

Design Space Exploration for a Wireless Protocol on a Reconfigurable Platform

Laura Vanzago1, Bishnupriya Bhattacharya2, Joel Cambonie3 and Luciano Lavagno4

1STMicroelectronics, Advanced System Technology, via C. Olivetti 2, 20041 Agrate (MI), Italy

2Cadence Design Systems, 2670 Seely Ave. San Jose CA 95134, USA
3STMicroelectronics, Advanced System Technology, 12 rue Jules Horowitz, F-38019 Grenoble, France

4 Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy

Abstract

This paper describes a design space exploration
experiment for a real application from the embedded
networking domain - the physical layer of a wireless
protocol. The application models both control oriented as
well as data processing functions, and hence requires
composing tasks from different models of computation. We
show how the cost and performance of communication and
computation can be quickly evaluated, with a reasonable
modeling cost. While the example uses a specific tool, the
methodology and results can be used in a more general
context.

1 Introduction
The design of wireless protocols and their

implementations on heterogeneous architectures, including
dedicated IPs, programmable logic and one or more
embedded processors, under a tight time-to-market pressure
is a difficult task. One challenge is to provide validation
and performance estimation of a given mapping of the
protocol functionalities on the architecture without doing
cycle accurate simulation at the RTL level. This enables a
pragmatic approach to architecture and application
performance optimization, striving to achieve both
flexibility and efficiency, by running simulations with
several testbenches. Despite the high level of abstraction
used in the modeling of both the application and the
architecture components (programmable and non-
programmable), one must be able to evaluate performance
indices such as throughput, latency, and resource usage that
are essential to optimize the configurable platform
parameters for the application at hand. The refinement of
the initial specification onto the architecture must be
performed in a unified framework that also addresses the

problem of IP reuse both for functional and architecture
IPs.

Our case study consists of the design of part of an ETSI
standard protocol stack called Hiperlan/2 [1], specifically
focusing on the data-dominated physical layer and its
implementation onto a real heterogeneous architecture
aimed at low power transceivers for wireless applications.

The adopted design methodology has the fundamental
goal to quickly evaluate several architectural solutions that
are available thanks to the reconfigurable nature of the
target architecture. We address this problem by
orthogonalizing the models of function, architecture,
communication, computation and timing and by using a
design framework that supports the above methodology and
facilitates the model integration with the aid of a graphical
user interface and design flow management support. This
methodology, as proposed in [2] and [3], permits an
efficient design space exploration based on IP reuse since
each orthogonal concern can be optimized and refined
separately from the others.

The application functionality is described as a network
of sequential processes, Finite State Machines and dataflow
actors, on top of a modeling and simulation infrastructure
based on the C++ language. The communication between
functional blocks is heterogeneous by mixing the Co-design
Finite State Machine (CFSM) [2] and DataFlow (DF)
models of computations [4], as dictated by the mixed
control/data processing characteristic of the application. For
this case study, we used the VCC™ tool from Cadence
Design Systems [5], extended to model dataflow, but the
method could be adapted to other application domains and
tools.

In order to execute performance simulations, where the
timing effects of a function/architecture mapping [2] are
taken into account, we also used an original technique to
model the mapping of an application on a complex abstract

1530-1591/03 $17.00 2003 IEEE

pipelined architecture of the datapath. Latency and
throughput of the pipeline can be customized through the
usage of parameters.

The behavioral communication arcs, both control
(CFSM) and dataflow, are separately refined by describing
the effect of the schedulers and communication protocols
used in the architecture [6]. These communication
behaviors are organized in libraries of C++ classes known
as pattern and architecture services [7] that can be
customized using various parameters (e.g. CPU clock
speed, bus transfer speed, arbitration latency, interrupt
response latency and so on) and that describe the
communication at the transaction level of abstraction. The
communication refinement methodology is based, as in
SpecC [6] and SystemC [8], on the separation between
interface and its implementation. In VCC, this programming
paradigm, coupled with a clear separation between
architecture, functionality and timing, enables a more
general reuse methodology, supported by graphical editors,
configuration management and so on.

Similar methodologies and design frameworks have
been evaluated in the automotive [9], telecommunications
[10], and multimedia [11] domains. However, some of these
case studies (e.g. [9] and [10]) mainly focused on control
and decision-dominated applications, that lend themselves
well to the CFSM model of computation, based on lossy
communication. Others, such as [11], required to manually
introduce explicit queues among processes in order to
specify the application using an extension of Kahn Process
Networks [12].

