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Abstract 

This paper describes a design space exploration 
experiment for a real application from the embedded 
networking domain - the physical layer of a wireless 
protocol. The application models both control oriented as 
well as data processing functions, and hence requires 
composing tasks from different models of computation. We 
show how the cost and performance of communication and 
computation can be quickly evaluated, with a reasonable 
modeling cost. While the example uses a specific tool, the 
methodology and results can be used in a more general 
context. 

1 Introduction 
The design of wireless protocols and their 

implementations on heterogeneous architectures, including 
dedicated IPs, programmable logic and one or more 
embedded processors, under a tight time-to-market pressure 
is a difficult task. One challenge is to provide validation 
and performance estimation of a given mapping of the 
protocol functionalities on the architecture without doing 
cycle accurate simulation at the RTL level. This enables a 
pragmatic approach to architecture and application 
performance optimization, striving to achieve both 
flexibility and efficiency, by running simulations with 
several testbenches. Despite the high level of abstraction 
used in the modeling of both the application and the 
architecture components (programmable and non-
programmable), one must be able to evaluate performance 
indices such as throughput, latency, and resource usage that 
are essential to optimize the configurable platform 
parameters for the application at hand. The refinement of 
the initial specification onto the architecture must be 
performed in a unified framework that also addresses the 

problem of IP reuse both for functional and architecture 
IPs. 

Our case study consists of the design of part of an ETSI 
standard protocol stack called Hiperlan/2 [1], specifically 
focusing on the data-dominated physical layer and its 
implementation onto a real heterogeneous architecture 
aimed at low power transceivers for wireless applications.  

The adopted design methodology has the fundamental 
goal to quickly evaluate several architectural solutions that 
are available thanks to the reconfigurable nature of the 
target architecture. We address this problem by 
orthogonalizing the models of function, architecture, 
communication, computation and timing and by using a 
design framework that supports the above methodology and 
facilitates the model integration with the aid of a graphical 
user interface and design flow management support. This 
methodology, as proposed in [2] and [3], permits an 
efficient design space exploration based on IP reuse since 
each orthogonal concern can be optimized and refined 
separately from the others. 

The application functionality is described as a network 
of sequential processes, Finite State Machines and dataflow 
actors, on top of a modeling and simulation infrastructure 
based on the C++ language. The communication between 
functional blocks is heterogeneous by mixing the Co-design 
Finite State Machine (CFSM) [2] and DataFlow (DF) 
models of computations [4], as dictated by the mixed 
control/data processing characteristic of the application. For 
this case study, we used the VCC™ tool from Cadence 
Design Systems [5], extended to model dataflow, but the 
method could be adapted to other application domains and 
tools. 

In order to execute performance simulations, where the 
timing effects of a function/architecture mapping [2] are 
taken into account, we also used an original technique to 
model the mapping of an application on a complex abstract 
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pipelined architecture of the datapath. Latency and 
throughput of the pipeline can be customized through the 
usage of parameters.  

The behavioral communication arcs, both control 
(CFSM) and dataflow, are separately refined by describing 
the effect of the schedulers and communication protocols 
used in the architecture [6]. These communication 
behaviors are organized in libraries of C++ classes known 
as pattern and architecture services [7] that can be 
customized using various parameters (e.g. CPU clock 
speed, bus transfer speed, arbitration latency, interrupt 
response latency and so on) and that describe the 
communication at the transaction level of abstraction. The 
communication refinement methodology is based, as in 
SpecC [6] and SystemC [8], on the separation between 
interface and its implementation. In VCC, this programming 
paradigm, coupled with a clear separation between 
architecture, functionality and timing, enables a more 
general reuse methodology, supported by graphical editors, 
configuration management and so on. 

Similar methodologies and design frameworks have 
been evaluated in the automotive [9], telecommunications 
[10], and multimedia [11] domains. However, some of these 
case studies (e.g. [9] and [10]) mainly focused on control 
and decision-dominated applications, that lend themselves 
well to the CFSM model of computation, based on lossy 
communication. Others, such as [11], required to manually 
introduce explicit queues among processes in order to 
specify the application using an extension of Kahn Process 
Networks [12]. 

