
Optimal Reconfiguration Functions for Column or Data-bit Built-In Self-Repair

M. Nicolaidis, N. Achouri, S. Boutobza
iRoC Technologies

38025 Grenoble, France

Abstract
In modern SoCs, embedded memories occupy the largest
part of the chip area and include an even larger amount of
active devices. As memories are designed very tightly to the
limits of the technology they are more prone to failures
than logic. Thus, memories concentrate the large majority
of defects and affect circuit yield dramatically. As a matter
Built-In Self-Repair is gaining importance. This work
presents optimal reconfigurations functions for memory
built-in self-repair on the data-bit level. We also present a
dynamic repair scheme that allows reducing the size of the
repairable units. The combination of these schemes allows
repairing multiple faults affecting both regular and spare
units, by means of low hardware cost. The scheme uses a
single test pass, resulting on low test and repair time.

1. Introduction
Traditionally, memory repair is performed by using
external equipment to test the memory, localize the faults,
and drive a laser beam that perform the repair. Electrical
fuses or anti-fuses can also be used to avoid laser beam. In
this case too, the external test equipment determines the
fuses to be blown. Recent developments replace external
equipment by Built-In Self-Test (BIST) and Built-In Self-
Repair (BISR) schemes in order to maintain at reasonable
levels the test and the repair cost of embedded memories.
An additional advantage is that BIST and BISR can test and
repair embedded memories at any time during the product
life. This reduces maintenance cost, and increases reliability
and product life. Various BISR approaches have been
developed. Row (or word) BISR uses a spare row (or word)
to replace a faulty regular row (or word). Column BISR
uses a spare column to replace a faulty regular column.
Data-bit BISR uses a memory unit generating a spare data
bit to replace a memory unit generating a regular data bit.
Each of them has its advantages and drawbacks, and can be
of interest under various circumstances. In this work we
consider the data-bit BISR and column BISR schemes.
Data-bit BISR can repair faulty cells, faulty columns, as
well as faulty column-MUXes, faulty read or write
amplifiers, and faulty data input/output registers. Repairing
read amplifiers may improve yield significantly, since the
sense amplifiers are very sensitive circuits and can be faulty
more frequently than other parts. On the other hand, row
and word repair cannot repair the above-mentioned faults.

Row/word repair is the simplest BISR approach, so,
the majority of the previous works consider this scheme,
although column repair was the predominant external repair

scheme. Word repair was early proposed by K. Sawada et
al [1]. It uses a content addressable memory storing the data
and addresses of the faulty words. The work considers low
numbers of faults. Also, faults in the spare parts are not
considered. Subsequent work on row BISR [2] [3], [4] use
the same basic scheme but improve various implementation
aspects. These works too consider a low number of faults
(e.g. two faults in [3]), and no faults in the spare units. A
more recent work [7] innovates by using nonvolatile
memory cells to fix once forever manufacturing faults.

Work on column/data BISR is more recent due to the
difficulty for elaborating the reconfiguration functions. Kim
et al [5] present the first work in this domain. It proposes a
scheme where the reconfiguration information is generated
by a controller and stored in a memory. To master the
complexity of the reconfiguration process, the scheme
repairs a single fault per test phase. That is, the memory is
tested until the first fault is found and repaired. Then, the
memory is tested again until a second fault is found and
repaired, and so on. This process simplifies the work of the
BISR control unit, but the test and repair time becomes very
high when the number of faults increases. The paper
considers a small number of faults (e.g. 2 faulty columns
out-of 128 regular columns), and uses a large number of
memory cells for storing the reconfiguration information.

Another paper [6] considers the combination of
column and row repair. It proposes an algorithm that
allocates efficiently the spare rows and columns to repair
multiple faults that may affect some columns and rows.
However, it does not propose BISR circuitry for
reconfiguring the memory.

In the present work we present optimal
reconfiguration functions for column and data-bit repair.
This is the first study that derives analytically these
functions. The derived functions perform repair for multiple
faults affecting both the regular and spare elements,
minimizes the hardware cost for implementing the repair
control and for storing the reconfiguration information, and
performs the repair by means of a single test pass. This
optimizes BISR cost and repair efficiency. In addition, it is
not required to modify the memory structure, since the
repair circuitry is placed around the memory. Thus, the
memory can be generated by existing memory generators.

