
An Accurate Analysis of the Effects of Soft Errors in the Instruction and Data
Caches of a Pipelined Microprocessor

M. Rebaudengo, M. Sonza Reorda, M.Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

Abstract*

Instruction and data caches are well known
architectural solutions that allow significantly improving
the performance of high-end processors. Due to their
sensitivity to soft errors they are often disabled in safety
critical applications, thus sacrificing performance for
improved dependability. In this paper we report an
accurate analysis of the effects of soft errors in the
instruction and data caches of a soft core implementing
the SPARC architecture. Thanks to an efficient simulation-
based fault injection environment we developed, we are
able to present in this paper an extensive analysis of the
effects of soft errors on a processor running several
applications under different memory configurations. The
procedure we followed allows the precise computation of
the processor failure rate when the cache is enabled even
without resorting to expensive radiation experiments.

1 Introduction

New application areas, such as the automotive one that
is pursuing the drive-by-wire philosophy, are fostering the
adoption of high-performance processors in safety-critical
applications. In this areas two conflicting constraints
should met. On the one hand, there is the need for
adopting modern processor cores able to support complex
operations in a real-time context, such as the control of
active shock absorber systems or steer-by-wire. Moreover,
the need for keeping the product cost as low as possible is
making commercial-off-the-shelf processors very active.
On the other hand, these application areas are
characterized by tight dependability requirements: since

* This work has been partially supported by the Center of Excellence

on Multimedia Radiocommunications (CERCOM) of Politecnico di
Torino.

the processor-based systems are employed in applications
that can harm the human life, it is mandatory for them to
guarantee high dependability levels.

Commercial-off-the-shelf processors, and in particular
the high-performance ones, can be exploited within safety-
critical applications only when their behavior in presence
of faults is known. In this context, the fault tolerance
community is increasingly concerned by soft errors
resulting from the perturbation of storage cells (caused for
example by ionization [1]) known as Single Event Upset
(SEU). Unlike memory modules that can be easily
hardened by resorting to solution ranging from the simple
parity bit to more complex codes, the problem of avoiding
soft errors in memory modules inside high-end processors
is much more complex. This kind of processors employ
architectural solutions such as pipelined execution units,
out-of-order instruction issue units and cache memories
that significantly increase the number of memory elements
the processors embed. These memory modules are usually
not hardened against SEUs and thus the dependability
level the processor provides can be very low. This
problem is usually addressed by simply disabling the
processor cache memory. The processor area that is
susceptible to SEUs is therefore drastically reduced while
the processor dependability is greatly increased. Although
very simple and effective from the dependability point of
view, this solution implies a significant performance loss
that may be not acceptable when complex computation are
required, in particular when real-time constraints should
be met. As a result, no simple assumptions (such as to
disable cache memories) can be done and the
dependability of the processor-based system should be
carefully analyzed.

The effects of soft errors in modern processors, and in
particular in cache memories, were already studied in
several works, such as [2]-[6]. Several analysis approaches
were adopted for assessing the effects of soft errors:

1530-1591/03 $17.00 2003 IEEE

radiation testing, fault injection and static computation
based on error propagation models.

The main contribution of this paper lies in the analysis
procedure we propose, which offers an effective solution
for analyzing processor cores without the high costs and
accuracy loss other approaches may imply. The proposed
approach is general, i.e., it can be adopted for studying any
processor provided that a model is available, and it can be
adopted for accurate analysis, both in terms of fault
location and fault injection time. On the contrary, the
approaches based on radiation testing lacks the ability to
carefully select the fault location and the fault injection
time; as a result, they do not allow to quantify the
contribution to the processor dependability of each
memory component (i.e., cache lines, cache tags, pipeline,
register file). Moreover, the approaches proposed so far
exploiting simulation-based fault injection [7] or analytical
models lacks accuracy, since they resort to purely behavior
processor models, thus neglecting the implementation
details that may significantly alter the obtained results.

