
SAT-Based Techniques in System Synthesis

Christian Haubelt, J̈urgen Teich
Computer Science, University of Erlangen-Nuremberg

Rainer Feldmann, Burkhard Monien
AG-Monien, University of Paderborn

Abstract

In this paper, we show how to integrate SAT-based tech-
niques into the task of system synthesis by regarding the the
problems: (i) feasibility check and (ii) evaluation of quality.

1. Introduction

SAT-based verification of electronic systems became
very popular in recent years [3]. In this paper, we show
that SAT-techniques are also applicable and helpful during
the synthesis and the optimization of a system. Therefore,
we must consider two questions: (i) How to represent spec-
ifications and (ii) How to quantify properties of embedded
systems by boolean formulas? Thus, we will reduce the
well known binding problem to the boolean satisfiability
problem. Next, we show how to quantify the degree of
fault tolerance of a system using quantified boolean formu-
las (QBFs). These problems correspond to typical subrou-
tines often used during design space exploration. We will
show by experiment that problem instances of reasonable
size are easily solved by the QBF solver QSOLVE [2].

2. Binding

To specify embedded systems, we use a graph-based ap-
proach. The behavior of a system is modeled by a so-called
process graph. The vertices represent processesp ∈ P and
the directed edges are data dependenciesd ∈ D between
processes. The architecture is modeled by a so-calledarchi-
tecture graph, where vertices correspond to resourcesr ∈ R
and edges are directed connectionsc ∈ C. Mapping edges
m ∈ M relate processes and resources, wherem = (p, r)
indicates thatp may be executed onr.

The task of system synthesis can be formulated as: ”Find
a feasiblebinding β ⊆ M of the processes to resources.”
Blickle et al. [1] have reduced this problem to the boolean
satisfiability problem. In this paper, we show how to de-
rive boolean functions from these specifications such that
the boolean functions are satisfiable iff the specified system
has a feasible binding. Therefore, we need some notations:

p0

m1

m0

mn

r1

r0

rn

p0

p1

mn+1

m3

m2

m1

m0 r0

r1

r2

rn

(a) (b)

Figure 1. (a) For each process p ∈ P exactly
one outgoing mapping edge has to be acti-
vated. (b) To establish the communication
(p0, p1), we have to execute the processes p0

and p1 on the same or on adjacent resources.

Letmi be a boolean variable, indicating if the mapping edge
mi is in the binding (mi = 1), or not (mi = 0). The assign-
ment of all variablesmi is denoted by(m).

A binding is said to be feasible (see also [1]) if:
1. Each process is bound to exactly one resource (see

also Figure 1(a)). This leads to the following boolean func-
tion which is satisfiable iff(m) contains exactly one map-
ping edge per process (Here,+ denotes the boolean OR and
· is the boolean AND):

b1 ((m)) =
∏
p∈P


∑

m∈M :
m=(p,r)

m ·
∏

mi,mj∈M :

mi=(p,rx)∧
mj=(p,ry)|rx 6=ry

(mi + mj)

 (1)

2. The data dependenciesd ∈ D can be handled by
the resource graph, i.e., if there is an edged = (pi, pj)
then eitherpi andpj have to be performed on the same re-
sourcer or on adjacent resources. Consider the example
shown in Figure 1(b). An implication assuring this prop-
erty is (m0 + m1 + m2 + m3 + · · ·+ mn+1). This equa-
tion needs to be satisfied for each mapping edge:

b2 ((m)) =
∏

m=(p,r)∈M,
pi∈P :

(p,pi)∈D

m +
∑

mj∈M :mj=(pi,rx)∧
(r=rx∨(r,rx)∈C)

mj

 (2)

We define the boolean functionb ((m)) = b1 ((m)) ·
b2 ((m)) to test the feasibility of a binding, whereb ((m)) =
1 iff the system has a feasible binding. To check if there is
at least one feasible binding for a given specification, a SAT
solver may be used to solve the following problem

∃(m) : b ((m)) (3)

1530-1591/03 $17.00  2003 IEEE

3. Fault Tolerance

Checking whether a binding is feasible or whether a par-
tial binding may be completed can be an important task dur-
ing synthesis, but also in dynamic embedded systems. One
application of the above SAT-techniques is therefore the do-
main of fault tolerance.

