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Abstract* 

Instruction and data caches are well known 
architectural solutions that allow significantly improving 
the performance of high-end processors. Due to their 
sensitivity to soft errors they are often disabled in safety 
critical applications, thus sacrificing performance for 
improved dependability. In this paper we report an 
accurate analysis of the effects of soft errors in the 
instruction and data caches of a soft core implementing 
the SPARC architecture. Thanks to an efficient simulation-
based fault injection environment we developed, we are 
able to present in this paper an extensive analysis of the 
effects of soft errors on a processor running several 
applications under different memory configurations. The 
procedure we followed allows the precise computation of 
the processor failure rate when the cache is enabled even 
without resorting to expensive radiation experiments. 

 

1 Introduction 

New application areas, such as the automotive one that 
is pursuing the drive-by-wire philosophy, are fostering the 
adoption of high-performance processors in safety-critical 
applications. In this areas two conflicting constraints 
should met. On the one hand, there is the need for 
adopting modern processor cores able to support complex 
operations in a real-time context, such as the control of 
active shock absorber systems or steer-by-wire. Moreover, 
the need for keeping the product cost as low as possible is 
making commercial-off-the-shelf processors very active. 
On the other hand, these application areas are 
characterized by tight dependability requirements: since 
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the processor-based systems are employed in applications 
that can harm the human life, it is mandatory for them to 
guarantee high dependability levels. 

Commercial-off-the-shelf processors, and in particular 
the high-performance ones, can be exploited within safety-
critical applications only when their behavior in presence 
of faults is known. In this context, the fault tolerance 
community is increasingly concerned by soft errors 
resulting from the perturbation of storage cells (caused for 
example by ionization [1]) known as Single Event Upset 
(SEU). Unlike memory modules that can be easily 
hardened by resorting to solution ranging from the simple 
parity bit to more complex codes, the problem of avoiding 
soft errors in memory modules inside high-end processors 
is much more complex. This kind of processors employ 
architectural solutions such as pipelined execution units, 
out-of-order instruction issue units and cache memories 
that significantly increase the number of memory elements 
the processors embed. These memory modules are usually 
not hardened against SEUs and thus the dependability 
level the processor provides can be very low. This 
problem is usually addressed by simply disabling the 
processor cache memory. The processor area that is 
susceptible to SEUs is therefore drastically reduced while 
the processor dependability is greatly increased. Although 
very simple and effective from the dependability point of 
view, this solution implies a significant performance loss 
that may be not acceptable when complex computation are 
required, in particular when real-time constraints should 
be met.  As a result, no simple assumptions (such as to 
disable cache memories) can be done and the 
dependability of the processor-based system should be 
carefully analyzed. 

The effects of soft errors in modern processors, and in 
particular in cache memories, were already studied in 
several works, such as [2]-[6]. Several analysis approaches 
were adopted for assessing the effects of soft errors: 
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radiation testing, fault injection and static computation 
based on error propagation models.  

The main contribution of this paper lies in the analysis 
procedure we propose, which offers an effective solution 
for analyzing processor cores without the high costs and 
accuracy loss other approaches may imply. The proposed 
approach is general, i.e., it can be adopted for studying any 
processor provided that a model is available, and it can be 
adopted for accurate analysis, both in terms of fault 
location and fault injection time. On the contrary, the 
approaches based on radiation testing lacks the ability to 
carefully select the fault location and the fault injection 
time; as a result, they do not allow to quantify the 
contribution to the processor dependability of each 
memory component (i.e., cache lines, cache tags, pipeline, 
register file). Moreover, the approaches proposed so far 
exploiting simulation-based fault injection [7] or analytical 
models lacks accuracy, since they resort to purely behavior 
processor models, thus neglecting the implementation 
details that may significantly alter the obtained results.  

As an example of application of our approach, the 
paper reports an accurate analysis of a real processor core. 
We were able to measure the effects of soft errors in both 
cache lines and cache tags, and to quantify their 
contribution to the processor dependability with respect to 
the other memory elements the processor embeds (i.e., 
register file and pipeline). The fault injection campaigns 
we performed showed that soft errors in the data cache 
lines and tags are particularly critical, while the effects on 
the instruction cache lines are strictly correlated to the 
considered application. An interesting result is the 
unexpected good robustness of instruction cache tags. 

The obtained figures can be exploited to guide 
designers to cleverly select the processor components that 
should be hardened, and to identify the hardening solution 
that best fits the fault tolerance, area and time 
requirements. As an example of this kind of analysis, we 
evaluated two processor configurations: one exploiting all 
the features the processor provides and one where the 
cache subsystem is disabled. This analysis showed that 
although cache memory allows improving the processor 
performance by a factor of about 3, it may reduces the 
processor dependability level by a factor up to 24 with 
respect to the same application ran by a cache-less 
processor.  