As an example of application of our approach, the
paper reports an accurate analysis of a real processor core.
We were able to measure the effects of soft errors in both
cache lines and cache tags, and to quantify their
contribution to the processor dependability with respect to
the other memory elements the processor embeds (i.e.,
register file and pipeline). The fault injection campaigns
we performed showed that soft errors in the data cache
lines and tags are particularly critical, while the effects on
the instruction cache lines are strictly correlated to the
considered application. An interesting result is the
unexpected good robustness of instruction cache tags.

The obtained figures can be exploited to guide
designers to cleverly select the processor components that
should be hardened, and to identify the hardening solution
that best fits the fault tolerance, area and time
requirements. As an example of this kind of analysis, we
evaluated two processor configurations: one exploiting all
the features the processor provides and one where the
cache subsystem is disabled. This analysis showed that
although cache memory allows improving the processor
performance by a factor of about 3, it may reduces the
processor dependability level by a factor up to 24 with
respect to the same application ran by a cache-less
processor.

The paper is organized as follows. Section 2 reports
background information about the fault model we adopted,
the processor core we considered and the fault injection
environment we exploited. Section 3 reports the analysis
methodology we exploited for computing the processor
dependability; while section 4 reports the results of the
experimental analysis we performed. Finally, section 5
reports some conclusions.

2 Background

This section provides the reader with background
information about the fault model we considered during
our analysis, the processor core we analyzed, and the fault
injection environment we adopted.

2.1 The fault model

The fault tolerance community is increasingly
concerned by the occurrence of soft errors resulting from
the perturbation of storage cells caused by ionization [1].
This type of soft errors is known as Single Event Upset
(SEU). A characteristic of SEUs is that they are random
events and thus they may occur at unpredictable times. For
example, they may corrupt the content of a processor
register during the execution of an instruction.

In this paper we focused on the fault model called upset
or transient bit-flip, which results in the modification of
the content of a storage cell during program execution.
Possible fault locations are thus internal memory cells,
flip-flops, bits of user and control registers and even
registers usually not accessible through the processor
instruction set, and embedded memories such as register
files and caches.

In the paper we assume that the memory modules
located outside the processor and storing the application
code/data are hardened against SEUs, and thus we
concentrate only on the memory elements located inside
the processor: pipeline registers, register file and cache
memory (cache lines and cache tags).

Despite its relative simplicity, the bit-flip is widely
used in the fault tolerance community to model real faults,
since it closely matches the real faulty behavior [8].

2.2 Analyzed processor

We considered the Leon core implementing the
SPARC v8 architecture [10]. The core description
corresponds to about 100,000 lines of synthesizable RT-
level VHDL code.

The model includes 2 Kbytes of memory for
implementing the instruction cache (I-Cache) and 2
Kbytes for the data one (D-Cache), an integer
multiplication and division units, and a 5-stage pipeline.

The Leon instruction/data cache is a direct-mapped
one, and it is divided into lines with 8 bytes of data. Each
line has a cache tag (I-Tag, D-Tag) associated with it
consisting of a tag field and one valid bit for each 4-byte
sub-block. The data cache implements a write-through
policy with no-allocate on write-miss.

The processor pipelined integer unit is composed of the
following stages:

• Fetch: it loads a new instruction either from the
instruction cache or the main memory, depending on
the cache subsystem configuration.

• Decode: it decodes the instruction and reads the
required operands.

• Execute: it executes arithmetical, logical and shift
operations. It also takes care of address computation.

• Memory: it accesses the data cache.
• Write: it writes to the register file the results of any

arithmetical, logical, shift or cache read instruction.
When synthesized, this description produces a netlist of

about 35,000 gates. The core has been instrumented
according to the fault injection environment described in
section 2.3 and then synthesized on a Xilinx Virtex 1000E
device. The obtained design amounts to 4,762 out of
12,288 logics blocks, uses 14 out of 96 block RAMs and
runs at 30 MHz.

By analyzing the reports produced by the Synopsys
FPGA Compiler II tool, we gathered the number of flip-
flops in the circuit, which are summarized in table 1; in
table 1 we report also the percent contribution of each
module to the total number of flip-flops (column Ratio).