Our case study is interesting because it shows the results
that can be obtained on a real application, from the wireless
networking domain, by using abstract functional and
performance models to rapidly explore several design
alternatives on a reconfigurable FPGA-based datapath. Due
to the data-intensive nature of the application, we extended
to the dataflow model of computation some performance
analysis and communication refinement techniques that
were previously applied to more reactive models. In
addition, we defined a technique that allows to model
timing delays of complex pipelined architecture
components by preserving the original structure of both the
functional model and of the hardware implementation.

The rest of the paper is organized as follows. Section 2
describes the functional modeling of the application where
we used the mixed control/dataflow Model of Computation
illustrated in Section 3. Section 4 details the architecture
modeling and refinement of the transmitter network onto
the architecture. Results are given in Section 5. Section 6
concludes with the insights gained from this project and
charts some directions for future work.

2 The Hiperlan/2 Application
Our target application is the physical layer specification

for High Performance Radio Local Area Network type 2

(Hiperlan/2) that is based on the Orthogonal Frequency
Division Multiplexing (OFDM) modulation scheme. The
physical layer is multi-rate in order to improve the radio
link capabilities due to different conditions of interference
and of distance between mobile terminals and the access
point. i.e. the data rate, ranging from 6 to 54Mbit/s, is
established by a link adaptation scheme and is varied by
using several signal alphabets for modulating the OFDM
sub-carriers. This property introduces an element of
dynamic configuration that matches well the use of re-
programmable components in the architecture. The
Hiperlan/2 transmitter and a significant part of the
Hiperlan/2 receiver were modeled, as shown in the
behavioral diagram of Figure 1.

2.1 Modeling the Hiperlan2 Physical Layer
A careful definition of the block granularity is a key

aspect of the mapping-based system-level design
methodology, since functional blocks constitute the unit for
partitioning over architectural resources. Moreover, they
directly expose the parallelism in both computation and
communication that can be exploited by the resources
instantiated in the architecture.

Hierarchical FSM

TXconf RXconf

Adp

Scrambler

FEC
coding

Inter
leaving

Mapping

IFFT

Guard
Insertion

FIR

Adp

Adp

MACMAC

TX RX

DeMapping

Auto
Correlation

FFTCFO
Estimation

FFT

Channel
Estimator

Correction

FSMHierarchical FSM

TXconf RXconf

Adp

Scrambler

FEC
coding

Inter
leaving

Mapping

IFFT

Guard
Insertion

FIR

Adp

Adp

MACMAC

TX RX

DeMapping

Auto
Correlation

FFTCFO
Estimation

FFT

Channel
Estimator

Correction

FSM

Figure 1. Hiperlan/2 : behavioral diagram.
Our architecture exploration process started with the

import in VCC of the transceiver functional model of
Figure 1, which had been initially developed and validated
using a combination of C code and purely functional
dataflow using COSSAP ™ (from Synopsys) [15]. The C
procedures originally used to describe the transmitter (TX)
and receiver (RX) have been partitioned with a low
implementation effort. It essentially involved copying and
pasting the data processing code into multiple C++ blocks,
and re-defining some control functions, requiring about 150
additional lines out of about 2500 lines of untimed C++
behavioral code.

In particular, we separate the control from the data
processing functions because they require different models
of computation (CFSM and dataflow respectively) at their

interface. In addition, such separation allows us to evaluate
different mappings onto specialized cores and onto the
FPGA, as discussed in Section 5.

Figure 1 shows the transmitter and receiver networks
organized as separate hierarchical blocks, together with a
simplified model of the MAC. The model includes the
blocks called TXconf and RXconf that control changes of
modulation scheme or switch between transmission and
reception modes. At the functional level they are not
needed, but act as placeholders for delays that will be added
during the refinement step. The function of the MAC model
is to trigger the transmitter and receiver executions
alternately and to configure the modulation scheme of the
TX network, according to the Hyperlan/2 specification. The
MAC uses the CFSM method to communicate with TX, RX
and configuration blocks. TX and RX are modeled as
dynamic dataflow networks.

3 Modeling of Dataflow Networks
In VCC, blocks can be modeled in C++ (ANSI C and

hierarchical FSMs are also available) using a port-based
interface model that offers a simple implementation-
independent communication API. A block is activated if it
receives a token on any one of its inputs. Every input port
has a one-place buffer, which implies a lossy
communication between blocks in the sense that it is
possible for the sender to overwrite a token on the
receiver’s input port before the receiver had a chance to
read the previous token.