The paper is organized as follows. Section 2 reports 
background information about the fault model we adopted, 
the processor core we considered and the fault injection 
environment we exploited. Section 3 reports the analysis 
methodology we exploited for computing the processor 
dependability; while section 4 reports the results of the 
experimental analysis we performed. Finally, section 5 
reports some conclusions. 

2 Background 

This section provides the reader with background 
information about the fault model we considered during 
our analysis, the processor core we analyzed, and the fault 
injection environment we adopted. 

2.1 The fault model 

The fault tolerance community is increasingly 
concerned by the occurrence of soft errors resulting from 
the perturbation of storage cells caused by ionization [1]. 
This type of soft errors is known as Single Event Upset 
(SEU). A characteristic of SEUs is that they are random 
events and thus they may occur at unpredictable times. For 
example, they may corrupt the content of a processor 
register during the execution of an instruction. 

In this paper we focused on the fault model called upset 
or transient bit-flip, which results in the modification of 
the content of a storage cell during program execution. 
Possible fault locations are thus internal memory cells, 
flip-flops, bits of user and control registers and even 
registers usually not accessible through the processor 
instruction set, and embedded memories such as register 
files and caches. 

In the paper we assume that the memory modules 
located outside the processor and storing the application 
code/data are hardened against SEUs, and thus we 
concentrate only on the memory elements located inside 
the processor: pipeline  registers, register file and cache 
memory (cache lines and cache tags). 

Despite its relative simplicity, the bit-flip is widely 
used in the fault tolerance community to model real faults, 
since it closely matches the real faulty behavior [8]. 

2.2 Analyzed processor 

We considered the Leon core implementing the 
SPARC v8 architecture [10]. The core description 
corresponds to about 100,000 lines of synthesizable RT-
level VHDL code. 

The model includes 2 Kbytes of memory for 
implementing the instruction cache (I-Cache) and 2 
Kbytes for the data one (D-Cache), an integer 
multiplication and division units, and a 5-stage pipeline.  

The Leon instruction/data cache is a direct-mapped 
one, and it is divided into lines with 8 bytes of data. Each 
line has a cache tag (I-Tag, D-Tag) associated with it 
consisting of a tag field and one valid bit for each 4-byte 
sub-block. The data cache implements a write-through 
policy with no-allocate on write-miss.  

The processor pipelined integer unit is composed of the 
following stages: 



• Fetch: it loads a new instruction either from the 
instruction cache or the main memory, depending on 
the cache subsystem configuration. 

• Decode: it decodes the instruction and reads the 
required operands.  

• Execute: it executes arithmetical, logical and shift 
operations. It also takes care of address computation. 

• Memory: it accesses the data cache. 
• Write: it writes to the register file the results of any 

arithmetical, logical, shift or cache read instruction. 
When synthesized, this description produces a netlist of 

about 35,000 gates. The core has been instrumented 
according to the fault injection environment described in 
section 2.3 and then synthesized on a Xilinx Virtex 1000E 
device. The obtained design amounts to 4,762 out of 
12,288 logics blocks, uses 14 out of 96 block RAMs and 
runs at 30 MHz. 

By analyzing the reports produced by the Synopsys 
FPGA Compiler II tool, we gathered the number of flip-
flops in the circuit, which are summarized in table 1; in 
table 1 we report also the percent contribution of each 
module to the total number of flip-flops (column Ratio). 
 

Processor module Number of flip-flops Ratio 
[%] 

Pipelined integer unit 742 1.67 
Register file 4,352 9.83 

D-Cache memory 19,584 44.25 
I-Cache memory 19,584 44.25 

Table 1: Processor memory elements 

As the reader can observe from table 1, the processor 
embeds a significant amount of flip-flops that can be 
affected by SEUs. 

2.3 Fault injection environment 

In this paper we exploited the simulation-based fault 
injection [7] technique for assessing the effects of SEUs 
inside a processor memory elements. In order to speed-up 
the execution of the fault injection experiments, we 
exploited an extended version of the approach described in 
[9], where simulation-based fault injection efficiency is 
improved by means of emulation: the processor model is 
first instrumented for supporting fault injection and then 
implemented on a FPGA device. 

The adoption of a simulation-based approach in spite of 
the software-based one that is usually exploited for the 
analysis of processors is motivated by two reasons. 