Our case study is interesting because it shows the results 
that can be obtained on a real application, from the wireless 
networking domain, by using abstract functional and 
performance models to rapidly explore several design 
alternatives on a reconfigurable FPGA-based datapath. Due 
to the data-intensive nature of the application, we extended 
to the dataflow model of computation some performance 
analysis and communication refinement techniques that 
were previously applied to more reactive models. In 
addition, we defined a technique that allows to model 
timing delays of complex pipelined architecture 
components by preserving the original structure of both the 
functional model and of the hardware implementation. 

The rest of the paper is organized as follows. Section 2 
describes the functional modeling of the application where 
we used the mixed control/dataflow Model of Computation 
illustrated in Section 3. Section 4 details the architecture 
modeling and refinement of the transmitter network onto 
the architecture. Results are given in Section 5. Section 6 
concludes with the insights gained from this project and 
charts some directions for future work. 

2 The Hiperlan/2 Application 
Our target application is the physical layer specification 

for High Performance Radio Local Area Network type 2 

(Hiperlan/2) that is based on the Orthogonal Frequency 
Division Multiplexing (OFDM) modulation scheme. The 
physical layer is multi-rate in order to improve the radio 
link capabilities due to different conditions of interference 
and of distance between mobile terminals and the access 
point. i.e. the data rate, ranging from 6 to 54Mbit/s, is 
established by a link adaptation scheme and is varied by 
using several signal alphabets for modulating the OFDM 
sub-carriers. This property introduces an element of 
dynamic configuration that matches well the use of re-
programmable components in the architecture. The 
Hiperlan/2 transmitter and a significant part of the 
Hiperlan/2 receiver were modeled, as shown in the 
behavioral diagram of Figure 1. 

2.1 Modeling the Hiperlan2 Physical Layer 
A careful definition of the block granularity is a key 

aspect of the mapping-based system-level design 
methodology, since functional blocks constitute the unit for 
partitioning over architectural resources. Moreover, they 
directly expose the parallelism in both computation and 
communication that can be exploited by the resources 
instantiated in the architecture. 
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Figure 1. Hiperlan/2 : behavioral diagram. 
Our architecture exploration process started with the 

import in VCC of the transceiver functional model of 
Figure 1, which had been initially developed and validated 
using a combination of C code and purely functional 
dataflow using COSSAP ™ (from Synopsys) [15]. The C 
procedures originally used to describe the transmitter (TX) 
and receiver (RX) have been partitioned with a low 
implementation effort. It essentially involved copying and 
pasting the data processing code into multiple C++ blocks, 
and re-defining some control functions, requiring about 150 
additional lines out of about 2500 lines of untimed C++ 
behavioral code. 

In particular, we separate the control from the data 
processing functions because they require different models 
of computation (CFSM and dataflow respectively) at their 



 

 

interface. In addition, such separation allows us to evaluate 
different mappings onto specialized cores and onto the 
FPGA, as discussed in Section 5. 

Figure 1 shows the transmitter and receiver networks 
organized as separate hierarchical blocks, together with a 
simplified model of the MAC. The model includes the 
blocks called TXconf and RXconf that control changes of 
modulation scheme or switch between transmission and 
reception modes. At the functional level they are not 
needed, but act as placeholders for delays that will be added 
during the refinement step. The function of the MAC model 
is to trigger the transmitter and receiver executions 
alternately and to configure the modulation scheme of the 
TX network, according to the Hyperlan/2 specification. The 
MAC uses the CFSM method to communicate with TX, RX 
and configuration blocks. TX and RX are modeled as 
dynamic dataflow networks. 

3 Modeling of Dataflow Networks 
In VCC, blocks can be modeled in C++ (ANSI C and 

hierarchical FSMs are also available) using a port-based 
interface model that offers a simple implementation-
independent communication API. A block is activated if it 
receives a token on any one of its inputs. Every input port 
has a one-place buffer, which implies a lossy 
communication between blocks in the sense that it is 
possible for the sender to overwrite a token on the 
receiver’s input port before the receiver had a chance to 
read the previous token. 