In this project, we extended the simulator infrastructure
to support the dataflow [4] Model of Computation, where
blocks communicate with each other through FIFO (first in
first out) channels. Each dataflow port has a data rate (the
number of tokens consumed or produced by that port at
each activation), and the block is activated only when all
input ports have sufficient tokens (the firing rule is
satisfied). Our DF prototype implements a general dynamic
dataflow (DDF) semantics, where the firing rule of a block
is not fixed at compile-time but can change at run-time. The
delay on a dataflow channel (denoting some number of
tokens initially present in the FIFO) can be specified as a
parameter on a dataflow input port.

The implementation guarantees loss-less communication
in functional simulation, assuming infinite- length FIFO
channels or blocking write operations. For practical
implementations onto architecture, the FIFO length for a
channel can be specified as a parameter on the receiving
input port during communication refinement.

The dataflow capability described above is provided in
the form of a simple communication pattern service in the
VCC library that models the sender and receiver sides of
the DF channel. This pattern has to be instantiated on each
communication arc that follows DF semantics. In this
prototype, no attempt is made to perform static scheduling
for SDF blocks, instead the block firing rule is checked

dynamically for each DF block. Externally (e.g., to the
simulator engine) a DF block appears just as a CFSM
block, and all the DF-specific activities are performed by
the DF pattern. Hence interfacing with CFSM blocks is
naturally supported, resulting in an unconstrained mix-and
match of CFSM and DF blocks, which is valuable for
design space exploration. In our application, we have
extensively used this mix-and-match feature to describe the
heterogeneous aspects of the OFDM transceiver,
composing together both control and data processing blocks
that are naturally modeled by CFSM and DF semantics,
respectively.

Such composition of CFSM and DF blocks is also
possible in other existing tools like Ptolemy [13] and
CoCentric System Studio™ (from Synopsys; formerly
called El Greco) [14] The additional value of our approach
is the possibility to execute performance simulation of a
mixed–MoC design to evaluate the implementation onto a
transaction based model of a real architecture. In fact
Ptolemy and El Greco provide a more sophisticated
hierarchical synchronous modeling framework including
both dataflow, and finite state machines, where static (or
quasi static) scheduling techniques are applied if possible.
However, for the purpose of this case study, their quasi-
static scheduling strategy and synchronous semantics makes
the mapping of individual functional blocks onto a
distributed heterogeneous architecture like ours
problematic. In fact, depending on the mapping, the static
or quasi-static scheduler of the simulator may conflict with
the architecture implementation.

4 The Architectural Platform
In this project we mapped the Hiperlan/2 model onto a

real reconfigurable and heterogeneous platform for low
power transceivers used in wireless applications. It is
specialized for an OFDM-based physical layer, but supports
also the implementation of high-level protocol tasks on an
embedded processor.

FPGAFPGA BUFFERBUFFER UARTUART FIRFIRFFTFFT

DPR2/
FPGA
DPR2/
FPGA WrapperWrapperDPR2/SPS2

Bridge
DPR2/SPS2

Bridge

CachesCaches SPS2SPS2

Xbar
Interface

BIF
Interface

MICROMICRO

DATAPATH

Clk Gen.Clk Gen.

XBar

BIF

FPGAFPGA BUFFERBUFFER UARTUART FIRFIRFFTFFT

DPR2/
FPGA
DPR2/
FPGA WrapperWrapperDPR2/SPS2

Bridge
DPR2/SPS2

Bridge

CachesCaches SPS2SPS2

Xbar
Interface

BIF
Interface

MICROMICRO

DATAPATH

Clk Gen.Clk Gen.

XBar

BIF

Figure 2. The architecture diagram.

Several cores are connected through a flexible
communication resource, a crossbar bus, called XBar in
Figure. 2. Some of the cores, i.e. FFT and FIR, implement
computation-intensive functions as highly optimized IPs
with limited range of programmability. Other cores, on the

other hand, are very flexible. An embedded low power
FPGA [16] provides bit-level programmability, and a RISC
micro-controller provides resources for dataflow
management control functions, as well as for MAC
functionalities. Each data item sent via the crossbar is
associated with an attribute that describes which target it
has to reach, and to which thread it belongs. Its arbiter uses
a First Come First Served scheme with fixed priorities.
Finally, a Request/Grant/Acknowledge protocol is used
between the IPs to adapt the data flow to their respective
computing speed.