2. Data-bit or column Built-In Self- Repair
Data-bit repair localizes the faulty data bit positions,

and replaces the memory parts generating these bit
positions by spare parts. Thus, the replaceable unit will be

1530-1591/03 $17.00 2003 IEEE

the block of the memory cells connected to a single
input/output. In order to be able to repair k faults we will
add k such spare blocks (spare units).

We consider that we dispose a set of latches that store
the information of the faulty bit positions (Faulty Bit
Indication – FBI latches). The FBI latch of position i (FBIi)
contains a 0 if the data bit di is fault-free or a 1 if it is
faulty. The number of FBI latches is equal to the number of
regular and spare units (n + k). One possible way to
compute the contents of the FBI latches is shown in figure
1. The comparator used in the BIST circuitry for comparing
the read data against the expected data, is also used to
provide the signals Xi that determine the state of the FBIi
latches. The BIST comparator uses an XOR gate at each bit
position i. During the test session, this gate compares the
data read at the output di against the value expected to be
read at this output. These XOR gates are not shown in the
figure. An OR compacts the outputs of the XOR gates to
generate a unique error detection signal (this gate is not
shown in the figure). The signals Xi are not exploited by
the go/no go BIST approach. However, in the case of the
BISR approach we use the signals Xi as shown in figure 1.
An OR gate combines the signal Xi with the output of the
latch FBIi to generate the input of the latch FBIi. Thus, if at
any cycle of the test session a 1 is generated on Xi
(detection of an error on the bit position di), this value is
memorized in the FBIi latch for the rest of the time,
indicating a fault in the bit position di. Note that the spare
units may also be faulty. The reconfiguration functions
developed in this work will be implemented in a manner
that only the fault-free spare units will be used to repair the
faulty regular units. For doing so, both the regular and the
spare units are controllable and observable by the BIST
circuitry. This circuitry will use a comparator of length n+k,
and will provide inputs to n+k FBI latches, as shown in
figure 1.

To perform repair we use a set of reconfiguration
MUXes to replace the faulty units by the spare ones. A
logic bloc implementing the reconfiguration functions will
receive at its inputs the outputs of the FBI latches, and will
provide on its outputs the control signals of the MUXes.
We can use MUXes having control signals coded into the
binary code or into the 1-out-of-(k+1) code.

We can use a left-side or a right-side repair. In the
following we will consider a left-side repair. The
reconfiguration can be done in a local manner, or in a
distant manner. In the local repair (figure 2), a faulty unit is
isolated and its left-side closest fault-free unit is used to
replace it. Such a replacement will also require shifting to
the left the connections of the bit positions being to the left
of the repaired position. The repair starts from the faulty
unit of lower order (the right most one). Then, we proceed
to the repair of the next lower order faulty unit, and so on.
We number the functional units from 0 to n-1 (U0, U1, …,
Un-1) and the spare units from n through to n+k-1 (Un,
Un+1, …, Un+k-1). Figure 2 shows an example of the local
left-side repair using four functional units and three spare
units. We observe that for each regular unit we use one

MUX of the type 1-out-of-(k+1), to be able to connect each
data bit to the corresponding regular unit or to one of its k
left-side neighbor units.

In the distant repair, the functional and spare units
form two distinguished sets in the repair process. Each
faulty functional unit is replaced by a spare one rather than
by its closest fault-free one. In this case there is no shift on
the connections of the fault-free regular units. For this
scheme we need to use the same number of MUXes as for
the local repair, but the signals controlling the MUXes are
computed by using different reconfiguration functions.
Also, we use a smaller number of interconnection lines, but
each of these lines is longer. An example of distant repair
for n = 4 and k = 3 is shown in figure 3.
In the above we consider that the reconfiguration is done at
the data-bit level. However, the reconfiguration functions
derived in the next sections can also be used to perform the
repair at the memory column level. In this case the FBI
latches have to indicate the faulty columns instead of the
faulty data input/outputs. The problem with a pure column
repair is that it requires introducing the reconfiguration
MUXes and the routing within the memory layout. This can
be difficult because each 1-out-of-(k+1) MUX must fit
within the width of a single column. To avoid modifying
the memory layout, but reduce the size of the repairable
units at the size of a memory column or even less, we have
developed a dynamic reconfiguration scheme described in
section 5.

