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In a large circuit it is common to find that an output of the circuit
depends structurally on a proper subset of the circuit inputs. We
use this observation to provide test data compression. The pro-
posed approach can be used in addition to test data compression
techniques based on encoding.

Structural output dependence is utilized in this work to
provide data compression as follows. Consider a test set T that
needs to be applied to the circuit. Suppose that the circuit inputs
can be divided into subsets A 0,A 1, . . . ,Am −1 such that for every
circuit output bj there exists an input subset Ak satisfying the
condition that bj depends only on inputs in Ak . For simplicity,
we also assume that all the subsets Ak contain the same number
of inputs, denoted by NA (later we will ensure that this condition
is satisfied). The value of NA is determined by the output that
depends on the maximum number of inputs. Let the number of
circuit inputs be NC . If NA << NC , it is possible to use the input
subsets in order to reduce the amount of input test data by load-
ing into the circuit patterns of length NA instead of loading pat-
terns of length NC .

There are two issues to consider in this scheme: (1) the
computation of a set of patterns P of length NA that will be
loaded to the circuit, and (2) the computation of tests for the cir-
cuit based on the set P . We discuss these issues next.

In the worst case, to ensure complete fault coverage, we
must include in P a set of patterns Pk based on T for every input
subset Ak . For every test t ∈ T , Pk contains a pattern pk that
consists of the values assigned by t only to the inputs in Ak . For
example, if T = {00011, 11100}, the circuit inputs are
a 0, . . . ,a 4, and A 0 = {a 0,a 1,a 2}, we have P 0 = {000, 111}; and
for A 1 = {a 0,a 2,a 4} we have P 1 = {001, 110}. The set
P = ∪k =0

m −1Pk is guaranteed to allow us to detect the same faults
as T if each pk ∈ P is expanded and applied to the input subset
Ak for which it was derived. For example, 000 ∈ P 0 should be
expanded into 000xx , while 001 ∈ P 1 should be expanded into
0x 0x 1. In this case, compression results from the fact that input
patterns of length NA (instead of NC ) need to be loaded. How-
ever, the number of patterns in P may be larger than the number
of tests in T since each test in T contributes multiple patterns to
P . This may limit the level of compression that can be achieved.

To provide a higher level of compression, we observe that
every pattern in ∪k =0

m −1Pk can be used to define m tests for the
circuit, one for every subset of inputs Ak . For example,
p = 001 ∈ P 1 above defines a pattern of the form 001xx with
respect to A 0, and 0x 0x 1 with respect to A 1. When every pattern
in P is used for defining several tests, not all the patterns in
∪k =0

m −1Pk may be necessary in order to achieve complete fault
coverage. We define a set of patterns P ⊆ ∪k =0

m −1Pk , which is a
� ���������������������������������������
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minimal set of patterns necessary for achieving complete fault
coverage. Thus, we take advantage of the ability to use p ∈ P
to define multiple tests, in order to reduce the size of P and
improve the level of compression.

The level of compression is as follows. The size of P (in
bits) is NA | P | . The size of the given test set T is NC | T | . Thus,
the level of compression is (NA | P | )/(NC | T | ). If NA is
sufficiently smaller than NC and P is sufficiently small com-
pared to T , storage of P requires fewer bits than T . This can be
used to provide input test data compression.

The use of P instead of T requires the inclusion on-chip
of a distribution block. Depending on the subset Ak , the distribu-
tion block will apply the patterns in P to the appropriate circuit
inputs. A circuit with a distribution block DIST is shown in Fig-
ure 1. The distribution block transforms an input pattern p of
length NA into input patterns of length NC of the circuit-under-
test (CUT ) by applying p to the appropriate inputs and assigning
arbitrary (random) values to the remaining inputs.

DIST CUT

NA

. . .

NC

. . .

