
Fastand Accurate Multipr ocessorAr chitecture Exploration with
Symbolic Programs

Vladimir D. Živković
EdDeprettere

LIACS- LeidenUniversity
TheNetherlands�
lale,edd� @liacs.nl

Erwin deKock
PietervanderWolf

PhilipsResearchLaboratories
TheNetherlands�

erwin.de.kock,pieter.van.der.wolf � @philips.com

Abstract

In system-level platform-basedembeddedsystemsde-
sign,themappingmodelis a crucial link betweentheappli-
cationmodeland thearchitecture model. All threemodels
mustmatch whendesign-spaceexploration has to be fast
and accurate, and whenexploration methodsand design
methodshaveto becloselyrelated.For themediaprocess-
ing application domainwe presentan architecture model
andcorrespondingmappingmodelthatmeettheserequire-
mentsbetterthanpreviouslyproposedmodels.A casestudy
illustratesthis improvement.

1. Intr oduction

Theincreasinginterestin embeddedsystemshasheight-
enedtheneedfor methodologiesandtoolssuitablefor mod-
elling, simulation,and designof embeddedsystems. We
focuson heterogeneousembeddedsystems,i.e., thosethat
mix programmable,configurable,and dedicatedcompo-
nents. Thesesystemsareof particularinterestsincethey
areusedasunderlyingplatformsin multimediaandcom-
municationsproducts. Such embeddedsystemstend to
becomeincreasinglycomplex and they are not easily de-
signed. More andmorethey have to meetnon-functional
constraintsthatdesignershave to incorporatein their mod-
els. Modelsbecomemoreaccuratewhenmoredetailsare
added. However, this also increasessystemmodeldevel-
opmentandsimulationeffort and time. To overcomethis
problem,theevaluationof designchoicesshouldbemoved
to theearlyphasesof thedesignprocess.Thecostof model
constructionandmodelevaluationis loweratthehigherlev-
elsof abstraction,suchthat therearemoreopportunitiesto
explore alternative realizationsat theselevels. Therefore,
methodologiesthat dealwith the explorationof embedded
systemsat thesystemlevel areof interest.

We assumein this paperthat the Y-chart approach[1]

is followed. Thus,the application,architecture,andmap-
pingmodelsareseparatedin threelayers,eachbeingspeci-
fiedappropriately. Giventhattheapplicationsof interestare
streamingbased,weassumethatthey arespecifiedasKahn
ProcessNetworks (KPN) [2]. A KPN is oneof many so-
calledModelsof Computation(MoC). A KPN consistsof
executableprocessesthatcommunicatepoint-to-pointover
unboundedFIFO channelsand synchroniseby meansof
blocking reads. The mappinglayer receivesa representa-
tion derived from the KPN applicationmodel, and trans-
forms this representationto a representationthat matches
morecloselythe architecturemodelonto which the appli-
cationis to bemapped.

In [3] we investigatedDesign-SpaceExploration(DSE)
approachesfor streamingapplications. We observed that
the exploration approachesmainly differ in terms of the
mappinglayerrepresentations.We identifiedtwo extremes,
onebeingthesymbolicinstructiontracerepresentation,the
otheronebeingtheexecutablecontrol data-flowgraphrep-
resentation.Theformerrepresentationhasled to theTrace
Driven (TD) co-simulationexplorationapproach,whilst the
latter representationis the designer’s approachwe refer to
as the Control Data-Flow Graph (CDFG) approach. For
example,in the SPADE framework [4] the mappinglayer
transformsapplicationtracesto architecturetraces. Sim-
ilarly, but not strictly accordingto the Y-chart, tools pre-
sentedin [5] transformCDFGs.