3. Reconfiguration functions for local repair
The idea for deriving optimal reconfiguration

functions is to implement a circuit that counts the number
Shift(i) of positions that each signal di must be shifted. This
count can be performed by a combinational or by a
sequential circuit. To compute the number Shift(i) [10] we
need to count the number of ones in a first set of FBI
latches composed of the FBI latches of positions 0 through
to i, and then determine the minimum integer q such that
the set of FBI latches of positions i+1, i+2, …, i+q (second
set) contains a number of 0’s equal to the number of 1’s in
the first set. Shift(i) is the equal to q. In an equivalent
manner, we can count the number of 1’s in the first and
second set of FBI latches, and set Shift(i) equal to this
number. This counting can be done more easily by a
sequential circuit. For a combinational circuit, counting the
number of 0’s in the second set of FBI latches is more
complex since this set has a variable size (it depends on the
contents of the FBI latches of the first set and on the
contents of the second set itself). As an illustration,
consider the case where two latches in the positions 0
through to i contain a 1, the latches in positions i+1 and i+4
contain a 0, and the latches in positions i+2 and i+3 contain
a 1. In this situation, to determine by how many positions
we have to shift the position i, we have to count the number
of 1’s in positions 0 through to i (first set), and the number
of 1’s in positions i+1, i+2, i+3, and i+4. This is equal to 4,
and the position i must be shifted to the position i+4.
However, if positions i+1 and i+3 contain a 0 and positions

i+2and i+4 contain a 1, then, if we consider again the
positions i+1, i+2, i+3, and i+4 to compose the second set,
we will count again four 1’s and we will shift position i to
position i+4, while the correct decision is to shift it to the
position i+3. In fact, in the present case, the second set
should include only the positions i+1, i+2, and i+3. Thus, to
count the number of 1’s in the second set we need to
determine this set. But for determining it we need to count
its number of 1’s. This results on complex reconfiguration
functions that are costly to implement, especially as
combinational functions. In order to simplify the
complexity of the combinational functions, we make the
count into the 1-hot code instead of the binary code. In this
code, the jth variable will determine if the ith position will
be shifted to the i+j position. This is determined by the
contents of a constant set of latches (those of positions 0
through to i+j), simplifying considerably the complexity of
the reconfiguration functions. Also the 1-hot code will
control directly the MUXes without using a decoder, as is
the case for the binary code. In addition, in order to further
reduce the hardware cost, we have adopted a recursive
approach. It leads to recursive equations that are
implemented as an iterative combinational or sequential
logic array. The hardware complexity of such arrays is low
but their delay is large, since it is linear to the number of
input variables. However, these arrays will compute the
values of the reconfiguration signals only once (at the end
of the repair phase). Then, these signals will remain stable
during the circuit operation. Thus, the delay of the
reconfiguration functions is meaningless.

We have developed two types of iterative networks for
computing the reconfiguration signals: sequential iterative
functions and combinational iterative functions.

3.1 Sequential local reconfiguration functions
To count the number of positions that the data-bit di

has to be shifted, we implement a sequential circuit that
generates a signal Ri which takes the value 1 during Shift(i)
consecutive clock cycles [8][9]. A counter is associated to
each signal Ri. The counter is incremented each time Ri is
1. If we use reconfiguration MUXes that are controlled by
signals belonging to the 1-out-of-(k+1) code, then the
counter will be a shifter of size k+1, initialized to the value
000…01. If the reconfiguration MUXes are controlled by a
binary code, then, a binary counter will be used.

We use the FBI latches and some logic to implement
the sequential circuit that generates the signals Ri. The
signal Ri depends on the value of latch FBIi, but also on the
FBIj latches, with j<i. This is because when a position j is
shifted to the left, any position i with i>j has also to be
shifted to the left. The value of Ri also depends on the
values of the FBIj latches with j>i. This is because each
time the position i is shifted to the left it is connected to a
unit being on the left of position i, which can be faulty or
fault-free. The information indicating the state of this unit is
stored in a latch FBIj having j>i.