Figure 1: Output dependence based compression
It should be noted that the number of tests applied to the

circuit under the proposed approach is m | P | , where m is the
number of input subsets. Thus, the total number of tests applied
to the circuit may be higher than the number of tests in T , and
the test application time may be higher as well. The approach
proposed here is therefore applicable in instances where test
storage is a limiting factor, while an increase in test application
time is acceptable. It should be pointed out that application of a
larger number of tests achieves multiple detections of faults,
which is known to lead to a higher defect coverage.

To partition the circuit inputs into subsets, we apply the
following procedure. Initially, we define a set of input subsets α
where for every output bj we include the subset of inputs A j that
drives output bj . We remove from α every subset Ai ∈ α which
is contained in another subset A j ∈ α. We then merge as many
subsets in α as possible without increasing the subset sizes
beyond NA . After merging subsets, we may again have a subset
Ai which is contained in another subset A j . We remove all sub-
sets such as Ai from α. Finally, if any of the subsets in α con-
tains fewer than NA inputs, we add inputs to it arbitrarily until its
size reaches NA . This is done to simplify the construction of P ,
which will contain patterns of a uniform length NA .

Given a set of input subsets α = {A 0,A 1, . . . ,Am −1} with
NA inputs in each subset, an input pattern p of length NA is used
as follows. The pattern p is applied to every input subset Ai .
When p is applied to Ai , the inputs in Ai are assigned values
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according to p , while the remaining inputs are assigned arbitrary
(random) values. The set of faults detected by p is determined
by simulating p m times, once for every subset Ai . For a set of
input patterns P of size | P | , we apply to the circuit m | P |
input patterns obtained by expanding every p ∈ P with respect
to every Ai ∈ α.

To support this test application scheme, the distribution
block consists of the following components. The inputs of the
distribution block are p 0, . . . ,pN

A

that form a pattern

p = p 0
. . . pN

A

∈ P . The outputs of the distribution block are

connected to the inputs of the CUT , a 0, . . . ,aN
C
−1. A counter

that counts from 0 to m −1 determines the subset of CUT inputs
to which p will be assigned. A register r = r 0r 1

. . . rN
C
−N

A
−1

determines the values of the CUT inputs that are not included in
the subset to which p is applied (an LFSR producing random
values is a good choice for r ). For every CUT input ai we have
a multiplexer that determines, depending on the state of the
counter, whether the input is assigned a bit from p or a bit from
r .

Next, we describe the derivation of a set of patterns P
based on a test set T using a set of input subsets α. Construction
of P proceeds in two phases. In the first phase, we include in a
set P̂ candidate patterns extracted from the given test set T .
Before adding a pattern p to P̂ , its expanded patterns with
respect to the subsets in α are simulated. A pattern p that does
not help in detecting new faults is not included in P̂ . The con-
struction of P̂ uses double-detection simulation. This is required
for the selection of P , as explained later. Using the results of the
first phase, in the second phase we select a minimal subset
P ⊆ P̂ such that P allows us to detect all the faults detected by
the given test set T .

To construct P̂ , we consider the patterns assigned to
A 0,A 1, . . . ,Am −1 under the test set T . For Ai , we obtain a set of
patterns Pi by restricting T to the inputs in Ai . Each pattern in
every set Pi is expanded with respect to every input subset. Each
expanded pattern is fault simulated as part of a double-detection
fault simulation process. Under this process, a fault is dropped
only after it has been detected twice, by two different patterns.
During this process, we also store for every fault f the first and
second pattern out of ∪Pi that yielded expanded patterns which
detected f . We denote these patterns by pdet 1( f ) and pdet 2( f ),
respectively. If f is detected only once, pdet 2( f ) = −, and if f is
not detected, pdet 1( f ) = pdet 2( f ) = −. Every pattern p with an
expanded pattern that detects a fault for the first or second time
is stored in P̂ .