Processor module Number of flip-flops Ratio
[%]

Pipelined integer unit 742 1.67
Register file 4,352 9.83

D-Cache memory 19,584 44.25
I-Cache memory 19,584 44.25

Table 1: Processor memory elements

As the reader can observe from table 1, the processor
embeds a significant amount of flip-flops that can be
affected by SEUs.

2.3 Fault injection environment

In this paper we exploited the simulation-based fault
injection [7] technique for assessing the effects of SEUs
inside a processor memory elements. In order to speed-up
the execution of the fault injection experiments, we
exploited an extended version of the approach described in
[9], where simulation-based fault injection efficiency is
improved by means of emulation: the processor model is
first instrumented for supporting fault injection and then
implemented on a FPGA device.

The adoption of a simulation-based approach in spite of
the software-based one that is usually exploited for the
analysis of processors is motivated by two reasons.

The processor we considered adopts a pipelined
execution unit embedding several registers. Since they are
likely to be affected by SEUs, they have to be analyzed
during fault injection. Software-based fault injection
which resorts to the processor instruction set for fault
inoculation is not suitable for our purposes since it does

not provide any mean for directly reading and writing the
content of the pipeline registers.

Moreover, although the Leon instruction set provides
instructions for reading and writing the contents of the
cache memory, and thus software-based fault injection can
be exploited, the time resolution it allows is not accurate
enough for performing detailed analysis of the effects of
SEUs. SEUs are random both in space and time, thus they
can hit the processor area anytime. Resorting to the
instruction set for injecting SEUs provides a time
resolution of one instruction, and thus it assumes that a
SEU should hit the processor within a time corresponding
to the number of clock cycle the processor needs for
executing one instruction. By resorting to the approach
proposed in [9] we are able to more accurately model SEU
effects, since the adopted fault injection method provides a
time resolution of one clock cycle.

The fault injection environment we exploited classifies
fault effects according to the following categories:
1. Wrong answer: the results produced by the faulty

processor are different than those produced by the
fault-free processor.

2. Effect-less: the results produced by the faulty processor
are equal to those produced by the fault-free processor.

3. Latent: the results produced by the faulty processor are
equal to those produced by the fault-free processor, but
at the end of the program execution, the content of the
pipeline of the fault-free processor differs from that of
the faulty one.

4. Exception: the injected fault is detected by the error
detection mechanisms the processor embeds, which
force the processor to generate an exception (e.g.,
illegal instruction exception or invalid address
exception).

5. Time-out: the faulty processor is not able to produce
the expected result after a given amount of time.

6. Stall: the faulty processor computes the expected
results in a time greater than the faulty-free one.
Examples of faults belonging to this category are those
that originate an unexpected flush of the pipeline or
that invalidate a valid cache line.

3 Analysis procedure

In this paper we assume that the processor
dependability level is measured as its sensitivity to SEU
effects. Radiation testing is normally adopted to analyze
SEU effects on processors in terms of static cross-section
[11]. Static cross-section corresponds to the sensitivity to
SEUs of all the processor memory elements (registers and
internal memories) and is independent on the executed
program. In practice, static cross-section is often obtained
by measuring the number of corrupted bits in the processor
storage elements after the circuit is exposed to suitable
radiation beams. Static cross-section is then combined

with the figures characterizing the final environment to
estimate the error rate of the final application. The
obtained figure is a worst-case estimation of SEU effects,
because it does not take into account the impact of the
executed application on the processor cross-section: for
example, an application may use only a limited portion of
the processor register file, and thus SEU effects on the un-
used registers should be ignored during cross-section
computation.

