facilitated by careful selection of macro-model
parameters/variables that can capture both the functional and struc-
tural aspects of the execution of a program on an extensible proces-
sor. Another feature of the proposed characterization flow is the use
of regression analysis to build the macro-model. Regression analy-
sis allows for in-situ characterization, thus allowing arbitrary test
programs to be used during macro-model construction.

We validate the proposed methodology by characterizing the en-
ergy consumption of a state-of-the-art extensible processor (Tensil-
ica’s Xtensa). We use the macro-model to analyze the energy con-
sumption of several benchmark applications with custom instruc-
tions. The mean absolute error in the macro-model estimates is
only ��� � %, when compared to the energy values obtained by a com-
mercial tool operating on the synthesized RTL description of the
custom processor. Our approach achieves an average speedup of
three orders of magnitude over the commercial RTL energy esti-
mator. Our experiments show that the proposed methodology also
achieves good relative accuracy, which is essential in energy opti-
mization studies.

I. INTRODUCTION

Extensible processors are increasingly sought by embedded sys-
tem designers to meet their conflicting requirements of tight perfor-
mance and power constraints, high flexibility and short turn-around
times. An extensible processor combines the high flexibility of a
general-purpose processor and the high efficiency of an application-
specific integrated circuit (ASIC) by allowing the designer to ex-
tend the instruction set of a base processor core through application-
specific (custom) instructions. Thus, extensible processors can ben-
efit embedded system design with their ability to simultaneously
tune both the underlying hardware and the application software to
meet diverse design requirements.

While commercial vendors of extensible processors, such as [1],
[2], [3], [4], do offer design tools to take extensible processors from
specification to hardware implementation, a large number of issues
remain unresolved. One such open problem is energy estimation
for extensible processors, which needs to be efficiently addressed
since low power dissipation is a pre-requisite for most embedded
systems. Note that if the extensions to the base processor instruc-
tion set architecture (ISA) have been decided already, a new energy
estimation technique is not required. This is because any existing
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processor energy estimation/power analysis framework can be used
to characterize the extended processor and estimate the energy con-
sumed by an application. However, such an approach is impractical
for use in power optimization studies done in an application-specific
instruction set processor (ASIP) design cycle, since energy charac-
terization has to be performed for every extended processor.

While existing processor energy estimation techniques are not di-
rectly applicable to the problem of efficient energy estimation for
extensible processors, they offer valuable insights that can aid in the
development of a good solution. Macro-modeling, which we adopt
in this work, is a commonly used technique in processor energy es-
timation. It formulates the energy consumed by the processor in
terms of parameters that are easily observable (say, during instruc-
tion set simulation). Two categories of processor macro-modeling
techniques have been successfully employed. Structural macro-
modeling approaches express the overall energy consumption in
terms of the energy consumption of its constituent hardware blocks,
and use the activity statistics of the hardware blocks for a given
program trace to estimate energy. Instruction-level macro-modeling
approaches, on the other hand, characterize the energy consumption
of the processor instructions using carefully constructed test pro-
grams and can use fast instruction set simulation to yield efficient
energy estimates. Thus, structural approaches offer the benefits of
high accuracy especially if they model the structure of the proces-
sor at a fine granularity, while instruction-level approaches facilitate
fast energy estimation since they do not have to be cycle-accurate or
structure-aware. In the case of extensible processors, which have a
fixed base processor core and customizable components (due to in-
struction set extensions), we hypothesize that a hybrid approach that
combines the efficiency of instruction-level approaches with the ac-
curacy of structural approaches is best suited.