Once P̂ is defined, we select a minimal subset P ⊆ P̂ to
detect all the faults detected by T . Selection of P proceeds as
follows. We denote by F the set of faults detected by T . We
first consider the faults in F that are detected by single patterns
out of P̂ . For such a fault f i ∈ F , pdet 1( f i ) is the only pattern in
P̂ that can be used to detect f i . We add pdet 1( f i ) to P . We then
simulate the expanded patterns of pdet 1( f i ) with respect to Ak , for
k = 0,1, . . . ,m −1, and we drop the detected faults from F . We
repeat this process as long as there are faults f i ∈ F which are
detected only once under P̂ .

To detect the remaining faults, we find for every pattern
p ∈ P̂ the number of faults f i ∈ F for which pdet 1( f i ) = p or
pdet 2( f i ) = p . We denote this number by n det(p ). We note that
expanded patterns of p may detect other faults out of F , that
were dropped before p was considered in Phase 1. Therefore,
expanded patterns of p may detect more than n det(p ) faults out
of F . However, n det(p ) provides a good heuristic for selecting

additional patterns out of p . We select p ∈ P̂ for which n det(p )
is the largest. We then simulate the expanded patterns of p with
respect to Ak , for k = 0,1, . . . ,m −1, and we drop the detected
faults from F . We repeat this process as long as F is not empty.

We applied the procedures described above to the combi-
national logic of benchmark circuits with large numbers of
inputs. In our experiment, we expand a pattern p with respect to
a subset of inputs Ai by assinging random values to the inputs
not included in Ai .

In Table 1 we show the following information about the
circuits we consider. After the circuit name we show the number
of circuit inputs NC , the number of tests | T | , and the number of
bits required for storing the test set, NC | T | .

Table 1: Circuit parameters

test
circuit NC |T| stor� �������������������������������������������������������
s420 35 43 1505
s641 54 22 1188
s953 45 76 3420
s1423 91 26 2366
s5378 214 100 21400
s9234 247 111 27417
s13207 700 235 164500
s15850 611 97 59267
s38417 1664 87 144768� �������������������������������������������������������
b04 78 72 5616
b11 38 76 2888
b14 280 194 54320
b20 527 335 176545
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Table 2: Random filling of expanded patterns

patt ratio
circuit NA m |P| stor inp stor� �����������������������������������������������������������������������������������������
s420 34 2 37 1258 0.97 0.84
s641 27 5 25 675 0.50 0.57
s953 18 6 57 1026 0.40 0.30
s1423 59 5 32 1888 0.65 0.80
s5378 61 9 129 7869 0.29 0.37
s9234 83 10 171 14193 0.34 0.52
s13207 212 6 273 57876 0.30 0.35
s15850 183 11 193 35319 0.30 0.60
s38417 99 42 321 31779 0.06 0.22� �����������������������������������������������������������������������������������������
b04 40 7 34 1360 0.51 0.24
b11 25 4 50 1250 0.66 0.43
b14 226 2 140 31640 0.81 0.58
b20 294 4 222 65268 0.56 0.37
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In Table 2 we show the results of the proposed procedure.
After the circuit name we show the number of inputs in each
subset NA , the number of subsets m , the number of patterns in
P , and the number of bits required for storing P , NA | P | . In the
last column we show the ratio NA /NC of the number of inputs,
and the ratio (NA | P | )/(NC | T | ) of the storage requirements.

From Table 2 it can be seen that there are several circuits
where the outputs depend on subsets of the inputs, with
NA << NC . The number of patterns in P required to achieve the
same fault coverage as the test set T is in many cases larger than
the number of tests in T . Nevertheless, the storage requirements
of P are lower than the storage requirements of T in all the
cases. The number of different input subsets m is relatively
small, implying that each pattern p ∈ P results in a small
number of test patterns.

The total number of tests applied to the circuit under the
proposed scheme is equal to the number of input subsets m mul-
tiplied by the number of patterns in P , or m | P | . This number
can be reduced by reducing the number of input subsets m .
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