Recently, an alternative approach [11] has been
proposed to overcome this limitation: the method
combines fault injection results with static cross-section
figures derived from radiation experiments, according to
the following equation:
 FSEUSEU ⋅=στ (1)

where SEUσ is the SEU static cross section (in cm2/device)
of the considered processor, and F is the probability that a
SEU hitting the processor produces a wrong answer (i.e.,
the processor is affected by the SEU in such a way that the
results it provides are different from the expected ones).
The static cross section can be easily computed by
performing a static test, i.e., the content of the processor
memory elements is continuously read during a radiation
session. Static cross section thus measures the fraction of
particles hitting the circuit that originates SEUs in the
processor memory elements, and depends only on the
device manufacturing technology.

Conversely, the value F, hereinafter called failure rate,
depends on the processor architecture and the application
the processor is executing, and a good estimation accuracy
is essential to provide designers with meaningful
dependability figures.

In order to accurately compute the failure rate of a
processor which embeds heterogeneous memory
components (we assume they are all manufactured with
the same technology and thus share the same static cross
section) we propose the following approach:
1. For each memory module i in the processor, we inject

N faults and measure the module failure rate Fi as:

N

WA
F i

i = (2)

where WAi is the number of faults leading the program
to produce wrong answer, when N faults affect the
memory elements (i.e., change their value).

2. We combine the obtained failure rates to obtain the
processor failure rate FCPU as follows:

i

i
iCPU PFF ⋅=∑ (3)

where Pi is the probability for a soft error to occur
inside the memory module i, given that a SEU occurs
in the processor. Please note that the probability that a
SEU affects the processor is

SEUσ . Since we assume

the same technology and the same geometry for each
memory cell, we have that:

TOT

i
i B

B
P = (4)

where Bi is the number of bits in the memory module i
and BTOT is the total number of memory bits in the
processor.

The fault injection tool we adopted provides the required
accuracy since it allows accessing all the memory
elements the processor embeds, with a very high time
resolution.

In setting-up the fault injection experiments, a crucial
factor is the selection of the number of faults to inject.
Given a time resolution of one clock cycle, the total
number of possible faults can be computed as follows:
 CCBN TOTTOT ⋅= (5)

where CC is the number of clock cycles that are needed
for completing the execution of an application. Since the
number of faults that should be simulated according to
equation 5 is very high, we resort to a fault sampling
technique. In particular, we selected a number of faults
proportional to CC. This assumption allows taking into
account the fact that the number of particles hitting the
processor is proportional to the program execution time.
As a result, the total number of SEUs originated in the
processor is proportional to the program execution time.

4 Experimental results

As an application of the proposed methodology we
studied the effects of soft errors inside the cache memory
of the Leon processor. In particular, the purpose of the
experiments we performed is twofold. On the one hand,
we are interested in quantifying the impact of SEUs inside
the cache memory on the processor failure rate (sub-
section 4.1); on the other hand, we are interested in
analyzing in greater detail the effect of SEUs in the
different components of the cache subsystem: cache lines
and cache tag (sub-section 4.2).

4.1 Analysis of soft errors in the cache

To evaluate the effects of soft errors in the cache
subsystem of the Leon processor we considered two
benchmark programs, a computational intensive one and a
data-transfer intensive one:
• MTX: it is a matrix multiplication program, where two

integer matrices are multiplied. We considered two
implementations of this benchmark, one working on
4x4 matrices (MTX 4x4) and another one working of
10x10 matrices (MTX 10x10);

• HS: it is an implementation of the heap sort algorithm,
which exploits a recursive procedure. As in the
previous case, we considered two implementations of
this program. One working on a set of 32 integer

values (HS 32), and one working on 64 values (HS
64).

The programs, whose characteristics are reported in table
2, are coded in C and have been compiled resorting to the
GNU C/C++ gcc compiler, which can generate code for
the Leon processor [10].

Program
C

lines
[#]

Data
segment

size
[# byte]

Code
segment

size
[# byte]

MTX 4x4 35 192 2,832
MTX 10x10 35 1,200 2,832

HS 32 60 132 8,384
HS 64 60 256 8,384

Table 2: Program characteristics

In a first set of experiments, we injected faults in the
pipeline registers, in the register file and in the instruction
and data caches (both cache lines and cache tags). For
each of the above modules we injected 100,000 faults in
order to get statistically meaningful results. The
predominance of soft errors inside the cache subsystem on
the processor failure rate can be observed by analyzing the
results in table 3, where we report the percent contribution
of each component to the processor failure rate.