A. Paper Overview and Contributions

Our methodology involves deriving a composite energy macro-
model by characterizing the energy consumed by applications with
custom instructions using (i) instruction-level parameters that cap-
ture the interplay of the dynamic execution trace of a program and
the processor micro-architecture (inclusive of pipeline stalls and
other effects, cache misses, etc.), and (ii) structural parameters that
account for the energy effect of an instruction (base/custom) on the
custom hardware. By using both instruction-level and structural pa-
rameters in the macro-model, both efficiency and accuracy can be si-
multaneously targeted. A significant feature of our macro-modeling
flow is that characterization is performed using regression macro-
modeling, which has the following advantages.	 Variables in a regression macro-model can be chosen from
instruction-level or structural domains, or both. Thus, regression
macro-modeling is naturally applicable to our hybrid formulation.	 Regression macro-modeling significantly simplifies the process
of constructing test applications or programs used in characteriza-
tion. Conventional instruction-level approaches require test pro-
grams that contain isolated instructions, selected instruction se-
quences, etc., wrapped in loops, in order to infer the average energy
consumption of a given instruction under various scenarios. How-
ever, test program construction becomes cumbersome in most cases
(for example, if test programs need to target instructions such as
branch). Regression macro-modeling, through its in-situ character-
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ization, only requires that the test programs have diversity in their
instruction statistics so as to cover the instruction space. Thus, arbi-
trary test programs can be used for regression macro-modeling.	 Construction and use of regression models are efficient, and the
tools for building a regression model are widely available.

With the energy macro-model of the extensible processor built in
the above manner, energy consumption of an application incorpo-
rating any custom instructions can simply be determined by instruc-
tion set simulation to capture instruction-level execution statistics,
and dynamic resource usage analysis to derive custom hardware ac-
tivation data needed by the macro-model. Note that energy esti-
mation with this energy macro-model does not require the custom
processor to be synthesized. Thus, our methodology is easily usable
for evaluating energy-performance trade-offs among different can-
didate custom instructions. We applied the proposed methodology
to characterize the Xtensa extensible processor core from Tensil-
ica Inc. [1]. We then used the energy macro-model of the Xtensa
processor to evaluate the energy consumption of several applica-
tions with custom instructions. Our experimental results show that
the mean absolute error in the macro-model estimates, when com-
pared to the energy values computed by a commercial tool operating
on the actual hardware description of extended processors, is only
� � � �

, while the average speedup is three orders-of-magnitude.

B. Related Work

Various techniques have been developed to estimate and optimize
power or energy consumption of hardware throughout the design
hierarchy [5], [6]. Recently, attempts have also been made for en-
ergy estimation and optimization of software running on embedded
processors. As mentioned before, these approaches can be classi-
fied, based on the macro-modeling employed, into structural and
instruction-level techniques.

Structural techniques for energy estimation of software utilize the
architectural description of the processor to collect the dynamic ac-
tivity information for each architectural block using simulation, cal-
culate the energy consumption for each component, and finally sum
them up to compute the overall energy consumption. Early work [7]
characterized the power consumption of each architectural block as
a single number. The power profiler in [8] calculates the energy
consumption of functional units based on the switching activity be-
tween consecutive cycles. Wattch [9] and SimplePower [10] esti-
mate the energy consumption at each cycle at the architecture level.
Commercial tools such as WattWatcher from Sente [11] can also
be used for energy estimation, once the RTL hardware description
of the processor and the binary image of the program become avail-
able. However, RTL simulation on a processor is extremely slow for
even small programs and methods for reducing the simulated trace
become necessary [12].

Instruction-level macro-modeling techniques compute the energy
consumption of a program based on its instruction profile. They
primarily rely on the energy consumption characterization of each
instruction of the processor and also estimate the energy consump-
tion of special cases (such as cache misses) that can occur during
the execution of a program. Characterization of each instruction
can be performed by actual current measurements for a processor
chip executing carefully created test programs [13]. The techniques
in [14] measure the instantaneous processor power to build a soft-
ware energy estimation model. The accuracy of instruction-level
modeling is improved further by the techniques in [15], [16], [17],
which are cognizant of variations due to instruction encoding, ad-
dressing mode, register fields, operands values, bit toggling on in-
ternal and external busses, etc. Since the added accuracy comes at
the cost of additional CPU time, efficiency is targeted in [16], [18]
which perform measurement only on a subset of the instructions
(for base energy) and instruction sequences (for inter-instruction ef-
fects). Measurement-based approaches are accurate because data

are acquired from an actual chip implementation. The same reason,
however, makes measurement based techniques infeasible for power
trade-off studies early in the design cycle, especially if the hardware
architecture is not fixed.