The processor we considered adopts a pipelined 
execution unit embedding several registers. Since they are 
likely to be affected by SEUs, they have to be analyzed 
during fault injection. Software-based fault injection 
which resorts to the processor instruction set for fault 
inoculation is not suitable for our purposes since it does 

not provide any mean for directly reading and writing the 
content of the pipeline registers. 

Moreover, although the Leon instruction set provides 
instructions for reading and writing the contents of the 
cache memory, and thus software-based fault injection can 
be exploited, the time resolution it allows is not accurate 
enough for performing detailed analysis of the effects of 
SEUs. SEUs are random both in space and time, thus they 
can hit the processor area anytime. Resorting to the 
instruction set for injecting SEUs provides a time 
resolution of one instruction, and thus it assumes that a 
SEU should hit the processor within a time corresponding 
to the number of clock cycle the processor needs for 
executing one instruction. By resorting to the approach 
proposed in [9] we are able to more accurately model SEU 
effects, since the adopted fault injection method provides a 
time resolution of one clock cycle. 

The fault injection environment we exploited classifies 
fault effects according to the following categories: 
1. Wrong answer: the results produced by the faulty 

processor are different than those produced by the 
fault-free processor. 

2. Effect-less: the results produced by the faulty processor 
are equal to those produced by the fault-free processor. 

3. Latent: the results produced by the faulty processor are 
equal to those produced by the fault-free processor, but 
at the end of the program execution, the content of the 
pipeline of the fault-free processor differs from that of 
the faulty one. 

4. Exception: the injected fault is detected by the error 
detection mechanisms the processor embeds, which 
force the processor to generate an exception (e.g., 
illegal instruction exception or invalid address 
exception). 

5. Time-out: the faulty processor is not able to produce 
the expected result after a given amount of time. 

6. Stall: the faulty processor computes the expected 
results in a time greater than the faulty-free one. 
Examples of faults belonging to this category are those 
that originate an unexpected flush of the pipeline or 
that invalidate a valid cache line. 

3 Analysis procedure 

In this paper we assume that the processor 
dependability level is measured as its sensitivity to SEU 
effects. Radiation testing is normally adopted to analyze 
SEU effects on processors in terms of static cross-section 
[11]. Static cross-section corresponds to the sensitivity to 
SEUs of all the processor memory elements (registers and 
internal memories) and is independent on the executed 
program. In practice, static cross-section is often obtained 
by measuring the number of corrupted bits in the processor 
storage elements after the circuit is exposed to suitable 
radiation beams. Static cross-section is then combined 



with the figures characterizing the final environment to 
estimate the error rate of the final application. The 
obtained figure is a worst-case estimation of SEU effects, 
because it does not take into account the impact of the 
executed application on the processor cross-section: for 
example, an application may use only a limited portion of 
the processor register file, and thus SEU effects on the un-
used registers should be ignored during cross-section 
computation. 

Recently, an alternative approach [11] has been 
proposed to overcome this limitation: the method 
combines fault injection results with static cross-section 
figures derived from radiation experiments, according to 
the following equation: 
 FSEUSEU ⋅=στ  (1) 

where SEUσ is the SEU static cross section (in cm2/device) 
of the considered processor, and F is the probability that a 
SEU hitting the processor produces a wrong answer (i.e., 
the processor is affected by the SEU in such a way that the 
results it provides are different from the expected ones). 
The static cross section can be easily computed by 
performing a static test, i.e., the content of the processor 
memory elements is continuously read during a radiation 
session. Static cross section thus measures the fraction of 
particles hitting the circuit that originates SEUs in the 
processor memory elements, and depends only on the 
device manufacturing technology. 

Conversely, the value F, hereinafter called failure rate, 
depends on the processor architecture and the application 
the processor is executing, and a good estimation accuracy 
is essential to provide designers with meaningful 
dependability figures.  

In order to accurately compute the failure rate of a 
processor which embeds heterogeneous memory 
components (we assume they are all manufactured with 
the same technology and thus share the same static cross 
section) we propose the following approach: 
1. For each memory module i in the processor, we inject 

N faults and measure the module failure rate Fi as: 

 
N

WA
F i

i =  (2) 

where WAi is the number of faults leading the program 
to produce wrong answer, when N faults affect the 
memory elements (i.e., change their value).   

2. We combine the obtained failure rates to obtain the 
processor failure rate FCPU as follows: 

 
i

i
iCPU PFF ⋅=∑  (3) 

where Pi is the probability for a soft error to occur 
inside the memory module i, given that a SEU occurs 
in the processor. Please note that the probability that a 
SEU affects the processor is 

SEUσ . Since we assume 

the same technology and the same geometry for each 
memory cell, we have that: 

 
TOT

i
i B

B
P =  (4) 

where Bi is the number of bits in the memory module i 
and BTOT is the total number of memory bits in the 
processor. 