Thesetwo extremeapproacheseachhavetheir own pros
andcons.To beginwith, thetwo approachesaimatdifferent
objectives(explorationvs. design)that arehardto recon-
cile. Next, theCDFGrepresentationis morepowerful than
theTD representationbecausein CDFGscontrolconstructs
arepresentand the representationcoversall datasets. In
the TD representationonly the datadependentresultsof
control constructsare represented.However, the CDFG
representationhastwo drawbacks:(1) CDFGsareusually
morecomplex thansymbolicinstructiontraces,and(2) the

1530-1591/03 $17.00 2003 IEEE

CDFGrepresentationis anexecutablerepresentation:map-
ping this representationinto anarchitectureimpliesthatthe
architecturemodelhasto capturebothfunctionalbehaviour
andtiming behaviour. Therefore,thelevel of reusabilityof
architecturesfor differentCDFGsis restricted.Simply, dif-
ferentapplicationsassumedifferentCDFGrepresentations,
and,hence,differentarchitectureCDFGs.Stepby step,the
designermovesto the detaileddesignstages,andhe over-
looks other designchoices. This resultsin a longer time
neededfor DSE.Thelimitation of theTD representationis
apparentin e.g.,theSPADE explorationframework, where
the communicationaspectsof the non-functionalarchitec-
ture modelsarevery closeto communicationstructureof
the applicationmodels. Sincelimited information is cap-
turedin thetraces,only simpletransformationscanbeper-
formed. Of course,thereis nothingwrong with this tight
couplingbetweenapplicationandarchitecturemodelswhen
they do matchas required. However, a typical “generic”
modelof architecture (MoA) is not theKahnMoC. Hence,
MoC andMoA do not match.Therefore,mappingrequires
moreinformationthanonly tracesof symbolicinstructions.

In [3] we proposeda hybrid representationof theappli-
cationmodelasan input to the mappinglayer that unifies
thebestof theTD andtheCDFGrepresentations.In short,
theapplicationmodelrepresentsitself to themappinglayer
in termsof asymbolicCDFGcalledsymbolicprogram(SP)
- asopposedto symbolicinstructions- plusa control trace
in which the outcomesof conditionalconstructsare con-
veyedto themappinglayer. In addition,thesymbolicpro-
gram allows the annotationof possiblyparallel symbolic
instructions,i.e., offersa coarsemodelof instructionlevel
parallelism. Becausethis representationis morepowerful
thanthelinearsymbolicinstructiontracerepresentation,the
architecturemodel,in particulartheprocessingunit model
is morepowerful.

At a first glance,a symbolicprogrammay look similar
to DF* andgrey boxmodels[5]. However, theDF* models
arefor synthesismainly, while with the symbolicprogram
weaimat DSEtoo. Moreover, it seemsthatdesignersmust
possesasolid“know-how” in orderto beableto deriveDF*
models.On thecontrary, symbolicprogramscanbeeasily
generatedautomaticallyfrom an alreadyavailableprocess
network. Thus,DF* andgrey boxmodelsarecloserto con-
trol data-flow graphsthanto symbolicprograms.

The restof the paperis organisedasfollows. First, we
givesomegeneralremarksaboutsymbolicprogramsin Sec-
tion 2. Thearchitecturemodelsuitablefor thecorrespond-
ing DSEapproachis describedin Section3. In Section4 we
presenttheperformance/costnumbersobtainedwhenusing
thesemodelsin a simple,yet representativecasestudy. Fi-
nally, wedraw someconclusionsin Section5.

2. The Symbolic Program Approach

On the left-handsideof Figure1, the typical sequence
of activities usinginstructiontracesis depicted.After the
sourcecodeof anapplicationmodelis annotated,themodel
is executedon a single data-set. Tracesof the execution
of an applicationmodel are collectedand transformedto
architecture-level traces,which are then consumedby an
architecturesimulator.

Simulator

Generator
Trace

Trace

Trace’

Transformations
CDFG

Generator
CDFG

CDFG

CDFG’

Trace’

Program’

Symbolic

Program

Symbolic

Trace
Control

Architecture

High ACCURACYLow ACCURACY

High SIMULATION SPEED Low SIMULATION SPEED

Data
Simulator

Architecture

B

A C

Application model (YAPI)

Compile

SP Approach

(annotated) YAPI code YAPI (source) code(annotated) YAPI code

CDFG Approach

T
 R

 A
 N

 S
 F

 O
 R

 M
 A

 T
 I

O
 N

S

 T
 E

 P
 S

YAPI (source) code

Instruction
StreamStream

Data

Ctrl. Trace

TD Approach

Architecture
Simulator

Data Data
Generator Generator

Symb. Prog.