Recent work has focused on building energy/power prediction
models for very large instruction word (VLIW) and reduced in-
struction set computer (RISC) processors using statistical analysis.
Instruction-level approaches, such as [18], [19], [20], decompose
an instruction into its constituent pipeline functions (for example,
fetching and decoding, execution, load and store, write back, etc.),
and calculate the energy coefficients for these functions, while struc-
tural models such as [21] have variables corresponding to the frac-
tion of total instructions executed by each functional unit. The tech-
nique proposed in [20] examines instructions with a finer granularity
by considering, for example, instruction fetch address, instruction
bit encoding, register numbers and immediates, data values, etc.

The rest of this paper is organized as follows. Section II briefly
examines the Xtensa processor core used in this work. Section III
examines the energy macro-modeling requirements for an extensi-
ble processor. Section IV describes the proposed energy estimation
methodology. Section V presents the results of applying the pro-
posed methodology to build the energy macro-model of the Xtensa
processor core and using it to evaluate the energy consumption of
applications with different custom instructions. Section VI con-
cludes.

II. THE EXTENSIBLE XTENSA PROCESSOR

We use the extensible Xtensa processor from Tensilica [1] as
the target processor for macro-modeling and energy estimation.
Xtensa’s ISA consists of a basic set of instructions which exists in
all Xtensa implementations, plus a set of configurable and extensi-
ble options [22].

The base ISA defines approximately 80 instructions, and the ba-
sic hardware implementation of the Xtensa core is built around a
traditional five-stage RISC pipeline, with a 32-bit address space.
The configurable options include a wide range of architectural set-
tings. For example, the designer can configure the base processor to
include floating point co-processors, customize the memory/cache
architecture and register file, and set up interruption/exception
mechanisms and levels. Extensibility is achieved by specifying
application-specific functionality through custom instructions (also
called Tensilica Instruction Extension or TIE). The behavior of the
custom instructions is described using a subset of the Verilog hard-
ware description language. Custom instructions can access the
general-purpose register file of the base processor or additional cus-
tom registers/register files for their computations. They can be used
to perform complex computations, which can take multiple clock
cycles to complete. The TIE compiler processes the custom instruc-
tion specification and facilitates seamless integration of the added
custom hardware with the base processor configuration. Control
logic, such as the TIE instruction decoder, bypass logic, interlock
detection, and immediate-generation logic required by the custom
instructions are automatically generated. After the custom instruc-
tions are incorporated, a processor generator automatically gener-
ates the enhanced processor, and the corresponding software devel-
opment environment. In this way, both the hardware and software
are tuned for specific applications.

III. EXTENSIBLE PROCESSOR ENERGY MACRO-MODEL
REQUIREMENTS

In this section, we illustrate with an example the different factors
which must be considered in building an energy macro-model for
an extensible processor.
Example 1: Fig. 1(a) shows a portion of the architecture of an
extended processor, wherein the base processor datapath has been
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Fig. 1. (a) An extended processor, and (b) a snapshot of dynamic execution of a program on the processor

augmented with custom hardware needed to implement three cus-
tom instructions: ª¬«®­°¯ , ª²±/³ and ³´«/µ . Base processor arith-
metic instructions execute on the datapath portion shown with a
generic register file, an ALU, two operand buses and one result bus.
Custom instructions ª¶«®­'¯ and ª²±/³ perform their respective
functionality (multiply and multiply-accumulate) on data values off
the operand buses using shared custom hardware, while custom in-
struction ³´«/µ accesses custom registers ³/·®¸
¹�º�ºTº�¹I³/·/» for its
operands.