The datapath is reconfigured dynamically between the
transmission and reception phases, as well as between the
transmission of several frames when a different modulation
scheme is requested. The configuration mainly affects the
FPGA and consists of either overwriting some internal
registers, or downloading a new configuration stream from
a dedicated memory.

4.1 Architectural Modeling
We modeled the datapath coprocessor of the

architecture, including FFT, FIR, FPGA, memories and
crossbar. Each component is described by an abstract API
defining the services that it offers to the other architecture
components and that impact the overall architecture
behavior and performance. Those services describe, for
example, transmission protocols, scheduling policies,
storage delay access and capabilities, but not the
functionality of each architecture element.

In this project we reused several service definitions [7]
provided by the standard VCC library to describe
memories, registers, schedulers, and data formatters. In
addition, we have designed new service definitions to
model the crossbar interconnection resource where delays
like arbitration overhead, slave access delay and parallel
accesses for each slave are assigned as parameters. The
number of masters and slaves supported is computed from
the architecture layout, thus resulting in a flexible re-usable
model.

4.2 Mapping and Communication Refinement
The mapping of a function onto an architecture resource

specifies a possible implementation, e.g. as hardware or
software, and its performance cost in terms of estimated
delays.

Activator Merge
Function

Delay

Data
Token

Data
Token

Data In Data Out

Time
Token

Time
Token

Activator Merge
Function

Delay

Data
Token

Data
Token

Data In Data Out

Time
Token

Time
Token

Figure 3. The delay wrapping technique used to model

performance of a behavioral block.

Clearly, the quality of these delay estimates affects the
precision of the overall architecture performance simulation
done by the tool. In our case, all the peripherals are
statically pipelined IPs. Thus, their delays can be easily
estimated or derived from existent specifications or
implementations.

However, modeling the performance of a complex
functionality, whose netlist structure is quite different from
that of the pipelined shared datapath, required the use of the
mechanism shown in Figure 3 that is general for static
pipeline implementation but doesn’t cover the problem of
data-dependent performances.

The mechanism involved modifying the functional
netlist to describe separately the timing and the
functionality of each block. The Activator and Merge
blocks split the timing and data information (Data and Time
tokens in the Figure 3), sending each to the appropriate sub-
netlist. The Function block is a “normal” netlist modeling a
FIR, FFT or FPGA untimed functionality. On the other
hand, the Delay block models a skeleton of the pipeline
architecture, as for example that of the FFT core
represented in Figure 4, and it is used to play with various
architectural options, such as the number of stages, the
stalls, and so on.

Stage 0 R0
64

Stage 1 R1
16

Stage 2
R2
4 Stage 3 R3

1

D cycles D cycles D cycles D cycles

Data In Data Out

Latency : (64+16+4+1) * D

Throughput: 1/D

FFT

Stage 0 R0
64

Stage 1 R1
16

Stage 2
R2
4 Stage 3 R3

1

D cycles D cycles D cycles D cycles

Data In Data Out

Latency : (64+16+4+1) * D

Throughput: 1/D

FFT

Figure 4. FFT skeleton pipeline.
We also defined some new patterns to represent Shared

Memory and Register Direct communications, as required
by the various possible architectural implementations of the
data-flow communication pattern used in the functional
simulation. The refinement consists of the redefinition of
the implementation of the I/O interface functions by
generating transactions record for debugging and analysis
and bus access requests for performance analysis.

5 Results
This section presents the results of some explorations

that we performed, using the architecture model of the
datapath shown in Figure 2, by evaluating different
mapping scenarios of the transmitter application shown in
Figure. 1. The functional mapping is showed in Figure 5(a)
where most of the transmitter blocks are hierarchical
resulting in a one to one or many to one mapping with the
architecture cores. The explored design space is specified in
Figure 5(b). We report on the global latency and throughput

effects due to architectural choices such as memory
configuration (single port versus multiple ports),
communication refinement (direct connect versus shared
memory), and FPGA configuration strategies.

A similar exploration is possible in theory with a RTL-
level simulation also, but the cost, in terms of model
development and modification time, would be
unacceptable. The methodology and tool used in this case
study, on the other hand, required only a few hours to
model and simulate each design space point.

The timing views for the functionalities mapped to the
cores and the performance parameters values of memories
and interconnection services were derived from the IPs
documentation and RTL specifications.