Control
Trace’

Transformations Transformations
Symb. Prog.Ctrl. Trace

Trace
Generator

Trace
Transformations

OBJ. code

Figure 1. The SP Hybrid mapping appr oach

Similarly, on theright-handsideof Figure1, thetypical
flow of activities usingcontrol data-flow graphsis shown.
Thesourcecodeof anapplicationmodelis parsedandthe
structureof applicationprocessesis preservedin a form of
CDFGs.TheCDFGsarethentransformedduringmapping
onto the specifiedarchitecture.The resultingCDFGsare
compiled/synthesisedinto the implementationmodel(e.g.,
anobjectcodeorahardwaremodel),whichis thenexecuted
an architecturesimulator. During this executiona data-set
is processed,asopposedto the instructiontraceapproach
describedformerly.

Finally, in themiddleof Figure1, thesymbolicprogram
flow is shown. Thisapproachhasemergedin aneffort to ob-
taina fastandaccurateexplorationapproachthatis closeto
thedesigntrajectory[3]. As expected,symbolicprograms
arelocatedsomewherein-betweenthe two extremesmen-
tionedabove.Ononehand,symbolicprogramsareobtained
in asimilarwayascontroldata-flow graphs- by parsingthe
applicationsources. On the other hand,control informa-
tion is obtainedby gatheringthe control tracesthat come
outof theexecutionof anannotatedapplicationmodel.The
control-traceis, of course,valid for a singledata-set,since
the data is processedprior to the architecturesimulation.
As a consequence,thearchitecturemodeldoesnot needto
capturethe functionalbehaviour, while still being able to
handledatadependentbehaviour correctly[4].

Figure 1 also shows the positioning of the three ap-
proacheswith respectto accuracy and simulation speed.
Symbolicprogramsallow designers(1) to performdesign-
stepsasin thecaseof detaileddesign(indicatedwith dashed
linesin Figure1), (2) to runfastsimulationsof architectures
beingexplored,and(3) to havemoreaccuratenumbersthan
in thecaseof trace-drivensimulations[6]. An examplewith
the pseudocodeof a symbolicprogramandits correspon-
dencewith realsourcecodeis shown in Figure2. Thelist-
ing on the left side givesa pieceof the C++ codewhich
specifiesthefunctionalityof oneKPN process.Thecontrol
flow andthecoarsecommunicationandcomputationarein-
dicatedwith bold letters,while theothercodeis abstracted.
Suchabstractionleadsusto thelisting in themiddle,which
is the symbolicprogramof the original specification. Fi-
nally, the symbolic CDFG on the right side in Figure 1
shows the CDFG-like equivalent of the derived symbolic
program.

LOOP [cond 2 (parameters)] {

LOOP [cond 1 (parameters)] {

R11 (parameters, size) ; }
R13 (parameters, size) ||

SELECTION [cond 4 (par.)] {

R11 (parameters, size) ; }

R12 (parameters, size) ||

SELECTION [cond 3 (par.)] {

W19 (parameters, size) ; }

SELECTION [cond 6 (par.)] {

W18 (parameters, size) ; }

W19 (parameters, size) ||

SELECTION [cond 5 (par.)] {

{

}

}
}

E0 (parameters, stages);

}

The source code of the ND5 process A Symbolic Program of the ND5 process A Symbolic CDFG

T

T

T

k < T

j < N

j > 0

R11 R11

ND5

R12 R13

j < N−1

W19

EXECUTE

W19W18

for (j=0; j<N; j++) {

void ND5 :: main () {

for (k=0; k<T; k++) {

/* block of code */

/* block of code */

/* block of code */

exec("vectorize",a,b,c,d);
if (j<N−1) {

/* block of code */

write (out19, c);

/* block of code */

write (out18, d);
write (out19, c);