A snapshot of the dynamic execution of an application is cap-
tured in Fig. 1(b). Four instructions ¼�½�¹�º�º�º�¹P¼s¾ are shown in the
trace, which correspond to base processor instruction ¿�À,À and cus-
tom instructions ª¬«®­°¯ , ªÁ±®³ and ³´«/µ , respectively. For each
instruction, the top horizontal bar lists the sequence of proces-
sor events dictated by its execution. For example, instruction ¼+½ ,
which is an add instruction, executes by first reading data off the
generic register file onto the operand buses ( ·®À�·/Â�Ã ), then perform-
ing the add operation on the ALU and writing onto the result bus
( ±®­%«^¹Sª¬«ÅÄÆ» ), and writing back to the register file ( ÇÁÈ�·/Â�Ã ) af-
ter a latency of one cycle due to pipeline effects ( Ç¶¿�É�Ê ). Stalls, if
any, are also indicated in the figure.

Since the execution of an instruction can activate other portions of
the processor (side effects), the bottom bar for each instruction de-
picts the side effects in either the base processor or the custom hard-
ware. For example, the execution of the base processor instruction
¿
À,À activates custom hardware ( ËÍÌ�¹ÎÄÏ¹�ª¬«ÅÄÐÌ ) in the second cy-
cle. This occurs because the custom hardware and the ALU share
the same operand buses. Similarly, the execution of some custom
instructions ( ¼�Ñ and ¼sÒ ) can activate the base processor hardware,
while the execution of other custom instructions ( ¼ ¾ ) may be inde-
pendent of base processor hardware.

In order to compute the energy consumption of this instruction
trace, we need an energy macro-model for the extensible processor
which can (a) account for the energy consumed by a base proces-
sor (custom) instruction on the base processor (custom) hardware,
(b) model inter-instruction dependencies, pipeline effects and other
non-idealities which manifest as stalls, cache misses, etc., and (c)
capture the activation of custom (base processor) hardware by base
processor (custom) instructions.

IV. MACRO-MODELING AND ESTIMATION METHODOLOGY

In this section, we present the proposed methodology for esti-
mating the energy consumption of an application with (any) cus-

tom instruction enhancements running on an extensible processor.
Section IV-A presents an overview of our methodology, while Sec-
tion IV-B details the constituent steps.

A. Overview

Fig. 2 shows the different steps involved in performing energy
estimation for an extensible processor. The basic flow involves (a)
characterizing the energy consumption of the extensible processor
through regression macro-modeling (steps 1-8), and (b) profiling an
application with custom instruction extensions dynamically to deter-
mine the statistics associated with the macro-model variables, thus,
computing the energy consumption (steps 9-11).

Building an energy macro-model involves first selecting the ex-
tensible processor parameters on which the energy consumption of
an instruction trace depends and constructing a template that ex-
presses the energy consumption (dependent variable) as a function
of those parameters (independent variables) (step 1). We use a lin-
ear macro-model template in our analysis, since construction and
use of linear macro-models is efficient. The linear macro-model
template 1 expresses the energy consumed, Ó , as a linear function
of Ä ½ ¹PÄÔÑ�¹�ºTº�º�¹ÕÄ×Ö , which are characteristic variables of a program
running on the extensible processor. In other words,

Ó¬ØÚÙ°ÛxËÜÙx½PÄÝ½SËÜÙ Ñ Ä Ñ ËÞº�ºTº@ËßÙ Ö Ä Ö (1)

where Ù Û ¹PÙ ½ ¹�º�º�º�¹>Ù°Ö are constants called the energy coefficients.
Variables Ä ½ ¹ÕÄÔÑ�¹�º�ºTº�¹PÄàÖ are chosen from both instruction-level
and structural domains. Instruction-level parameters are employed
for characterizing instruction effects on the fixed base processor
core, while structural parameters are used to characterize instruction
effects on custom hardware due to any base or custom instructions
(see Section IV-B).