The fault injection tool we adopted provides the required 
accuracy since it allows accessing all the memory 
elements the processor embeds, with a very high time 
resolution. 

In setting-up the fault injection experiments, a crucial 
factor is the selection of the number of faults to inject. 
Given a time resolution of one clock cycle, the total 
number of possible faults can be computed as follows: 
 CCBN TOTTOT ⋅=  (5) 

where CC is the number of  clock cycles that are needed 
for completing the execution of an application. Since the 
number of faults that should be simulated according to 
equation 5 is very high, we resort to a fault sampling 
technique. In particular, we selected a number of faults 
proportional to CC. This assumption allows taking into 
account the fact that the number of particles hitting the 
processor is proportional to the program execution time. 
As a result, the total number of SEUs originated in the 
processor is proportional to the program execution time. 

4 Experimental results 

As an application of the proposed methodology we 
studied the effects of soft errors inside the cache memory 
of the Leon processor. In particular, the purpose of the 
experiments we performed is twofold. On the one hand, 
we are interested in quantifying the impact of SEUs inside 
the cache memory on the processor failure rate (sub-
section 4.1); on the other hand, we are interested in 
analyzing in greater detail the effect of SEUs in the 
different components of the cache subsystem: cache lines 
and cache tag (sub-section 4.2). 

4.1 Analysis of soft errors in the cache 

To evaluate the effects of soft errors in the cache 
subsystem of the Leon processor we considered two 
benchmark programs, a computational intensive one and a 
data-transfer intensive one: 
• MTX: it is a matrix multiplication program, where two 

integer matrices are multiplied. We considered two 
implementations of this benchmark, one working on 
4x4 matrices (MTX 4x4) and another one working of 
10x10 matrices (MTX 10x10); 

• HS: it is an implementation of the heap sort algorithm, 
which exploits a recursive procedure. As in the 
previous case, we considered two implementations of 
this program. One working on a set of 32 integer 



values (HS 32), and one working on 64 values (HS 
64). 

The programs, whose characteristics are reported in table 
2, are coded in C and have been compiled resorting to the 
GNU C/C++ gcc compiler, which can generate code for 
the Leon processor [10]. 

 

Program 
C 

lines 
[#] 

Data  
segment 

size 
[# byte] 

Code  
segment 

size 
[# byte] 

MTX 4x4 35 192 2,832 
MTX 10x10 35 1,200 2,832 

HS 32 60 132 8,384 
HS 64 60 256 8,384 

Table 2: Program characteristics 

In a first set of experiments, we injected faults in the 
pipeline  registers, in the register file and in the instruction 
and data caches (both cache lines and cache tags). For 
each of the above modules we injected 100,000 faults in 
order to get statistically meaningful results. The 
predominance of soft errors inside the cache subsystem on 
the processor failure rate can be observed by analyzing the 
results in table 3, where we report the percent contribution 
of each component to the processor failure rate.  

 

Component 
MTX 
4x4 
[%] 

MTX 
10x10 
[%] 

HS 32 
[%] 

HS 64 
[%] 

Pipeline 4.28 1.73 1.56 1.65 
Register File 6.67 4.11 3.30 1.54 

D-Cache 41.77 77.17 60.06 74.42 
I-Cache 47.27 17.00 34.53 22.39 

Table 3: Contribution of processor components to the 
failure rate 

The contribution of faults inside the cache is always the 
dominant term: such a contribution ranges indeed from 
89.04% for MTX 4x4 to 96.81% for HS 64. Moreover, the 
contribution of D-Cache and I-Cache greatly depends on 
the executed program. As expected, the larger it is the 
amount of data the program manipulates, the larger it is 
the contribution to the processor failure rate of the D-
Cache. 

To evaluate the impact of the cache on processor 
dependability and performance levels, we then performed 
a second set of experiments, where we considered two 
memory configurations mimicking two possible scenarios. 
In the first one the cache is disabled to improve the 
processor dependability, resulting in longer execution 
times; in the second scenario the cache is enabled, thus 
minimizing the program execution time. Table 4 reports 
the program execution time for the two considered 

scenarios, while table 5 reports the processor failure rates 
computed according to equation 3. 