As said earlier, to simplify the equations of the
reconfiguration functions for an arbitrary position, we have

adopted a recursive approach. We obtain these equations
thanks to the following observations:
a) FBIj = 1 => Rj = 1, since for a faulty unit Uj, Rj must
counts at least once.
b) Each time a signal Rj is activated it also forces the signal
Rj+1 to the active state (i.e. logic 1), since each-shift left of
dj implies a shift-left of dj+1.
c) From a) and b) we obtain Ri = FBIi + Ri-1.
d) When the signal Ri is activated (Ri=1) the value of latch
FBIi+1 is transferred to the latch FBIi. In any other case the
value of FBIi becomes 0. This is because the signal di is
now connected to the unit on which it was connected
previously the signal di+1. Thus, the FBI latch of position
di should now indicate the state indicated previously by the
latch FBI of position di+1.
This analysis gives the following sequential equation for
the FBI latches, during the repair phase.
(FBIi)tq+1 = (Ri⋅ FBIi+1)tq where tq and tq+1 are two
consecutive time instances.
We obtain two very simple equations implementing the
sequential circuit that generates the signals Ri.
(1) Ri = Ri-1 + FBIi, ∀ i : n+k-1 ≥ i ≥ 0, R-1 = 0

(2) (FBIi)tq+1 = (Ri⋅ FBIi+1)tq, ∀ i : n+k-1 ≥ i ≥ 0, FBIn+k
= 0.

From figure 1, during the test phase the values of the
FBI latches can be computed by using the equation FBIi =
FBIi + Xi. Where Xi is the signal indicating the status of a
read operation at position di (Xi = 0 for correct read data,
Xi = 1 for false read data). Then, the equation (2) can be
replaced by the equation (3), where the signal REP is 1
during the repair phase and 0 during the test phase:

(3) (FBIi)tq+1 = (¬REP⋅(FBIi + Xi) + REP⋅ Ri⋅
FBIi+1)tq, ∀ i : n+k-1 ≥ i ≥ 0, FBIn+k = 0.
The scheme described by the equations 1) and 3) is shown
in figure 4. We note that a chain of OR gates interconnected
in series implements the equation (1). This will result on
high delays. This may involve a low operation frequency of
the repair phase. However, this does impact neither the
frequency of the test phase nor the frequency of the normal
operation of the memory. In the implementation we can
use, during the repair phase, an independent clock signal
having a low frequency (e.g. obtained from a frequency
divider), or use the same clock signal as for the other
phases, but reduce the frequency of this signal during the
repair phase.

We dispose n MUXes, one for each data-bit di. The
MUX of position i connects the data input/output di to the
regular unit Ui, if this unit is fault-free, and to one of the k
units Ui+1, … Ui+k if Ui is faulty. Thus, each of the
signals R0, R1, … Rn-1 is used to enable the counter of one
of the MUXes and it is also used as entry to the equations
(1), (3). On the other hand, the signals Rn, … Rn+k-1 are
only used as entries to the equations (1), (3), but no
counters are associated to them. The signal Rn+k-1 can be
used to indicate the success or the failure of the repair
process. If Rn+k-1 = 0 after k clock cycles of the repair

phase, the repair was successful. However, if Rn+k-1 = 1
after the k clock cycle, then the repair has failed because
there were more than k faulty units. Rn+k-1 can also be
used as a repair completion signal. That is, the repair phase
can be finished as soon as Rn+k-1 becomes 0.

3.2 Combinational local reconfiguration functions
With this scheme [9] we use reconfiguration MUXes that
have inputs coded into the 1-out-of-(k+1) code). In this
case, the control signals of the MUX of position i will count
into the 1-out-of-(k+1) code the number of positions that
we have to shift the data bit di. We have to derive the
function of a combinational circuit that performs this
counting. The input variables of this function are the states
of the FBI latches. For the MUX of position i, the control

signal Mji determines if di is shifted to the unit Ui+j. We
have seen that the number of positions that a data di has to
be shifted is a function of a variable set of FBI latches,
resulting on complex reconfiguration functions. This
problem appears when the control signals of the
reconfiguration MUXes, belong to the binary code.
However, when these signals belong to the 1-out-of-(k+1)

code, this problem is eliminated. In fact, the signal Mji is a
function of a fixed set of FBI variables (the variables FBI0,
FBI1, …, FBIi+j). Thus, the reconfiguration functions are
simplified considerably. To derive the functions of the
control signals of the reconfiguration MUXes in a recursive
manner, we first consider the control inputs of the MUX of

the position 0. The signal M00 is 1 iff the unit U0 is fault

free (FBI0 = 0), that is M00 = ¬FBI0. The signal Mj0 is 1
iff the unit U0 has to be shifted by j positions in order to be
connected to the first fault-free unit. That is, when FBI0 =
FBI1 = …= FBIj-1 = 1 and FBIj = 0. Thus, we obtain:

(4) M00 = ¬FBI0, M10 = ¬FBI1⋅ FBI0, …, Mk0 =
¬FBIk⋅… FBI1⋅ FBI0.

