Polychrony for refinement-based design

Jean-Pierre Talpin!, Paul Le Guernic!, Sandeep Kumar Shukla?, Rajesh Gupta3, Frédéric Doucet?

LINRIA/IRISA, ? Virgina Tech, ® UC San Diego, * UC Irvine

Abstract

Rising complexities and performances of integrated
circuits and systems, shortening time-to-market de-
mands for electronic equipments, growing installed
bases of intellectual property, requirements for adapting
existing IPs with new services, all stress high-level de-
sign as a prominent research topics and call for the de-
velopment of appropriate methodological solutions. In
this aim, system design based on the so-called “syn-
chronous hypothesis” consists of abstracting the non-
functional implementation details of a system away
and let one benefit from a focused reasoning on the
logics behind the instants at which the system func-
tionalities should be secured. From this point of view,
synchronous design models and languages provide in-
tuitive models for integrated circuits. This affinity
explains the ease of gemerating synchronous circuits
and verify their functionalities using compilers and re-
lated tools that implement this approach. In the rela-
tional model of the SIGNAL/POLYCHRONY design lan-
guage/plateform [3, 5] this affinity goes beyond the do-
main of purely synchronous circuits to embrace the con-
text of architectures consisting of synchronous circuits
and desynchronization protocols: GALS architectures.
The unique features of this model are to provide the
notion of polychrony: the capability to describe multi-
clocked (or partially clocked) circuits and systems; and
to support formal design refinement, from the early
stages of requirements specification, to the later stages
of synthesis and deployment, and by using formal ver-
ification techniques.

Introduction In practice, a multi-clocked system
description is often the representation or the abstrac-
tion of an asynchronous system or of a GALS archi-
tecture. In system-level design, the asynchronous im-
plementation of a system is obtained through the re-
finement of its description towards hardware-software
co-design. However, clocks are often left unspecified
at the functional level, and no choice on a master

1530-1591/03 $17.00 & 2003 IEEE

clock made at the architectural level. As communica-
tion and implementation layers are reached, however,
multiple clocks might be a way of life. In the poly-
chronous design paradigm, one can actually design a
system with partially ordered clocks and refine it to
obtain master-clocked components integrated within
a multiply-clocked architectures, while preserving the
functional properties of the original high-level design,
thanks to the formal verification methodology provided
by the formal theory (model and theorems) of poly-
chronous signals. Our goal is to derive conditions on
specifications under which design refinement principles
work. We seek towards tools and methodologies to al-
low to take a high-level SYSTEMC/SPECC specification
and to refine it in a semantic-preserving manner into
a GALS implementation. In this aim, we put PoLy-
CHRONY to work in the context of the emerging high-
level languages such as SYSTEMC/SPECC [2] and have
studied the refinement of a high-level specification, the
even-parity checker (Epc) in SPECC and show how it
can be refined towards a GALS implementation with
the help of POLYCHRONY.

The tagged model of polychronous signals
(see [3]) is used for the formal study of protocol prop-
erties in this context. In this model, a process p is a
set of behaviors b that have the same domain of signal
names, written vars(p). Scalability is a key concept
for engineering systems and reusing components in a
smooth design process. A formal support for allow-
ing time scalability in design is given in POLYCHRONY
by the so-called stretch-closure property. The intuition
behind it is to consider a signal as an elastic with or-
dered marks (the tags). If it is stretch, marks remain
in the same relative order but have more space (time)
between each other. The same holds for a set of elas-
tics: a behavior b. If elastics are equally stretched,
written b < ¢, the partial order between marks in c is
unchanged. Stretching is a partial-order relation. It
gives rise to an equivalence relation between behav-
iors b < ¢ (a clock equivalence relation). To model
asynchrony, we consider a weaker relation which dis-