Component
MTX
4x4
[%]

MTX
10x10
[%]

HS 32
[%]

HS 64
[%]

Pipeline 4.28 1.73 1.56 1.65
Register File 6.67 4.11 3.30 1.54

D-Cache 41.77 77.17 60.06 74.42
I-Cache 47.27 17.00 34.53 22.39

Table 3: Contribution of processor components to the
failure rate

The contribution of faults inside the cache is always the
dominant term: such a contribution ranges indeed from
89.04% for MTX 4x4 to 96.81% for HS 64. Moreover, the
contribution of D-Cache and I-Cache greatly depends on
the executed program. As expected, the larger it is the
amount of data the program manipulates, the larger it is
the contribution to the processor failure rate of the D-
Cache.

To evaluate the impact of the cache on processor
dependability and performance levels, we then performed
a second set of experiments, where we considered two
memory configurations mimicking two possible scenarios.
In the first one the cache is disabled to improve the
processor dependability, resulting in longer execution
times; in the second scenario the cache is enabled, thus
minimizing the program execution time. Table 4 reports
the program execution time for the two considered

scenarios, while table 5 reports the processor failure rates
computed according to equation 3.

The obtained results show that by turning off the cache
we can reduce the processor failure rate by a factor
ranging from about 5.46 to 24.70. The introduced time
overhead is however not negligible: the program execution
time is indeed increased by a factor ranging 2.56 to 4.39.
Please note that the performance degradation is much
lower than the benefits stemming from disabling cache
memories from the dependability point of view.

Program
Exec. time

Cache OFF
[# clock]

Exec. time
Cache ON
[# clock]

Ratio

MTX 4x4 15,074 4,972 3.03
MTX 10x10 193,327 44,076 4.39

HS 32 12,300 4,813 2.56
HS 64 23,100 7,617 3.03

Table 4: Program execution time

Program

FCPU
Cache
OFF
[%]

FCPU
Cache ON

[%]
Ratio

MTX 4x4 0.46 2.51 5.46
MTX 10x10 0.52 7.19 13.91

HS 32 0.17 2.68 15.58
HS 64 0.18 4.46 24.70

Table 5: Processor failure rates

4.2 Analysis of the cache components

The previous experiments showed that when turned on,
the cache subsystem can greatly affect the processor
failure rate. We thus performed a second set of
experiments aiming at better analyzing the effects of SEUs
inside the cache components. We injected faults in both
the cache lines and the cache tags. In this case, the number
of injected faults was proportional to the size of the
considered memory components.

In table 6 the fault effects are reported and classified
according to the categories introduced in sub-section 2.3.
The rows labeled with D-/I- Cache lines refer to the effects
of SEU injected in the lines of the data/instruction cache.
Conversely, the rows labeled with D-/I- Tag refer to faults
injected in the tag bits associated with the data and
instruction cache lines.

By analyzing the data we gathered, several
considerations arise:
• SEUs in D-Cache and I-Cache lines are particularly

critical; in fact, most of the soft errors hitting these
memory elements lead the processor to produce wrong
answers.

• D-Tag memory bits are very sensible to SEUs, which
may produce either wrong answers or processor stalls.
The latter case is the less critical from the
dependability point of view, since this kind of effect
will result in just a time overhead. Nevertheless, this
time overhead may be significant when real-time
constraints have to be met.

• I-Tag memory bits are the most robust against SEUs,
which mainly produce processor stalls, while no wrong
answers were observed.

5 Conclusions

The paper proposed a method suitable for accurately
analyzing the effects of soft errors in real processor cores
running an application. The information provided by an
accurate and efficient fault injection environment are
combined to obtain the processor failure rate for a given
application. Moreover, detailed analysis of the various
processor components can be performed, thus obtaining
accurate estimation of their contribution to the processor
failure rate. By exploiting these information, designers of
cores can easily identify the most critical processor
components, and decide which is the better hardening
solution. Finally, the approach can be used to exactly
quantify the benefits and the disadvantages stemming from
disabling the processor cache in terms of both processor
failure rate and program execution time.