/* block of code */
} else {

if (j>0) {

/* block of code */

read (in11, b);
read (in13, a);

/* block of code */

/* block of code */

read (in11, b);
read (in12, a);

/* block of code */
} else {

}

/* block of code */
}

}
}

Figure 2. An example symbolic program

3. The SymbolicProgram Ar chitectureModels

In theprevioussectionwe have motivatedthesymbolic
programapproach.Herewe elaborateon architecturemod-
els that supportthe evaluationof the timing behaviour of
systemsbeingdesigned.Therearea few key issuescon-
cerning architecturemodelsfor system-level exploration:
(1) easeof modelling, (2) accuracy, and (3) simulation
speed.The accuracy is determinedby modellingcapabil-
ities. Modelling restrictionsmayhampercorrectmodelling
andleadto inaccurateresults.

Particularly, we focus on systemsbasedon execution
units connectedvia a point-to-point communicationnet-
work. In themodel,theunitscommunicatetokens,sodata
is not really processedat the architecturelevel. We also
assumethat executionunits do not supportmultitasking.
However, we want to underlinethat this is just a first it-
erationof our work, andthatin thenearfuturewe will also
coverothertypesof communicationnetworksaswell asan

explicit modelof sharedmemory. Wewill alsosupportmul-
titaskingonexecutionunits.

Starting from an available processnetwork, e.g., the
KPN network1 shown in Figure3, a designercandescribe
andexamineanarchitectureinstanceusingasetof symbolic
programmoduleswe currentlyprovide. Sucharchitecture
instanceis shown in Figure4. Therearethreebasicgeneric
architecturemoduletypes:

1. SymbolicProgramUnits (SPU),

2. Read-or-Write Interfaces,and

3. First-In-First-Out(FIFO)buffers.

ND4ND3ND2ND1

Figure 3. An application PN (QR unf old 1)

While the purposeof symbolicprogramunits is to model
the instructionlevel parallelism2, the purposeof the other
two modulesis to allow modellingof tasklevel parallelism
thatis usedby executingdifferenttasksondifferentSPUsin
parallel.In therestof thissectionwedescribetheproperties
of eachof thesemodules.

Program
Symbolic

Unit
Program
Symbolic

Unit
Program
Symbolic

Unit

F
IF

O

F
IF

O

F
IF

O

F
IF

O

F
IF

O

F
IF

O

F
IF

O

F
IF

O

F
IF

O

Program
Symbolic

Interface
WriteRead

Interface
Write Read

Interface
Write

Interface
Write

Interface

Unit

Interface

F
IF

O

Point−To−Point
Communication

Network

Figure 4. A symbolic program architecture

3.1. The SymbolicProgram Unit - SPU

The aim of the symbolicprogramunit is to allow high-
level modellingof boththeinstructionlevel parallelismand
the reuseof availableprocessingresources.The resultsof
thecasestudyperformedin [6] indicatethat thehigh-level
tracedrivenexecutionunit in [4] hasto be modifiedin or-
derto beableto handleboththehorizontal(VLIW-like)and
vertical (superscalar-like)typesof parallelism.Weneedthe
modellingsupportfor both typesof parallelismdueto the
fact thatembeddedplatformsareheterogeneous.However,
descendingdown to the lower levels of abstractionwould

1Circlesindicateprocesses,edgesindicateinfinite FIFOs.
2Actually, SPUsmodelhigh-level manifestationsof ILP.

make this unit too dedicated,inflexible and, hence,not
reusable.We provideasolutionto thisproblemby combin-
ing theconceptof symbolicprograms[7] andthesimulation
engineof SystemC[8]. Note thatsymbolicprogramarchi-
tecturesarenon-functionalasmentionabove.Thesymbolic
programunit containsparallelprocessingresourcesthatare
parametrised.On onehand,this internalparallelismof the
architecturemoduleallowsaflexible deploymentof thepo-
tentially parallelloadoriginatingfrom theapplicationpro-
cess,andthus,it allows designersto modelbothstaticand
dynamicinstructionscheduling[9] at a very high-level of
abstraction. On the other hand, the potentialparallelism
available at compile time is easily expressedusing sym-
bolic programs.Jointly, thesetwo propertiesresult in the
symbolicprogramunit thatis illustratedin Figure5.