cards synchronization relations and allows for com-
paring behaviors w.r.t. the sequences of values signals
hold. The relazation relation b C ¢ allows to individu-
ally stretch the signals of a behavior. Relaxation is a
partial-order relation that defines the flow-equivalence
relation b &~ ¢ and the meaning of asynchronous com-
position p || ¢ by the set of behaviors d that are a
relatxation of a behavior b of p and a behavior ¢ of
q.- The model of polychronous signals defines formal
properties that are essential for the component-based
design of GALS architectures. Endochrony is a key de-
sign property design. A process is endochronous iff,
given an external (asynchronous) stimulation of its in-
puts I, it reconstructs a unique synchronous behav-
ior (up to stretch-equivalence). Endochrony denotes
the class of processes that are insensitive to (internal
and) external propagation delays. A process p is en-
dochronous on its input signals I iff Vb, c € p, (b|1)x =
(¢lr)~ = b< c. Flow-equivalence offers the right met-
ric for checking the refinement of a high-level system
specification with distributed communication protocols
correct. Flow-invariance is the property that ensures
that the refinement of a functional specification p| g by
an asynchronous implementation p || ¢ preserves flow-
equivalence. Formally, p and ¢ are flow-invariant iff,
for all b € p|q, for all ¢ € p|| q, (b1)~ = (c|1)~ implies
~ ¢ for I the inputs of p|g. In SIGNAL, GALS archi-
tectures are modeled as endo-isochronously communi-
cating endochronous components. We say that two en-
dochronous processes p and ¢ are endo-isochronous iff
(p|1) | (¢|r) is endochronous (with I = vars(p)Nvars(q)).
Endo-isochrony implies flow-invariance.

Capturing high-level design with polychrony
In the polychronous design paradigm, one can give a
functional-level specification of a system in terms of re-
lations and partially-ordered clocks. A refinement, at
the architecture-level, consists of isolating the master-
clock of components and of integrating them within a
multi-clocked architectures, while preserving the func-
tional properties of the original design, thanks to the
formal verification of flow-invariance. The main ben-
efit of considering the model of polychronous signals
for high-level C-like design languages lies in the for-
mal semantics backbone/platform it provides, on which
verification and optimization techniques can then be
plugged in. There are several ways to envisage ap-
plying the POLYCHRONY model to high-level GALS ar-
chitectures modeling in C-like design languages. The
polychronous model of the SIGNAL design language of-
fers formal support for the capture of behavioral ab-
stractions for both very high-level system descriptions
(e.g. SYSTEMC/SPECC) and behavioral-level Ip com-

ponents (e.g. VEHDL). Its platform, POLYCHRONY, pro-
vides formal methods for a rapid, refinement-based, in-
tegration and a formal conformance-checking of GALS
hardware/software architectures. In the aim of au-
tomating the present study within a versatile com-
ponent integration platform, the use of refinement
(model) checking tools directly provides the required
support for automating this process by using controller
synthesis techniques. Whereas model-checking consists
of proving a property correct w.r.t. the specification
of a system, controller synthesis consists of using this
property as a control objective and to automatically
generate a coercive process that wraps the initial spec-
ification so as to guarantee that the objective is an
invariant.

abstractio behavioral High-level synthesis
description design j
| POLYCHRONY |
transformation verification

Conclusion We have put a polychronous design
model to work for the refinement of a high-level even-
parity checker in SPECC from the early stages of
its functional specification to the late stages of its
hardware/software GALS implementation. We demon-
strated the effectiveness of this approach by showing
in what respects and at which critical design refine-
ment stages formal verification and validation support
was needed, highlighting the benefits of using the tool
POLYCHRONY in that design chain. The novelty of inte-
grating POLYCHRONY in a high-level design tool-chain
lies in the formal support offered by the former to auto-
mate critical and complex design verification and vali-
dation stages yielding a correct-by-construction system
design and refinement in the latter.

References

[1] F. DouceT, M. OTSUKA, R. GUPTA AND S. SHUKLA "Ef-
ficient System Level Co-Design Environment using Split
Level Programming”. Technical Report 01-34, CECS/UCI,
June 2001.

[2] D. GaJskl, F. VAHID, S. NARAYAN, AND J. GONG. ”Speci-
fication and Design of Embedded Systems”. Prentice Hall,
1994.

[3] LE GUERNIC, P., TALPIN, J.-P., LE LANN, J.-L. Polychrony
for system design. In Journal of Circuits, Systems and
Computers. Special Issue on Application Specific Hardware
Design. World Scientific, 2002.

[4] The BALBOA project. http://www.ics.uci.edu/ balboa

[5] The ESPRESSO project. http://www.irisa.fr/espresso

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