The equations describing the signals Mji of an
arbitrary position i involve the variables on the left and on
the right of position i in a complex manner. To simplify
these equations, we have adopted a recursive approach
where the control signals of position i+1 are expressed as
functions of the control signals of position i. The signal

Mji+1 is equal to 1 if the unit Ui+1 has to be shifted by j

positions. If Mri is 1 then Mji+1 will be 1 only if the units
Ui+r+1, Ui+r+2, …, Ui+j are faulty and the unit Ui+j+1 is
fault-free. Thus, we obtain the equations:

(5) Mji+1 = ¬ FBIi+j+1 (Mji
 + Mj-1i⋅ FBIi+j + Mj-2i⋅

FBIi+j-1⋅ FBIi+j + …+ M0i⋅FBIi+1⋅ FBIi+2… ⋅ FBIi+j), 0

≤ j ≤ k, 0 ≤ i ≤ n-2.

4. Combinational distant reconfiguration
functions
With this scheme [9], a regular faulty unit is replaced by a
spare fault-free unit and not by its closest fault-free unit.

Thus, a regular unit, which is fault-free, is not shifting its
position. The regular units are labeled as RU0, RU1,
…RUn-1 and the spare units are labeled as SU1, SU2, …,
SUk. The corresponding states of the FBI latches will be
noted RF0, RF1, …, RFn-1 and SF1, SF2, …, SFk.
The equations of the control signals of the MUX of position

0 are the simpler to obtain. The signal M00 is 1 if RU0 is

fault-free. The signal Mj0 is 1 if RU0, SU1, SU2, …, SUj-1
are faulty and SUj is fault-free. Thus, we obtain the
equations:

(6) M00 = ¬RF0, M10 = ¬ SF1⋅ RF0, …, Mk0 = ¬ SFk⋅SFk-

1… SF1⋅ RF0.
To reduce the complexity of the equations for an

arbitrary data bit dj we have again adopted a recursive
approach. However, the analysis for determining variables

Mji is trickier than in the case of local repair. In fact, in the

present case, when computing the variables Mji+1 we can

not use the value of the variables Mri
 , 0 ≤ r ≤ k, as

indicators of the number of spare units occupied after the
repair of some of the units RU0, RU1, …RUi.This is
because in the present case, if RUi is fault-free, then, the

functions M1i, M2i ,…, Mki are all 0, although some of
the units RU0, RU1, …, RUi-1 can be faulty. Thus, we

introduce some intermediate variables Fji, 0 ≤ i ≤ k, that
count the number of spare units occupied by the faulty units
RUr, 0 ≤ r ≤ i. These variables are determined as follows.
For position 0, the variables F’s are equal to the variables
M’s. Thus we have:

(7) Fj0 = Mj0, ∀ j ∈ {0, 1, …, k}.

For position i+1, the variables Fji+1 are equal to the

variables Fji if the unit RUi+1 is fault-free otherwise it is

equal to Mji+1. Thus we have:

(8) Fji+1 = Fji ⋅¬RFi+1 + Mji+1⋅RFi+1, 0≤ i ≤ n-2, 0≤ j ≤ k.

The variable M0i+1 is 1 iff RUi+1 is fault-free. The

variable Mj+1i+1 is 0 if RUi+1 is fault-free. If RUi+1 is

faulty (RFi+1 =1), then, Mj+1i+1 becomes 1 if SUj+1 is
fault-free (SFj+1⋅=0) and the following two conditions hold
for any integer r , 0 ≤ r ≤ j:
- the first r spare units are already occupied either

because they are used to repair some units RUq q≤ i or

because they are faulty (which means Fri = 1),
- the spare units SUr+1, SUr+2, …, SUj are faulty (i.e.

SFr+1 = SFr+2 = …= SUj = 1).
This analysis leads to the equations

(9): M0i+1 = ¬RFi+1, Mj+1i+1 = ¬ SFj+1⋅RFi+1(Fji + Fj-

1i⋅ SFj + Fj-2i⋅ SFj-1⋅ SFj + … + F0i⋅ SF1⋅SF2⋅…⋅ SFj), 0≤
j ≤ k-1, 0≤ i ≤ n-2.