Theunit in Figure5 canbedividedin two parts:(1) the
front-endpart that schedulesthe programon the available
resources- a numberof Read,Write, andExecuteUnits -
and(2) theback-endpartthatdispatchestheinstructionsto
theseresources.Front-endand back-endpartscommuni-
catevia the finite FIFO buffer3, called instructionstream.
The width of eachbuffer cell is definedby the numberof
resourcesand,from thehighlevel pointof view, determines
whethera VLIW-like or a superscalar-like moduleis to be
instantiated.Thefront-endpartresemblesa conditionalex-
ecution,while theback-endpartresemblesanunconditional
executionof instructions.

SYMBOLIC PROGRAM UNIT

DEPENDENCY
TABLE

SYMBOLIC
PROGRAM

**

R11

R13

R11

R11

R12

R12

E0

E0

W19

W18

RUN−TIME

LAYER

MAPPING

Symbolic

Program File

OFF LINE

PE Specification Info

in Architecture Spec. File

OFF LINE

Mapping Specification Info

in Mapping Spec. File

OFF LINE

R11trace
control R11

R11

W19

R13
E0

R12E0
R12

W18

*

BACK END PARTFRONT END PART

BACK END

CONTROLLER

(SC_THREAD)

CONTROLLERUNIT

EXECUTE WRITEREAD

UNIT

(SC_THREAD)

UNIT

PROGRAM

UNIT
(SC_THREAD) (SC_THREAD) (SC_THREAD)

(SC_THREAD)

FRONT END

synchronization layer

Figure 5. The symbolic program unit model

The front-endis subdivided in two units,eachof which
have an independentthreadof execution. Theseare (1)
theProgramUnit, thatparsesthesymbolicprogram,reads
the control trace,and generatesthe streamof potentially
parallelsymbolic instructions,and(2) the Front-EndCon-
troller, which restrictsthis “partial order” of symbolic in-
structionsinto theonethatcanbehandledby theavailable
resources.Theprogramunit andfront-endcontrollercom-
municatevia aFIFObuffer4. Thesizeof thebuffer restricts
thenumberof symbolicinstructionsthat canbe fetchedin
advance.Sincemultiple symbolicinstructionsarenow al-
lowed to be processedin parallel it is easierto exploit at

3TheinstructionstreamFIFO buffer is markedwith � in Figure5.
4This FIFObuffer is markedwith ��� in Figure5.

run-timethecompile-timetransformationsthatexposesuch
parallelism[10] on symbolic programsthan on symbolic
instruction traces. Additionally, in order to facilitate the
overlappingof executionof symbolic instructionsin hard-
ware,thesameunit buildsa randomlyaccessibletablewith
dependenciesamongsymbolicinstructionsthatarealready
fetchedby thefront-endcontrollerbut arenotcompletedby
theback-endcontroller.

The back-endpart consistsof the Back-EndController,
thatdispatchestheworkloadandsynchronisestheoperation
of the resourceswith the input flow of symbolic instruc-
tions,andanumberof read,write,andexecuteunits.Again,
all unitshave their own threadof execution.Theback-end
controllercanuseinformationaboutdependenciesamong
thependingsymbolicinstructionswhich is availablein the
table.Therefore,it canperformrun-timereordering,which
is equivalentto superscalarexecution[9]. As a result,both
thereadandthewrite unitscanbereusedby differentread
or write symbolicinstructions(respectively).

3.2. Communication Interfaces

Communicationinterfacesconnectsymbolic program
unitsandFIFOs.Weillustratethiswith atypical “producer-
consumer”connectionin Figure6.