The energy coefficients in the macro-model are determined using
regression analysis (step 8). Since any test program can be used
for building the regression model, we merely ensure that the dif-
ferent instructions in the base processor ISA are covered (step 2).
The input space of custom instructions that can be added to an ex-
tensible processor ISA is, however, exponential for a given choice
of custom hardware library components. Therefore, the test pro-
gram suite also incorporates custom instructions so as to cover all

á
Note that linear macro-models require linearity in the coefficients, not in the parameters . Hence,

polynomial and other non-linear functions of macro-model parameters can be present in the template.
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Fig. 2. Extensible processor energy estimation flowchart

the custom hardware library components. Instruction set simula-
tion of a test program (step 6) and dynamic resource usage anal-
ysis (step 7) are used to determine the values of the independent
variables in the macro-model template, while energy estimation of
the test program executing on the RTL description of the proces-
sor (step 5) is used to measure the value of the dependent variable.
If the test program incorporates custom instructions, the processor
used in the above step corresponds to a custom processor that has
been augmented with the custom instructions. Note that, while cus-
tom processors are generated during characterization, they are not
needed for using the macro-model to compute application energy
consumption. Steps 3-7 are repeated for all the test programs to
gather data needed by regression macro-modeling to find estimates
of the energy co-efficients, thus completing characterization.

When the energy consumption of an application with custom in-
structions has to be estimated (step 9-11), instruction set simulation
(step 9) is first performed to gather execution statistics (values of
instruction-level macro-model variables) as well to generate the dy-
namic execution trace. Since the integration of custom hardware
(due to the custom instructions) with the processor architecture is
defined in an extensible processor design flow, we analyze the re-
source usage (step 10) of each instruction in the execution trace to
determine the activation (if any) of custom hardware. This analysis
yields the values of the structural macro-model variables. The pa-
rameter values are fed to the energy macro-model to yield the energy
consumed by the application.

B. Details

In this section, we focus on the implementation of salient steps
of our methodology. Section IV-B.1 discusses energy macro-model

template generation, while Section IV-B.2 examines macro-model
fitting using regression analysis.

B.1 Energy Macro-model Template Generation

The energy macro-model template used in our analysis is linear,
with two components as shown below.

Ó¶Ø²Ó�À Ö�ÁUÂ Ä ½s¹�º�º�º�¹PÄÄÃÆÅ�ËÜÓ Á(Ç6È�É$Ê)Â ÄÄÃ]Ë°½s¹Tº�º�º�¹PÄ Ö Å (2)

where Ó�À ÖUÁ and Ó Á(Ç'È�É)Ê are linear functions of instruction-level pa-
rameters ( Ä ½ , ºTº�º , Ä Ã ) and structural parameters ( Ä Ã]ËS½ , ºTºsº , Ä×Ö ),
respectively.

Instruction-level Macro-model Variables
The instruction-level macro-model variables are chosen to reflect

the usage of the base processor core due to either base processor
or custom instructions. In the process, we also select parameters
to consider the effect of non-ideal cases such as instruction cache
miss, data cache miss, uncached instruction fetching, data or con-
trol dependent interlocks, etc., that occur during the execution of a
program.

Equation (3) illustrates the use of instruction-level macro-model
variables to compute Ó À ÖUÁ .
Ó À Ö�ÁWØ/ÓÍÌ È À Ç6Î ºs³ÐÏ£Ñ�Ì È À Ç�Î Ë Ó�Ò ÓÅºs³ÐÏ	Ñ�Ò ÓYË ÓÔÁ�Ç)º�³ÐÏ£ÑMÁ(Ç-Ë

Ó`Õ!º�³ÐÏ£Ñ(ÕWË Ó�Ö�È Ç�×Åº�³ÐÏ£Ñ�Ö�È Ç6×WË Ó�Ö�È ÉUÇ6×!º@³ÐÏ£ÑMÖPÈ É$Ç�×�Ë
Ó À ºMØDÙnÚ À Ë ÓÍÓ!º%ØDÙnÚDÓ^Ë Ó É@ÖUÊ Ì Ê<Î%Û º%ØDÙÜÚ É@ÖUÊ Ì Ê<Î%Û Ë
Ó À ÖUÇ6Û(È Ò Ý Ê<× ºMØDÙnÚ À ÖUÇ6Û(È Ò Ý Ê<× ËÜÓ Á À Ó Û Ç À Û º�³ÐÏ£Ñ Á À Ó Û Ç À Û