In this project, we extended the simulator infrastructure 
to support the dataflow [4] Model of Computation, where 
blocks communicate with each other through FIFO (first in 
first out) channels. Each dataflow port has a data rate (the 
number of tokens consumed or produced by that port at 
each activation), and the block is activated only when all 
input ports have sufficient tokens (the firing rule is 
satisfied). Our DF prototype implements a general dynamic 
dataflow (DDF) semantics, where the firing rule of a block 
is not fixed at compile-time but can change at run-time. The 
delay on a dataflow channel (denoting some number of 
tokens initially present in the FIFO) can be specified as a 
parameter on a dataflow input port. 

The implementation guarantees loss-less communication 
in functional simulation, assuming infinite- length FIFO 
channels or blocking write operations. For practical 
implementations onto architecture, the FIFO length for a 
channel can be specified as a parameter on the receiving 
input port during communication refinement.  

The dataflow capability described above is provided in 
the form of a simple communication pattern service in the 
VCC library that models the sender and receiver sides of 
the DF channel. This pattern has to be instantiated on each 
communication arc that follows DF semantics. In this 
prototype, no attempt is made to perform static scheduling 
for SDF blocks, instead the block firing rule is checked 

dynamically for each DF block. Externally (e.g., to the 
simulator engine) a DF block appears just as a CFSM 
block, and all the DF-specific activities are performed by 
the DF pattern. Hence interfacing with CFSM blocks is 
naturally supported, resulting in an unconstrained mix-and 
match of CFSM and DF blocks, which is valuable for 
design space exploration. In our application, we have 
extensively used this mix-and-match feature to describe the 
heterogeneous aspects of the OFDM transceiver, 
composing together both control and data processing blocks 
that are naturally modeled by CFSM and DF semantics, 
respectively. 

Such composition of CFSM and DF blocks is also 
possible in other existing tools like Ptolemy [13] and 
CoCentric System Studio™ (from Synopsys; formerly 
called El Greco) [14] The additional value of our approach 
is the possibility to execute performance simulation of a 
mixed–MoC design to evaluate the implementation onto a 
transaction based model of a real architecture. In fact 
Ptolemy and El Greco provide a more sophisticated 
hierarchical synchronous modeling framework including 
both dataflow, and finite state machines, where static (or 
quasi static) scheduling techniques are applied if possible. 
However, for the purpose of this case study, their quasi-
static scheduling strategy and synchronous semantics makes 
the mapping of individual functional blocks onto a 
distributed heterogeneous architecture like ours 
problematic. In fact, depending on the mapping, the static 
or quasi-static scheduler of the simulator may conflict with 
the architecture implementation.  

4 The Architectural Platform 
In this project we mapped the Hiperlan/2 model onto a 

real reconfigurable and heterogeneous platform for low 
power transceivers used in wireless applications. It is 
specialized for an OFDM-based physical layer, but supports 
also the implementation of high-level protocol tasks on an 
embedded processor. 
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Figure 2. The architecture diagram. 

Several cores are connected through a flexible 
communication resource, a crossbar bus, called XBar in 
Figure. 2. Some of the cores, i.e. FFT and FIR, implement 
computation-intensive functions as highly optimized IPs 
with limited range of programmability. Other cores, on the 



 

 

other hand, are very flexible. An embedded low power 
FPGA [16] provides bit-level programmability, and a RISC 
micro-controller provides resources for dataflow 
management control functions, as well as for MAC 
functionalities. Each data item sent via the crossbar is 
associated with an attribute that describes which target it 
has to reach, and to which thread it belongs. Its arbiter uses 
a First Come First Served scheme with fixed priorities. 
Finally, a Request/Grant/Acknowledge protocol is used 
between the IPs to adapt the data flow to their respective 
computing speed.  

The datapath is reconfigured dynamically between the 
transmission and reception phases, as well as between the 
transmission of several frames when a different modulation 
scheme is requested. The configuration mainly affects the 
FPGA and consists of either overwriting some internal 
registers, or downloading a new configuration stream from 
a dedicated memory. 

4.1 Architectural Modeling 
We modeled the datapath coprocessor of the 

architecture, including FFT, FIR, FPGA, memories and 
crossbar. Each component is described by an abstract API 
defining the services that it offers to the other architecture 
components and that impact the overall architecture 
behavior and performance. Those services describe, for 
example, transmission protocols, scheduling policies, 
storage delay access and capabilities, but not the 
functionality of each architecture element. 