INTERFACE

WRITE
FIFO

INTERFACE

READ
FIFO

ConsumerProducer

SPU SPU
FIFO

Figure 6. Comm unication refinement

An interfacerefinesa task-level communicationinto ex-
plicit buffer synchronisation(dashedarrows in Figure 6)
anddata-transfer(white arrows in Figure 6). The idea is
to split coarsereadandwrite instructionsinto finer grained
primitives for explicit synchronisationand data-transfer,
and consequently, to allow overlappingof different syn-
chronisationinstructions[11]. Additionally, interfacessup-
port connectionsbetweenreusablereadandwrite units at
one side and communicationchannelsat the other side.
Sincesymbolicprogramunits may reorderinstructions,it
is necessaryto matchsourcesanddestinationsof the pro-
ducedtokens. To this end,a small cross-barswitch inter-
connectnetwork is needed.This is illustratedin Figure7
for thecaseof theReadInterface(thesimilar holdsfor the
Write Interface).

Therearetwo typesof modulesthatcanberecognisedin
the interfacemodelintroducedin Figure7: (1) a FIFO In-
putController, whichreceivestherequestsfrom aparticular
readunit, andconfiguresthe connectionbetweenthe read
unit andthe correspondingFIFO channel,and(2) a FIFO
InputUnit, whichinterfacesthecommunicationbuffer from
onesideandthereadunit masterontheotherside.Thetype
of communicationbetweenthe readunit andthe FIFO in-
put unit is a pull handshake (i.e., the receiver is a master

and the senderis a slave), while the type of the commu-
nicationbetweena write unit anda FIFO outputunit is a
pushhandshake(i.e., thesenderis amasterandthereceiver
is a slave) [12]. On the other hand, the FIFO input unit
communicateswith its counterpartin a peerinterface(i.e.,
the FIFO outputunit) usingbuffer synchronisationprimi-
tives[11]. For example,whentheoutputunit writesa token
to aFIFO, it will signaldatato its inputcounterpart,which
maybe in a blockedstatebecauseit performedcheck data
previously. A vice-versaexample is when the input unit
readsa token from a FIFO, it will signal room to its out-
put counterpart,which maybein a blockedstatebecauseit
executedcheck roompreviously.

Fifo
Input
Unit

Fifo
Input
Unit

Fifo
Input
Unit

Fifo
Input
Unit

Fifo
Input
Ctrl

Fifo
Input
Ctrl

Fifo
Input
Ctrl

Read
Unit

Read
Unit

Read
Unit

SPU

Crossbar

READ (FIFO) INTERFACE

FIFO

FIFO

FIFO

FIFO

Figure 7. The Read Interface

Finally, all interfaceunitshaveanindependentthreadof
execution. The interfacedescription(the numberof units
theinterfacecontains)togetherwith themappingfile (map-
ping of application ports onto the architecture/interface
ports)constitutetheinputparametersfor this module.

3.3. FIFO Communication Buffers

The FIFO CommunicationBuffer is characterisedby
two parameters:(1) adelayand(2) abuffer-size.Thebuffer
sizerepresentsthecapacityof thebuffer.

We split thebuffer delayin two parts:(1) thepartthatis
incorporatedin thebuffer controllers(seeSection3.2) and
(2) thepart thatrepresentsthedelaythathasto passbefore
thenotificationof anevent is recognisedby blockedbuffer
controllers. Thus,we take into accountthe total commu-
nicationdelayinsteadof just thedelaycausedby blocking
(synchronisation).

Additionally, insteadof usingthecoarseread/writecom-
municationprimitives,our buffer modelusesthe synchro-
nisation and data-transferprimitives introducedin [11].
Hence,our FIFO CommunicationBuffer model is more
refinedand containsmore details than the SPADE buffer
model[4].

4. An Example CaseStudy

In orderto verify theaccuracy of our symbolicprogram
approach,we reusedthe casestudy reportedin [6] where

the parallelisedversionof the adaptive QR algorithmwas
mappedon anFPGAboard.Theadaptive QR algorithmis
usedin thedomainof signalprocessing,e.g.,for theadap-
tive beam-formingwith multiple antennas[6]. For more
detailedinformationabouttheQR algorithm,see[13]. We
briefly describethebenchmarkin thenext subsection.After
that,wedescribethecaseswe examined.