(3)

wherein Ó À ÖUÁ is expressed as a linear sum of the following.	 Energy due to the base processor functionality exercised by an
instruction belonging to the base processor ISA. Experimental stud-
ies of energy profiles of processor instructions in the literature sug-
gest that instructions in the base processor ISA can be clustered
into arithmetic ( ¿�È�É�Ê<Þ ), load ( ßOÀ ), store ( àTÊ ), jump (á ), branch taken
( âTÈ Ê<ã ), and branch untaken ( âTÈ Ù5Ê<ã ) classes [13]. Macro-model
variables ³ÐÏ£Ñ�Ì È À Ç�Î ¹�º�ºTº�¹I³ÐÏ£Ñ Ö�È É$Ç�× represent the number of cycles
taken by each instruction class in the dynamic execution trace of
the program. Such a clustering is convenient (and later seen to be
accurate) since macro-model variables do not have to be separately
present for individual instructions in the base processor ISA.	 Energy due to dynamic effects manifested as instruction-cache
misses ( É ), data-cache misses ( À ), uncached instruction fetches
( ÙnäåÑT¿£ÑMÞ7Â ) and processor interlocks ( É�ä<ÊPÂsÈUß'æ$ÑMã ) [13]. Macro-
model variables ØDÙnÚ À ¹�º�º�º�¹�ØDÙnÚ À ÖUÇ6Û(È Ò Ý Ê<× denote the number of
times each non-ideal case occurs during program execution.	 Energy due to side-effects in the base processor imposed by cus-
tom instructions ( à�É1À�Â Ê-É�Â ). The macro-model variable ³ÐÏ£Ñ Á À Ó Û Ç À Û
accounts for the number of cycles taken by custom instructions
which access the generic register file for their operation.

Structural Macro-model Variables
Structural macro-model variables reflect the usage of custom

hardware due to the execution of either base processor or custom
instructions. The variables are chosen to account for the number
of cycles for which a custom hardware component is active during
the execution of a program. All the components present in the cus-
tom hardware library should, therefore, be covered by these macro-
model variables. The following considerations are made in the pro-
cess.	 For efficiency, the components in the library are classified into
several categories based on empirical studies of their average en-
ergy consumption. In the context of the custom hardware library
used by TIE instructions, we classified the basic primitives into five



categories (1) multiplier, (2) adder, subtractor and comparators, (3)
bit-wise logic, reduction logic, and multiplexers, (4) shifter, and (5)
custom registers. Additional categories correspond to specialized
modules available for TIE instructions, namely, (6) TIE mult, (7)
TIE mac, (8) TIE add, (9) TIE csa, and (10) table.	 The energy consumption of a hardware component depends sig-
nificantly on its bit-width (or the number of entries and bit-width of
each entry in the case of a table). We use C to represent the com-
plexity of a hardware module and ä Ö the bit-width. The dependence
on bit-width is linear ( ³�� ä Ö ) in the case of hardware components
such as adders, multiplexers, etc., while the dependence is quadratic
in the case of a multiplier ( ³�� ä ÑÖ ).

Equation (4) expresses the custom hardware energy consumption,
Ó Á(Ç'È�É)Ê , where macro-model variable ³ÐÏ£Ñ%À�� Õ (i = 1, 2, ..., 10) de-
notes the number of cycles in which the á th functional block be-
longing to component category É is active, and ³]À�� Õ represents the
dependency of this functional block on the bit-width (number of en-
tries).

Ó�Á(Ç6È�É$Ê%Ø/Ó ½ º �
Õ
³ ½�� Õ ³ÐÏ	Ñ ½�� Õ ËÜÓ®Ñ%º �

Õ
³WÑ � Õ ³ÐÏ£Ñ�Ñ � Õ

ËÞº�ºTº�ËÜÓ´½�ÛWº �
Õ
³Å½�Û�� Õ�³ÐÏ£Ñ�½�Û�� Õ (4)