In this project we reused several service definitions [7] 
provided by the standard VCC library to describe 
memories, registers, schedulers, and data formatters. In 
addition, we have designed new service definitions to 
model the crossbar interconnection resource where delays 
like arbitration overhead, slave access delay and parallel 
accesses for each slave are assigned as parameters. The 
number of masters and slaves supported is computed from 
the architecture layout, thus resulting in a flexible re-usable 
model. 

4.2 Mapping and Communication Refinement 
The mapping of a function onto an architecture resource 

specifies a possible implementation, e.g. as hardware or 
software, and its performance cost in terms of estimated 
delays. 
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Figure 3. The delay wrapping technique used to model 

performance of a behavioral block.  

Clearly, the quality of these delay estimates affects the 
precision of the overall architecture performance simulation 
done by the tool. In our case, all the peripherals are 
statically pipelined IPs. Thus, their delays can be easily 
estimated or derived from existent specifications or 
implementations. 

However, modeling the performance of a complex 
functionality, whose netlist structure is quite different from 
that of the pipelined shared datapath, required the use of the 
mechanism shown in Figure 3 that is general for static 
pipeline implementation but doesn’t cover the problem of 
data-dependent performances. 

The mechanism involved modifying the functional 
netlist to describe separately the timing and the 
functionality of each block. The Activator and Merge 
blocks split the timing and data information (Data and Time 
tokens in the Figure 3), sending each to the appropriate sub-
netlist. The Function block is a “normal” netlist modeling a 
FIR, FFT or FPGA untimed functionality. On the other 
hand, the Delay block models a skeleton of the pipeline 
architecture, as for example that of the FFT core 
represented in Figure 4, and it is used to play with various 
architectural options, such as the number of stages, the 
stalls, and so on. 
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Figure 4. FFT skeleton pipeline. 
We also defined some new patterns to represent Shared 

Memory and Register Direct communications, as required 
by the various possible architectural implementations of the 
data-flow communication pattern used in the functional 
simulation. The refinement consists of the redefinition of 
the implementation of the I/O interface functions by 
generating transactions record for debugging and analysis 
and bus access requests for performance analysis. 

5 Results 
This section presents the results of some explorations 

that we performed, using the architecture model of the 
datapath shown in Figure 2, by evaluating different 
mapping scenarios of the transmitter application shown in 
Figure. 1. The functional mapping is showed in Figure 5(a) 
where most of the transmitter blocks are hierarchical 
resulting in a one to one or many to one mapping with the 
architecture cores. The explored design space is specified in 
Figure 5(b). We report on the global latency and throughput 



 

 

effects due to architectural choices such as memory 
configuration (single port versus multiple ports), 
communication refinement (direct connect versus shared 
memory), and FPGA configuration strategies.  

A similar exploration is possible in theory with a RTL-
level simulation also, but the cost, in terms of model 
development and modification time, would be 
unacceptable. The methodology and tool used in this case 
study, on the other hand, required only a few hours to 
model and simulate each design space point.  

The timing views for the functionalities mapped to the 
cores and the performance parameters values of memories 
and interconnection services were derived from the IPs 
documentation and RTL specifications. 
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Figure 5. (a) Mapping (b) Design space exploration. 
Thus the accuracy of our model, in terms of number of 

clock cycles with respect to the “golden” RTL model 
available for one of the analyzed scenarios (SimA1), is 
better than 10%.  

The difference originates mainly from the fact that the 
RTL model uses the microprocessor for feeding the FPGA, 
while in VCC the microprocessor is not modeled.  

The simulation is also very fast. Each test case 
described below requires between 4 and 26 seconds to 
simulate the transmission of 6 OFDM symbols (depending 
on how many probes are added to the mapping for 
instrumentation) on a Pentium III 600 MHz machine. 

However, the main advantage of the methodology is not 
the speed of the simulation (about three orders of 
magnitude slower than real time), but the speed of mapping 
and refinement changes in order to explore the design 
space. This dramatically reduces the precious time devoted 
by a designer to this task with respect to RTL modeling. 