TXconf

Adp

Scrambler

FEC
coding

Inter
leaving

Mapping

IFFT

Guard
Insertion

FIR

Adp

MACMAC

TX

FPGA

FIR

Buffer

FFT

MICRO

One Two

Shared
Memory
FPGA����FFT

Direct
Comm.
FPGA����FFT

Buffer:
Nb of Ports

FFT throughput:
¼ Clock Cycle (i=1)
1/1 Clock Cycle (i=2)

SimAi

SimDiSimCi

SimBi

(a) (b)

TXconf

Adp

Scrambler

FEC
coding

Inter
leaving

Mapping

IFFT

Guard
Insertion

FIR

Adp

MACMAC

TX

FPGA

FIR

Buffer

FFT

MICRO

One Two

Shared
Memory
FPGA����FFT

Direct
Comm.
FPGA����FFT

Buffer:
Nb of Ports

FFT throughput:
¼ Clock Cycle (i=1)
1/1 Clock Cycle (i=2)

SimAi

SimDiSimCi

SimBi

(a) (b)
Figure 5. (a) Mapping (b) Design space exploration.
Thus the accuracy of our model, in terms of number of

clock cycles with respect to the “golden” RTL model
available for one of the analyzed scenarios (SimA1), is
better than 10%.

The difference originates mainly from the fact that the
RTL model uses the microprocessor for feeding the FPGA,
while in VCC the microprocessor is not modeled.

The simulation is also very fast. Each test case
described below requires between 4 and 26 seconds to
simulate the transmission of 6 OFDM symbols (depending
on how many probes are added to the mapping for
instrumentation) on a Pentium III 600 MHz machine.

However, the main advantage of the methodology is not
the speed of the simulation (about three orders of
magnitude slower than real time), but the speed of mapping
and refinement changes in order to explore the design
space. This dramatically reduces the precious time devoted
by a designer to this task with respect to RTL modeling.

5.1 Communication Refinement
In Figure 5(b) we show the design space covered by our

first exploration. In this case, we vary the communication
refinement between FPGA and FFT by using shared

memory or a direct connection through the bus. For each
case we also change the access mode to the memory (one or
two access ports with the crossbar). All cases are then
evaluated by using two different FFT throughput estimates
(that correspond to two different FFT architectures).

The results are given in Figure 6. The chart shows the
number of clock cycles (y-axis) for which each core is busy
in each mapping scenario (x-axis). A balanced load, such as
in SimC1 is generally better than an unbalanced one, such
as in SimA1.

0

500

1000

1500

2000

2500

3000

3500

4000

SimA1 SimB1 SimC1 SimD1 SimA2 SimB2 SimC2 SimD2

FPGA FFT FIR

Clk
Cycles 0

500

1000

1500

2000

2500

3000

3500

4000

SimA1 SimB1 SimC1 SimD1 SimA2 SimB2 SimC2 SimD2

FPGA FFT FIR

Clk
Cycles

Figure 6. Results of design space exploration.
We verified that increasing the number of access port to

the memory through the crossbar (SimAi/SimBi or
SimCi/SimDi) does not result in a significant bit rate
improvement.

From these charts, assuming a clock rate of 70 MHz, we
can evaluate the datapath bit rate for a given mapping
(Table 1). Those rates show that at full stream speed not all
the mappings are compliant with the physical layer
Hiperlan/2 specification, which requires a bit rate in excess
of 12 Mbit/sec. However, each one shows different
characteristics that may make it more or less desirable for
other application families, such as low bit rate not-standard
radio. For instance, the scenarios involving the fastest FFT
architecture result in the highest bit rate at the price of a
larger area and power consumption estimate.

The system model today provides only
latency/throughput information, but the architectural
services could be extended to provide also area and activity
(power) information.

Table1. Datapath bit rates (Mb/sec) evaluated for

different mappings.
Sim run A1 B1 C1 D1 A2 B2 C2 D2

Bit Rate 5.8 7.2 8.2 8.2 9.6 13.7 12.5 15.6

5.2 FPGA Alternatives
The next exploration shows that it is possible to evaluate

the cost of adding a new function to the algorithm, and
explore two implementation scenarios involving dynamic
embedded FPGA reconfiguration.

Starting from case SimB2, we expanded the design
space by inserting a new function, called windowing, in the

behavioral network between the cyclic guard and the FIR
functions. This function is used to significantly decrease the
dynamic range of the OFDM signal before transmission.

We modified the functional network as shown in Figure.
7(a). Windowing must act only on the first and last ten
elements of each OFDM symbol. The data flow between
Guard and Fir is thus controlled by the dynamic dataflow
blocks Mux and Demux while the FPGAConf block is
added as a placeholder for the FPGA reconfiguration delay.