B.2 Macro-model Fitting through Regression Analysis

Regression analysis is used to determine the energy coefficients
in the macro-model template shown in Equation (2) (with Ó À ÖUÁ and
ÓÔÁ(Ç'È�É)Ê(Ç as given in Equations (3) and (4), respectively). Test pro-
grams are used to gather both energy consumption values and exe-
cution statistics that correspond to the different macro-model vari-
ables in the equation. For a set of ä test programs, the energy
consumption data are grouped into an ä�	²Ì column vector, Ó ,
while the values corresponding to the macro-model variables are
grouped into an ä
	ß»�Ì matrix, ª . In such a case, model fitting
through regression analysis involves solving the linear matrix equa-
tion, ª�	 ³ Ø Ó , in which C is the energy coefficient vector
corresponding to [ Ó�Ì È À Ç�Î , Ó�Ò Ó , ÓÔÁ�Ç , Ó Õ , Ó ÖPÈ Ç�× , Ó ÖPÈ É$Ç�× , Ó À , Ó�Ó ,
Ó É@ÖUÊ Ì Ê<Î%Û , Ó À Ö�Ç6Û�È Ò Ý Ê(× , Ó Á À Ó Û Ç À Û , Ó ½ , ÓÅÑ , Ó!Ò , Ó ¾ , Ó
� , Ó�� , Ó
� , Ó�� ,
Ó�� , Ó ½�Û ].

In the above formulation, let �³ represent the estimate of C, and
�Ó represent the estimate of E. Solution of the matrix equation us-
ing the pseudo-inverse method [23] yields the values for the energy
coefficients vector ³ as shown in Equation (5), such that the square
error ��� Ó�� �Ó���� Ñ is minimized.

�³²Ø Â ª���	Ïª Å�� ½ 	Ïª���	ÝÓ (5)

The macro-model with these energy coefficient values best fits
the data acquired using the test programs.

V. EXPERIMENTAL RESULTS

We have implemented the proposed flow described in Section IV
using commercial tools and scripts to perform several key tasks in
the methodology. The target extensible processor used in our exper-
iments is the Xtensa processor from Tensilica [1]. The base proces-
sor is a T1040.0 version of the processor running at 187 MHz ( ¸ �kÌ�� �
technology), and the configuration includes a 32-bit multiplication
instruction, 4-way 16 KB instruction and data caches, 32-bit wide
system bus and a generic register file with 64 32-bit registers.

Characterization in our set-up proceeds as follows. The GNU-
based cross-compiler and instruction set simulator of the Xtensa
software development kit are used to cross-compile and simulate
test programs to gather execution statistics (cycle count, cache
misses, etc.) needed by the macro-model (steps 3, 6, 9 in Fig. 2).

Test programs are Tensilica benchmarks written in C, while cus-
tom instructions are written in TIE. Test programs instantiate TIE
instructions intrinsic in their description, which are cross-compiled
to generate executables for instruction set simulation. The Xtensa
processor generator is used to generate the RTL description of
the base/custom processors needed during characterization. The
RTL description is simulated with the memory images of the test
programs using ModelSim [24] to generate the simulation traces
needed by the RTL power estimator WattWatcher [11] (steps 5).
The energy values and the execution statistics thus obtained are used
by the tool Splus [25] to perform regression and derive the energy
macro-model. The results of characterization are presented in Sec-
tion V-A, while the results of applying the macro-model to evaluate
the energy consumption of different applications are presented in
Section V-B.

A. Energy Macro-model for the Xtensa Processor

The energy macro-model template for the Xtensa processor is
shown in Equation (2), with the instruction-level and structural
macro-model terms given in Equations (3) and (4), respectively.
There are 21 macro-model variables in the template, whose coef-
ficients are determined through regression analysis. Table I presents
these coefficients which indicate the per-cycle estimates of the
base processor energy consumption for each base processor instruc-
tion category ( Ó�Ì È À Ç6Î ¹�º�º�º�¹>Ó Ö�È ÉUÇ6× ), the per-miss/per-fetch/per-
interlock estimates of the energy consumptions for execution-time
effects ( Ó À ¹sº�º�º�¹>Ó À ÖUÇ6Û(È Ò Ý Ê<× ), and the per-cycle estimates of the en-
ergy consumption of the side-effects of custom instructions on the
base processor ( Ó Á À Ó Û Ç À Û ), as well as the unit energy consumption
(per-cycle, per-bit) for the different custom hardware library com-
ponents ( Ó ½ ¹sº�º�º�¹>Ó ½�Û ). The fitting errors corresponding to test pro-
grams are shown in Fig. 3. The maximum error is under 8.9%, and
the root mean square error is 3.8%.