6 References

[1] E. Dupont, M. Nikolaidis, P. Rohr, “Embedded robustness IPs for
transient-error-free ICs”, IEEE Design and Test of Computers, Vol.
19,No. 3, May/June 2002, pp. 56-70

[2] S. H. Hwang, G. S. Choi, “On-chip cache memory resilience”,
IEEE 3rd International High-Assurance System Engineering
Symposium, 1998, pp. 240-247

[3] P. P. Shirvani, E. J. McCluskey, “PADded cache: a new fault-
tolerance technique for cache memories”, IEEE 17th VLSI Test
Symposium, 1999, pp. 440-445

[4] G. R. Brown et al., “Honeywell radiation hardened 32-bit processor
central processing unit, floating point processor, and cache memory
dose rate and single event effects test results”, IEEE Radiation
Effects Data Workshop, 1997, pp. 110-115

[5] A. K. Somani, K. S. Trivedi, “Cache error propagation model”,
Pacific Rim International Symposium Fault-Tolerant Systems,
1997, pp. 15-21

[6] N. S. Bowen, D. K. Pradhan, “The effect of program behavior on
fault observability”, IEEE Transactions on Computers, Vo. 45, No.
8 , Aug. 1996, pp. 868 -880

[7] R. K. Iyer and D. Tang, Experimental Analysis of Computer
System Dependability, Chapter 5 of Fault-Tolerant Computer
System Design, D. K. Pradhan (ed.), Prentice Hall, 1996

[8] M. Nikolaidis, “Time Redundancy Based Soft-Error Tolerance to
Rescue Nanometer Technologies”, IEEE 17th VLSI Test
Symposium, April 1999, pp. 86-94

[9] P. L. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda,
M. Violante, “FPGA-based Fault Injection for Microprocessor
Systems”, IEEE Asian Test Symposium, 2001, pp. 304-309

[10] http://www.gaisler.com
[11] R. Velazco, S. Rezgui, R. Ecoffet, “Predicting error rate for

microprocessor-based digital architectures through C.E.U. (Code
Emulating Upsets) injection”, IEEE Transactions on Nuclear
Science, Vol. 47, No. 6, 2000, pp. 2405-2411

Program Component Wrong Answer
[%]

Effect- less
[%]

Latent
[%]

Exception
[%]

Time-out
[%]

Stall
[%]

D-Cache lines 2.3 97.4 0.1 0.0 0.0 0.2
I-Cache lines 3.2 92.9 1.0 2.1 0.4 0.4
D-Tag 2.7 92.9 0.0 0.0 0.0 4.4

MTX 4x4

I-Tag 0.0 82.9 1.1 0.0 0.0 16.0
D-Cache lines 13.3 86.7 0.0 0.0 0.0 0.0
I-Cache lines 3.3 93.8 0.3 2.1 0.3 0.2
D-Tag 8.6 75.5 0.0 0.0 0.0 15.9

MTX 10x10

I-Tag 0.0 85.1 1.2 0.0 0.0 13.7
D-Cache lines 3.9 96.1 0.0 0.0 0.0 0.0
I-Cache lines 2.5 89.3 0.2 3.2 2.9 1.9
D-Tag 2.5 91.5 0.0 0.0 0.0 6.0

HS 32

I-Tag 0.0 78.2 0.8 0.0 0.1 20.9
D-Cache lines 7.9 92.1 0.0 0.0 0.0 0.0
I-Cache lines 2.7 89.4 0.2 3.1 3.5 1.1
D-Tag 5.5 84.5 0.0 0.0 0.0 10.0

HS 64

I-Tag 0.0 76.2 0.8 0.0 0.1 22.9
Table 6: Analysis of SEU effects in the cache subsystem

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