5.1 Communication Refinement 
In Figure 5(b) we show the design space covered by our 

first exploration. In this case, we vary the communication 
refinement between FPGA and FFT by using shared 

memory or a direct connection through the bus. For each 
case we also change the access mode to the memory (one or 
two access ports with the crossbar). All cases are then 
evaluated by using two different FFT throughput estimates 
(that correspond to two different FFT architectures).  

The results are given in Figure 6. The chart shows the 
number of clock cycles (y-axis) for which each core is busy 
in each mapping scenario (x-axis). A balanced load, such as 
in SimC1 is generally better than an unbalanced one, such 
as in SimA1. 
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Figure 6. Results of design space exploration. 
We verified that increasing the number of access port to 

the memory through the crossbar (SimAi/SimBi or 
SimCi/SimDi) does not result in a significant bit rate 
improvement. 

From these charts, assuming a clock rate of 70 MHz, we 
can evaluate the datapath bit rate for a given mapping 
(Table 1). Those rates show that at full stream speed not all 
the mappings are compliant with the physical layer 
Hiperlan/2 specification, which requires a bit rate in excess 
of 12 Mbit/sec. However, each one shows different 
characteristics that may make it more or less desirable for 
other application families, such as low bit rate not-standard 
radio. For instance, the scenarios involving the fastest FFT 
architecture result in the highest bit rate at the price of a 
larger area and power consumption estimate. 

The system model today provides only 
latency/throughput information, but the architectural 
services could be extended to provide also area and activity 
(power) information. 

 
Table1. Datapath bit rates (Mb/sec) evaluated for 

different mappings.  
Sim run A1 B1 C1 D1 A2 B2 C2 D2 

Bit Rate  5.8 7.2 8.2 8.2 9.6 13.7 12.5 15.6

5.2 FPGA Alternatives 
The next exploration shows that it is possible to evaluate 

the cost of adding a new function to the algorithm, and 
explore two implementation scenarios involving dynamic 
embedded FPGA reconfiguration. 

Starting from case SimB2, we expanded the design 
space by inserting a new function, called windowing, in the 



 

 

behavioral network between the cyclic guard and the FIR 
functions. This function is used to significantly decrease the 
dynamic range of the OFDM signal before transmission. 

We modified the functional network as shown in Figure. 
7(a). Windowing must act only on the first and last ten 
elements of each OFDM symbol. The data flow between 
Guard and Fir is thus controlled by the dynamic dataflow 
blocks Mux and Demux while the FPGAConf block is 
added as a placeholder for the FPGA reconfiguration delay.  
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Figure 7. Design space exploration with Windowing, (a) 

functional network; (b) simulation results. 
As shown in Fig. 7(b), we executed two different 

simulations by using estimated performance delay for 
windowing mapped on FPGA. In the first case (SimB2a), 
we assumed to have an embedded FPGA that was large 
enough to support simultaneously a configuration with 
mapping and windowing, that provides maximum 
parallelism, but little area efficiency. 

In the second case (SimB2b) we assumed only one 
smaller embedded FPGA, which must be reconfigured on 
the fly to switch from the mapping function to the 
windowing function. This creates a configuration cost 
(number of cycles to reconfigure the FPGA) in the 
performance evaluation that results in a measurable bit rate 
decrease. In Fig. 7(b) we show the performance obtained 
when the reconfiguration cost is 500 clock cycles. Thus, in 
this exploration, we traded-off the size of the FPGA against 
the performance of the system. 

6 Conclusions 
We applied a design methodology, based on separating 

functionality from architecture, and communication from 
computation, to a real application and architectural platform 
from the wireless networking domain. During this 
experiment, we also extended the capabilities of the used 
tool to describe the mixed control/dataflow nature of the 
application. We applied a methodology that allows one to 
refine behavioral dataflow communications onto bus 

transactions in the architecture. We also used an intuitive 
method to describe timing views for functions mapped to 
pipelined hardware. 

Further project developments will include a detailed 
functional model of the MAC layer and of the 
synchronization stage of the receiver, followed by their 
mapping on the microprocessor. 
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