A sequential reconfiguration functions for distant repair can
also be derived. The circuit has a similar complexity as the
sequential reconfiguration functions for local repair.

5. Dynamic Repair
In order to reduce the size of the units used to repair each
fault, we have developed a dynamic repair approach With
this scheme [10]. The idea is to reconfigure the memory
inputs/outputs in a dynamic manner, instead of static one.
In fact, instead of shifting permanently a data input/output
to a fixed position, we shift it dynamically to various
positions. That is, a data input/output is shifted only when a
part of a bloc containing a faulty cell is selected by the
memory addresses. For doing so, we implement R = 2m

blocks of FBI latches, each block containing n+k FBI
latches. We decode the value of m address bits to select one
of these blocks at each cycle of the test phase. In fact, at
each cycle of the test phase, the signals Xi (i.e. the outputs
of the XOR gates of the BIST comparator shown in figure
1), are connected to the inputs of the selected set of FBI
latches. This is done by means of a MUX controlled by
these address bits. During each cycle of the regular
operation, the value of the m address bits selects, through
another MUX, the block of FBI latches that drives the
inputs of the Reconfiguration Logic. This logic reacts to the
state of this bloc of FBI latches and reconfigures the
memory according to the fault-location information stored
there. At another cycle, another value of the m address bits
reconfigures the memory differently, by selecting another
bloc of FBI latches to drive the Reconfiguration Logic.
Thus, a fault-free part of one block of the memory can be
selected at a cycle to replace a faulty part of a second
memory bloc, and another non-faulty part of the former
bloc can be selected at another cycle to replace a faulty part
of a third memory bloc. Thus, for repairing a fault we use
only a part of a memory bloc instead of the whole block.
The higher the m the smaller is the bloc part used to repair
each fault, improving the repair efficiency. Since the
dynamic scheme uses multiple copies of the reconfiguration
functions, the low cost functions derived previously
improve drastically this scheme.

6. Implementation and Results
A BISR generator was developed to automate the
implementation of the schemes described in this work. To
avoid implementing all the schemes, we performed a
preliminary cost analysis. This analysis shown that the
hardware used for the local and the distant repair is of
similar complexity. Since the distant repair involves longer
interconnects it introduces larger delays. Therefore, we
have selected the local repair approach for implementation.
For this approach, the combinational scheme requires less
hardware for small and moderate values of k. For larger
values, the extreme simplicity of the logic part of the
sequential reconfiguration functions (five gates per memory
input/output), and the logarithmic increase of the binary
counter with the increase of k, make the sequential scheme
more economic. Thus, both schemes were implemented.

The dynamic repair scheme is also implemented since it
reduces the hardware cost drastically for a given repair
efficiency. The tool was used to evaluate the hardware cost
of the schemes for a 64K X 32 SRAM, implemented in a
commercial 0.18-micron process. The results are presented
in table 1. In this table, k represents the number of spare
blocks and m the number of address bits used to perform
dynamic repair (m = 0 corresponds to the static repair). The
table presents the extra area as a percentage of the area of a
memory that do not use repair. The extra area includes the
area of the spares, the area of the reconfiguration functions
and the area of the reconfiguration MUXes. We observe
that the extra area increases slightly as we increase m. This
is because the area of the optimal reconfiguration functions
derived in this work is very small. Thus, even the cost of
multiple copies of these functions remains low. As a result,
the BISR cost is basically the cost of the spares. Thus, by
increasing the value of m we can increase significantly the
number of repairable units (and thus the number of
repairable faults), by paying a small amount of extra area.
For instance, for k = 2 and m = 0, we can repair 2 faults by
paying a 6.37% of extra area. On the other hand, for k = 2
and m = 3 we can repair 16 faults by paying a slightly
higher extra area (7.06%). We also see from the same table
that for m = 0 and k = 6 the hardware cost is 18.94%. This
option performs static repair (m = 0) and thus is very
inefficient (it can repair only 6 faults for a much higher area
cost). Thus, the low-cost reconfiguration functions
combined with the dynamic scheme allow repairing a large
number of faults by means of low area overhead.