Modeling Resource FaultsIf a resource fails, theal-
location (set of used resources in an implementation) may
change, where an allocation is said to be feasible if there
exists at least one feasible binding for this allocation. As
before, we use the term(r) as the coding of an allocation.
If resourceri fails, the binary variableri must be set to
zero. All incident mapping edgesmj to resourceri should
not be used in the binding. We propose a boolean function
to deactivate all incident mapping edges.

e ((m), (r)) =
∏
r∈R

m∈M :m=(p,r)

(r + m) (4)

k-Bindability A frequent question is how many re-
sources can fail without losing any functionality. We define
this number ask-bindability, wherek is the maximum num-
ber such that any set ofk resources is redundant. To check
this property using SAT-techniques, we formulate a boolean
functionf (k) which encodes all system errors with exactly
k resource defects. This function depends on|R| auxiliary
variables. If exactlyk auxiliary variables are zero, we set
the corresponding allocation variablesri to zero:

f (k) ((t), (r)) =

|R|−1∏
i1=0

|R|−1∏
i2=i1

· · ·
|R|−1∏

ik=ik−1

·

k∏
l=1

ril +

|R|−1∑
n=0

n=i1∨···∨n=ik

tn +

|R|−1∑
n=0

n6=i1∧···∧n6=ik

tn


f (k) does not impose any constraints on(r) if p > k vari-
ablesti are set to false. Now, thek-bindability problem is:

∀(t)∃(r), (m) : f (k) ((t), (r)) · e ((m), (r)) · b ((m)) (5)

4. Experimental Results

To evaluate our new approaches, we design a benchmark:
An nr1 × nr2 processor grid and a weakly connected ran-
dom process graph with|P | processes is defined. There is a
data dependency betweenpi andpj with j > i with a prob-
ability pb. Furthermore,nm mapping edges are randomly
drawn from each process to resourcesr ∈ R. The most
meaningful results (PC with 1.8 GHz) of this benchmark
are presented in the following.

Feasibility of Binding We solve Equation (3) for ran-
domly generated specifications. The average results (100
samples) using QSOLVE [2] are shown in Table 1. Only the
more difficult cases of infeasible bindings are documented

Table 1. Results for testing (unsatisfiable)
Equation (3) for three processor grids.

|P | 5×5 10×10 15×15

50 nm 17 65 140
recursions 21 70 180

time/s 0.07 1.80 14.05
100 nm 19 75 160

recursions 23 116 237
time/s 0.46 14.33 69.67

150 nm 20 80 –
recursions 29 176 –

time/s 1.57 43.11 –

Table 2. Results for testing the k-bindability
equation (satisfiable) Equation (5).

|P | k = 1 k = 2 k = 3 k = 4

30 recursions 434 3235 11931 35222
time/s 0.12 0.94 3.62 10.69

40 recursions 587 4972 19136 49858
time/s 0.23 1.78 7.06 20.26

50 recursions 633 4893 17818 53272
time/s 0.37 2.74 10.02 29.90

here. The number of mapping edges is chosen such that
feasible as well as infeasible systems are constructed.

k-Bindability Table 2 shows the average results (100
samples each) obtained from solving Equation (5) with
k = 4, . . . , 1 using the QBF-solver QSOLVE. We have
chosen a 4×4 processor grid, different numbers|P | of pro-
cesses, and fixed parametersnm = 13 andpb = 0.5.

Since we impose onlyk resources to fail simultaneously,
it is not necessary to test2|R| assignments to the variablest.
QSOLVE automatically avoids searching the branches below
variable assignments of(t) with more thank variablesti set
to false: After the assignment of anyk variablesti to false
f (k) reduces to a formulaf ′. The universally quantified
variablesti which have not been assigned a value so far
are monotonic inf ′. As a result, QSOLVE searches only
those parts of the search space which correspond to tuples
(t) having≤ k variablesti set to false.

5. Conclusions

We considered the integration of SAT-techniques into the
task of system synthesis by reducing the binding problem to
quantified boolean formulas and applying the QBF solver
QSOLVE. Due to short computation times, these techniques
are applicable and helpful during system synthesis and easy
to integrate in such design methodologies.

References
[1] T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Using

Evolutionary Algorithms. In R. Gupta, editor,Design Automation for
Embedded Systems, 3, pages 23–62. Kluwer, Jan. 1998.

[2] R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algo-
rithm to Evaluate Quantified Boolean Formulas. InProc. of the 17th
Nat. Conf. on Artificial Intelligence (AAAI-00), pages 285–290, 2000.

[3] C. Scholl and B. Becker. Checking Equivalence for Partial Imple-
mentations. InProc. of 38th Design Automation Conference, pages
238–243, Las Vegas, USA, 2001.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