TABLE I

ENERGY COEFFICIENTS OF THE CHARACTERIZED XTENSA PROCESSOR

Energy coefficient Description Value!#"%$'&)(+*
arithmetic instruction ,.- /�0�1�243!#576

load instruction ,.- 8�9%:�243!#; (
store instruction 9<- ,<=�:�243!?>
jump instruction ,.- /�,<0�243!#@�$ (+A

branch taken ,.- 8�,�B�243!#@�$ C�(DA
branch untaken ,.- 0�B<8�243! &

instruction cache miss :.- =�0�243! 6
data cache miss BE- 0%B<243!FC�GIHJ"%HK*<L

uncached instruction fetch :.- B�:�243!F&MG.(DLK$ 57N HKA
processor interlock ,E- =�1�243! ; & 6 L (+&)L

side effects due to custom instructions ,E- /<9%/�243! á * 152.0 OP3!?Q
+/-/comp 70.0 OP3!?R

log/red/mux 12.0 OP3!TS
shifter 377.0 OP3!?U

custom register 177.0 OI3!?V
TIE mult 165.0 OP3!FW
TIE mac 190.0 OP3!?X
TIE add 69.0 OP3!?Y
TIE csa 37.0 OP3! á�Z table 27.0 OP3

B. Applying the Energy Macro-model: Accuracy Results

In this section, we present the results of applying the energy
macro-model described in Section V-A.

Our first experiment involves determining the energy consump-
tion of several applications (incorporating different custom instruc-
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Fig. 3. Fitting error of the test programs for extensible processor core

tions) in two ways: (i) using the derived energy macro-model, and
(ii) using the RTL power estimation tool WattWatcher [11] on the
synthesized RTL description of the corresponding extended pro-
cessor. Table II summarizes these results. For the ten application
benchmarks shown (different from the test programs used in macro-
modeling), the maximum estimation error is 8.5%, while the av-
erage absolute error is only 3.3%. The proposed energy estimation
methodology is very fast. It takes only a few seconds for application
energy estimation using our approach, while the average time taken
by WattWatcher to determine the energy consumption of a small
application is several hours (an average speedup of three orders of
magnitude).

TABLE II

APPLICATION ENERGY ESTIMATES: ACCURACY RESULTS

Application Estimate ( � 3 ) WattWatcher ( � 3 ) Error (%)

Ins sort 336.9 344.5 -2.2
Gcd 736.5 723.5 1.8

Alphablend 106.9 105.7 1.1
Add4 595.0 583.9 1.9

Bubsort 131.5 126.7 3.8
DES 45.6 43.7 4.3

Accumulate 37.6 35.4 6.2
Drawline 9.9 9.7 2.0

Multi accumulate 23.8 26.0 -8.5
Seq mult 13.5 13.7 -1.5

We also performed an additional experiment to study the relative
accuracy of the macro-model, when used in energy optimization
studies for an application with many custom instruction choices.
Fig. 4 shows the energy estimates obtained by our macro-model
and WattWatcher for a single application (implementing the Reed-
Solomon decoding/encoding algorithm) with four different custom
instruction choices. The results show that the energy estimates re-
turned by both these approaches are comparable, while the two pro-
files track one another. Thus, good relative accuracy is achieved.

VI. CONCLUSIONS

In this work, we presented an efficient framework for character-
izing the energy consumption of an extensible processor. Our char-
acterization flow facilitates the construction of an efficient macro-
model by using parameters drawn from both instruction-level and
structural domains, and by leveraging the benefits of regression
analysis. Since application of the macro-model only requires in-
struction set simulation based analysis of the application, energy
estimation using our approach is very fast. We characterized the
energy consumption of a state-of-the-art extensible processor and
used the macro-model so obtained to derive highly accurate energy
estimates for several applications.
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