7. Conclusions
This work presents low cost reconfigurations functions for
memory BISR on the data-bit level, that repair multiple
faults affecting both the regular and spare units. We also
introduced a dynamic repair scheme that allows splitting
each regular and spare unit into multiple repairable units.
By combining the low cost of the reconfiguration functions
with the low size of the repairable units obtained by the
dynamic scheme, we achieve low repair cost for multiple
faults. Also, the scheme repairs faults affecting both the
functional and the spare units. An additional advantage is
that the BISR circuitry is external to the memory. Thus, we
can repair a memory without modifying its layout. Also, the
repair scheme uses a single test pass, reducing drastically
the test and repair time with respect to previous schemes.

Table 1. Area overhead of various BISR implementations
for a 64K X 32 SRAM
m k = 6 k = 5 k = 4 k = 3 k = 2 k = 1
3 18,63 15,6 12,58 9,33 6,46 3,4
2 17,97 14,98 12,02 8,91 6,1 3,11
1 17,63 14,67 11,72 8,7 5,87 2,97
0 17,44 14,51 11,57 8,6 5,77 2,89

References
[1] Sawada K., Sakurai T., Uchino Y., Yamada K., “Built-In self
repair circuit for High Density ASMIC”, IEEE 1999 Custom
Integrated Circuits Conference.

[2] Tanabe A. et al “ A 30-ns 64-Mb DRAM with Built-in Self-
test and Self-Repair Function”, IEEE Journal Solid State Circuits,
pp. 1525-1533, Vol 27, No 11, Nov. 1992.
[3] Bhavsar D. K., Edmodson J. H., “Testability Strategy of the
Alpha AXP 21164 Microprocassor”, I994 IEEE International Test
Conference.
[4] Benso A. et al “A Family of Self-Repair SRAM Cores”, 2000
IEEE International Test Conference. 2000 In Proc. IEEE
International On-Line Testing Workshop, July 3-5, 2000.
[5] Kim I., Zorian Y., Komoriya G., Pham H., Higgins F.
P., Newandowski J.L. "Built-In self repair for embedded
high-density SRAM" Proc. Int. Test Conference, 1998,
pp1112-1119
[6] Kim H. C., Yi D.S., Park J.Y., Cho C.H., “A BISR (Buil-In
Self-Repair) circuit for embedded memory with multiple
redundancies”, 1999 IEEE International Conference on VLSI and
CAD, Oct. 26-27, 1999, Seoul, Korea, pp 602-605
[7] V. Schober, S. Paul, O. Picot, “Memory Built-In Self-Repair
using redundant words”, 1991 IEEE International Test Conference.
[8] M. Nicolaidis “Symbiom: a Methodology for BIST Synthesis
of Memories”, 2nd Consulting Report, Mentor Graphics
Corporation, December 1996.
[9] M. Nicolaidis, “Dispositif de reconfiguration d’un ensemble
mémoire présentant des défauts” French patent, no 2 820 844
[10] M. Nicolaidis, “Reconfiguration device for a faulty memory”
US patent pending.

 d 0 dn-1

Comparator
Error Indication

Rn-1

REP

X0 Xn Xn-1

FBI
 0

R0 R1

FBI
 n-1

FBI
n+k-2

FBI
n+k-1

Rn+k-2

Rn+k-1

Shifter
or

Counter
+

Decoder

0

1

k

M
U
X

Shifter
or

Counter
+

Decoder

0

1

k

M
U
X

0 1 k 0 1 k

Figure 4: The sequential scheme for local repair

.

. . .

BIST Comparator

Error Detection

X0 Xn Xn+k-1 Xn-1

FBI
 0

FBI
 n-1

FBI
n+k-2

FBI
n+k-1 . . .

Reset

Figure 1: Generation of the state of the FBI latches

M3
0

M3
1

M3
2

M3
3

d3

U3

MUX

d1

U1

MUX

d0

U0

MUX
M0

0
M0

1

M0
2

M0
3

U4

U5

U6

d2

U2

MUX

Spare Units : k =3 Functional Units : n = 4

Figure 2: The local repair scheme

d1

M3
0

M3
1

M3
2

M3
3

d3

U 3 U 1

d0

U 0 U 4 U 5 U 6

d2

U 2

MUX

Spare Units : k =3 Functional Units : n = 4

M0
0

M0
1

M0
2

M0
3

MUX MUX MUX

Figure 3: The distant repair scheme.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