(b)

Fir

Mux

Windo
wing

DemuxFFT
Scrambler
->Mapping

FPGA Conf(a)

Guard

0

500

1000

1500

2000

2500

3000

SimB2a SimB2b

FFT

FIR
FPGA

FPGAConf Delay

Clk
cycles

(b)

FirFir

Mux

Windo
wing

DemuxFFT
Scrambler
->Mapping

FPGA Conf(a)

Guard

0

500

1000

1500

2000

2500

3000

SimB2a SimB2b

FFT

FIR
FPGA

FPGAConf Delay

Clk
cycles

Figure 7. Design space exploration with Windowing, (a)

functional network; (b) simulation results.
As shown in Fig. 7(b), we executed two different

simulations by using estimated performance delay for
windowing mapped on FPGA. In the first case (SimB2a),
we assumed to have an embedded FPGA that was large
enough to support simultaneously a configuration with
mapping and windowing, that provides maximum
parallelism, but little area efficiency.

In the second case (SimB2b) we assumed only one
smaller embedded FPGA, which must be reconfigured on
the fly to switch from the mapping function to the
windowing function. This creates a configuration cost
(number of cycles to reconfigure the FPGA) in the
performance evaluation that results in a measurable bit rate
decrease. In Fig. 7(b) we show the performance obtained
when the reconfiguration cost is 500 clock cycles. Thus, in
this exploration, we traded-off the size of the FPGA against
the performance of the system.

6 Conclusions
We applied a design methodology, based on separating

functionality from architecture, and communication from
computation, to a real application and architectural platform
from the wireless networking domain. During this
experiment, we also extended the capabilities of the used
tool to describe the mixed control/dataflow nature of the
application. We applied a methodology that allows one to
refine behavioral dataflow communications onto bus

transactions in the architecture. We also used an intuitive
method to describe timing views for functions mapped to
pipelined hardware.

Further project developments will include a detailed
functional model of the MAC layer and of the
synchronization stage of the receiver, followed by their
mapping on the microprocessor.

Acknowledgements. The Designers of the Central R&D
STMicroelectronics Berkeley Lab and the Engineers of
System Level Design Group from Cadence Design Systems
for the valuable support.

7 References
[1] ETSI TS 101 475. Available at http://www.etsi.org
[2] F. Balarin, et al. “HW/SW Co-Design of Embedded Systems:

the Polis Approach,” Kluwer Academic Publisher, 1997.
[3] B. Kienhuis, et al. “An Approach for Quantitative Analysis

of Application-specific Dataflow Architectures,” Proc. IEEE
Int. Conf. On Application-Specific Systems, Architectures
and Processors, 1997.

[4] E.A.Lee, D.G.Messerschmitt, “Pipeline Interleaved
Programmable DSP’s: Synchronous Dataflow
Programming,” IEEE Trans. on Acoustics, Speech, and
Signal Processing, 1987.

[5] http://www.cadence.com/technology/hwsw/ciertovcc
[6] D.Gajsky, J.Zhu, R.Domer, A.Gerstlauer, S. Zhao. “The

SpecC Methodology”, UC Irvine – TR ICS-TR-99-56, 1999
[7] S.Solden, “Architectural Services Modeling for Performance

in HW-SW Co-Design,” Proc. SASIMI, Japan, 2001.
[8] http://www.systemc.org
[9] T. Demmeler, et al. “Enabling Rapid Design Exploration

through Virtual Integration and Simulation of Fault Tolerant
Automotive Application,”, SAE, 2002.

[10] J.L. Da Silva, et al. “Wireless Protocols Design: Challenges
and Opportunities,” Proc. Int. Workshop on HW/SW
Codesign, 2000.

[11] E.A. de Kock, et al. “YAPI: Application Modeling for Signal
Processing Systems,” Proc. DAC 2000.

[12] G. Kahn, “The semantics of a simple language for parallel
programming”, Information Proc., J.L. Rosenfeld, Ed. North
Holland Publishing, Co.,1974

[13] J.T. Buck, et al. “Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems,” International Journal
of Computer Simulation, 1994.

[14] J. T. Buck,, R.Vaidyanathan, “Heterogeneous Modeling and
Simulation of Embedded Systems in El Greco,” Proc. Int.
Workshop on HW/SW Codesign, 2000.

[15] http://www.synopsys.com/products/dsp/dsp.html
[16] V. George, H. Zhang, J. Rabaey. “The design of a Low

Energy FPGA”, Proc. Int. Symposium on Low Power
Electronics and Design, 1999.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