The obtained results show that by turning off the cache 
we can reduce the processor failure rate by a factor 
ranging from about 5.46 to 24.70. The introduced time 
overhead is however not negligible: the program execution 
time is indeed increased by a factor ranging 2.56 to 4.39. 
Please note that the performance degradation is much 
lower than the benefits stemming from disabling cache 
memories from the dependability point of view. 

 

Program 
Exec. time 

Cache OFF 
[# clock] 

Exec. time 
Cache ON 
[# clock] 

Ratio 

MTX 4x4 15,074 4,972 3.03 
MTX 10x10 193,327 44,076 4.39 

HS 32 12,300 4,813 2.56 
HS 64 23,100 7,617 3.03 

Table 4: Program execution time 

 

Program 

FCPU 
Cache 
OFF 
[%] 

FCPU 
Cache ON 

[%] 
Ratio 

MTX 4x4 0.46 2.51 5.46 
MTX 10x10 0.52 7.19 13.91 

HS 32 0.17 2.68 15.58 
HS 64 0.18 4.46 24.70 

Table 5: Processor failure rates 

4.2 Analysis of the cache components 

The previous experiments showed that when turned on, 
the cache subsystem can greatly affect the processor 
failure rate. We thus performed a second set of 
experiments aiming at better analyzing the effects of SEUs 
inside the cache components. We injected faults in both 
the cache lines and the cache tags. In this case, the number 
of injected faults was proportional to the size of the 
considered memory components. 

In table 6 the fault effects are reported and classified 
according to the categories introduced in sub-section 2.3. 
The rows labeled with D-/I- Cache lines refer to the effects 
of SEU injected in the lines of the data/instruction cache. 
Conversely, the rows labeled with D-/I- Tag refer to faults 
injected in the tag bits associated with the data and 
instruction cache lines. 

By analyzing the data we gathered, several 
considerations arise: 
• SEUs in D-Cache and I-Cache lines are particularly 

critical; in fact, most of the soft errors hitting these 
memory elements lead the processor to produce wrong 
answers. 



• D-Tag memory bits are very sensible to SEUs, which 
may produce either wrong answers or processor stalls. 
The latter case is the less critical from the 
dependability point of view, since this kind of effect 
will result in just a time overhead. Nevertheless, this 
time overhead may be significant when real-time 
constraints have to be met. 

• I-Tag memory bits are the most robust against SEUs, 
which mainly produce processor stalls, while no wrong 
answers were observed. 

5 Conclusions 

The paper proposed a method suitable for accurately 
analyzing the effects of soft errors in real processor cores 
running an application. The information provided by an 
accurate and efficient fault injection environment are 
combined to obtain the processor failure rate for a given 
application. Moreover, detailed analysis of the various 
processor components can be performed, thus obtaining 
accurate estimation of their contribution to the processor 
failure rate. By exploiting these information, designers of 
cores can easily identify the most critical processor 
components, and decide which is the better hardening 
solution. Finally, the approach can be used to exactly 
quantify the benefits and the disadvantages stemming from 
disabling the processor cache in terms of both processor 
failure rate and program execution time. 
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Program Component Wrong Answer 
[%] 

Effect- less 
[%] 

Latent 
[%] 

Exception 
[%] 

Time-out 
[%] 

Stall 
[%] 

D-Cache lines 2.3 97.4 0.1 0.0 0.0 0.2 
I-Cache lines 3.2 92.9 1.0 2.1 0.4 0.4 
D-Tag 2.7 92.9 0.0 0.0 0.0 4.4 

MTX 4x4 

I-Tag 0.0 82.9 1.1 0.0 0.0 16.0 
D-Cache lines 13.3 86.7 0.0 0.0 0.0 0.0 
I-Cache lines 3.3 93.8 0.3 2.1 0.3 0.2 
D-Tag 8.6 75.5 0.0 0.0 0.0 15.9 

MTX 10x10 

I-Tag 0.0 85.1 1.2 0.0 0.0 13.7 
D-Cache lines 3.9 96.1 0.0 0.0 0.0 0.0 
I-Cache lines 2.5 89.3 0.2 3.2 2.9 1.9 
D-Tag 2.5 91.5 0.0 0.0 0.0 6.0 

HS 32 

I-Tag 0.0 78.2 0.8 0.0 0.1 20.9 
D-Cache lines 7.9 92.1 0.0 0.0 0.0 0.0 
I-Cache lines 2.7 89.4 0.2 3.1 3.5 1.1 
D-Tag 5.5 84.5 0.0 0.0 0.0 10.0 

HS 64 

I-Tag 0.0 76.2 0.8 0.0 0.1 22.9 
Table 6: Analysis of SEU effects in the cache subsystem 
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