4.1. The Benchmark

The QR algorithmwasgiven in an abstractrepresenta-
tion andthenpartitionedinto aprocessnetwork asin Figure
3 usinga tool calledCOMPAAN [14]. TheQR processnet-
work wasmappedon theFPGAboardafterwards.Thesys-
temarchitecturewasspecifiedsimilarly to theoneshown in
Figure4. Eachprocesswasmappedon a singleprocessing
unit, while processingunits communicatedthroughfinite
FIFO buffers. Additionally, eachprocessingunit wascon-
figuredto performseveraloperationsin parallel,andFIFO
accessescoming from different units were pipelined. Fi-
nally, thesizeof theFIFO bufferswassetto thevaluethat
guaranteesdeadlock-freeexecution.

Table 1. Previous results�����
	������������ ��� unfold1 unfold3 unfold5 t

FPGA 29281 9771 6111 � 10h
SPADE 6049 2021 1285 � 10m

SPADE+R/W 107395 35951 22474 � 30m

The systemwas instantiatedfor threedifferentprocess
networks describedin [15] and [6]: the QR network with
the unfold factorsequalto 1, 3, and5, respectively. The
unfoldfactor assumesthat thenested-loopprogramsof the
original network areunfoldedby this factor. Suchtransfor-
mationis knownasa loopunrolling [16] andis usedin com-
pilers in orderto increasethe instruction-level parallelism.
However, in [15] this transformationwasusedto increase
task-levelparallelisminsideapplicationnetworks.Thesim-
ulationresultsin cyclesandapproximativesimulationtimes
aregivenin Table1. TheFPGAcaseis a referenceto both
mappingand very detailedVHDL cycle accuratesimula-
tion [15] [6]. As onecansee,althoughin theSPADE case
simulationstook significantly lesstime than in the FPGA
case,theaccuracy of theSPADE simulationswasvery low.

4.2. Experimentsand Results

We alsoappliedour symbolicprogramapproachto the
casestudiesreportedin [15] and[6]. We examinedcases
which illustrateeffectsof limited modelsandalsoin which
modelsareflexible enoughto capturecharacteristicsof the
realarchitecture.Concretely, in Table2, Case1 illustrates
symbolicprogramunitsthatscheduletheirprogramspurely

sequentialand that communicatevia non-pipelinedFIFO
buffers. Case2 illustratessymbolicprogramunits thatbe-
have like VLIWs andthat communicatevia non-pipelined
FIFO buffers. Case3 illustratesa moreaccuratemodelof
the real architecturein which the symbolicprogramunits
behave like VLIWs andcommunicatevia pipelinedFIFO
buffers.

SimulationwasperformedusingtheSystemCsimulation
engine[8]. Simulationresultsandthecorrespondingsimu-
lation timesareshown in Table2.

Table 2. Our results�����
	������������ ��� unfold1 unfold3 unfold5 t

case 1 107951 36111 22590 � 10s
case 2 41073 13787 8653 � 10s
case 3 29458 9884 6202 � 10s
Theresultsshown in Table2 leadto thefollowing obser-

vations:(1) thesymbolicprogramapproachveryaccurately
modelthereality, and(2) themodelscanmoreeasilyrepre-
sentbothapplicationandarchitecturepropertiescompared
to instruction tracesusedin [4]. We assumethat the re-
ality is representedby the FPGA numbersgiven in Table
1. By comparisonof theFPGAnumberswith thenumbers
for Case3 given in Table2, we supportthe former obser-
vation. Theclarificationof the laterobservationrequiresa
bit moreexplanation. In [3] we conductedan exploration
on a conceptuallevel aboutthe possiblecausesfor the in-
accurateresultsshown in Table1. The preliminaryresults
showed that inaccuraciesaremainly dueto the lack of the
modellingcapabilitiesin [4]. Onthecontrary, ourapproach
exploits multithreadingin symbolicprogramunits andthe
expressivenessof oursymbolicprograms.Furthermore,the
symbolicprogramsarefully scalableandparametrised,and
thus,fully generic.Sinceeachunit hasits own threadof ex-
ecution,onecaneasilycheckthetime thateachunit spends
in eachstate,andtherefore,caneasilydetectwhetherunits
areunder-utilised. Suchunits areun-necessarilyallocated
units, i.e. over-designed. Finally, the simplicity of sym-
bolic programsallowseasyparsingandmodificationsfrom
afully-sequentialto a VLIW-likeschedule.

5. Conclusion

In this paper we have presentedarchitecturemodels
for design-spaceexplorationof embeddedsystems.These
modelsare built in a genericway, so they can be used
to modelvariousarchitecturecharacteristics.Further, the
modelscancapturemostof the parallelismthat designers
canexpressatcompiletime. This is dueto thefactthatthey
usesymbolicprogramsasapplicationworkloadinsteadof
tracesof symbolic instructions.We verified our modelby
regeneratingthealmostexactresultsof anearliercasestudy

[6]. ThemodelhasbeenimplementedusingSystemC[8],
whichmakesit reusablefor awidersystem-designcommu-
nity.

6. Acknowledgements

Thiswork wasperformedin partin theArcher project,
fundedby PhilipsSemiconductors.Wewantto thankBern-
hardNiemann(FraunhoferInstitutefor IntegratedCircuits,
Germany) for his advisesconcerningSystemC.

References

[1] B. Kienhuis,et al., ”An Approachfor Quantitative Analysis
of Application-specificDataflow Architectures,” in Proc.of
ASAP’97, July, 1997.

[2] G. Kahn, ”The semanticsof a simplelanguagefor parallel
programming,” Informationprocessing74 - North-Holland
PublishingCompany, 1974.

[3] V. Živković et al., ”DesignSpaceExplorationof Streaming
MultiprocessorArchitectures,” atSiPS’02, USA,Oct.,2002.

[4] P. Lieverseet al., ”A methodologyfor architectureexplo-
rationof heterogeneoussignalprocessingsystems,” in Proc.
SiPS’99, Taiwan,Oct.1999.

[5] N. Cossementet al., ”DF*: An extensionof synchronous
dataflow with data dependency and non-determinism,” in
FDL’00, Germany, Sep.2000.

[6] T. Harrisset al., ”Compilationfrom Matlabto ProcessNet-
works Realizedin FPGA,” in the 35th Asilomar Conf. on
Signals,Systems,andComputers, US,Nov. 2001.

[7] J. Larus, ”Abstract execution: A techniquefor efficiently
tracingprograms,” Soft.Practice& Experience, Dec.,1990.

[8] ”SystemCVersion2.0User’s Guide,” Synopsys,Inc., CoW-
are Inc., FrontierDesign,Inc., http://www.systemc.org/

[9] J.Hennessyetal.,ComputerArchitecture- A QuantitiveAp-
proach, MorganKaufmannPublishers,1996.

[10] M. Lam, ”Software Pipelining: An Effective Scheduling
Techniquefor VLIW Machines,” in Proc. of SIGPLAN’88,
USA, June,1988.

[11] P. Lieverseet al., ”A TraceTransformationTechniquefor
CommunicationRefinement,” in Proc. CODES’01, Den-
mark,Apr. 2001.

[12] A. Peeters,”Single-Rail Handshake Circuits,” PhD thesis,
TechnischeUniversiteit Eindhoven, theNetherlands,1996.

[13] J. Proakiset al., ”Algorithms for StatisticalSignalProcess-
ing,” PrenticeHall, Inc., 2002.

[14] A. Turjan et al., ”The CompaanTool Chain: Converting
Matlabinto ProcessNetworks,” in DATE’02, France,2002.

[15] T. Stefanov et al., ”Algorithmic TransformationTechniques
for Efficient Exploration of Alternative Application In-
stances,” in Proc.CODES’02, USA, May, 2002.

[16] S. Muchnick, ”AdvancedCompilerDesignandImplemen-
tation,” MorganKaufmannPublishers, Inc., 1997.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

