
Instruction Set Emulation for Rapid Prototyping of SoCs∗

Jürgen Schnerr1, Gunter Haug1 and Wolfgang Rosenstiel1,2

1 FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10–14

76131 Karlsruhe, Germany

2 Universität Tübingen
Sand 13

72076 Tübingen, Germany

{jschnerr, haug, rosenstiel}@fzi.de

Abstract

In this paper the application of Instruction Set Emulation
for rapid prototyping of SoCs will be presented. The emula-
tion works in a way that both the software and the hardware
behaviour of the emulated processor core is reproduced cy-
cle accurately. This requires the use of hardware and soft-
ware components. The hardware component consists of a
board containing a VLIW processor and FPGAs. The soft-
ware component is an instruction set simulator of the core
running on the VLIW processor. The FPGAs are used for
emulating the SoC bus of this processor core. This way the
simulation of an instruction set of a processor core has been
extended to a real emulation of this core that can be used for
rapid prototyping.

1. Introduction

The increasing complexity ofSystems-on-Chip(SoC)
raises the problem of validation of such complex hard-
ware/software systems. One possibility of validation is pro-
totyping, but often building a prototype using a processor
core of the target system is not possible. This can have mul-
tiple reasons.

One reason is that only few processors cores are avail-
able as bond-out-versions (i.e. chips that are wired ready
for connection). Furthermore, regarding a design using a
very new processor core, it is possible that only the specifi-
cation of this processor is available, but the hardware itself
is not available yet.

Another reason is that processor cores for SoCs usually
use special SoC busses. These busses are different from
ordinary processor busses, because they do not have certain
restrictions of those. For example, they do not have to deal
with a limited number of pins available.

∗This work has been partially supported by the BMBF/MEDEA+
project SpeAC A508 under grant number 01M 3049 A.

Therefore simulation and/or emulation have to be used,
but up to now significant restrictions exist.

Existing approaches for the validation of complex SoCs
suffer either from low accuracy or low performance. Us-
ing hardware/software co-simulation a hardware simulator
is coupled with an instruction set simulator. Like in conven-
tional hardware simulation the system is validated in a test
environment (testbed) [10]. This approach provides a very
high accuracy, but for many applications a bad performance.
Other disadvantages are that the correctness of the system
is only validated against the testbed, and the approach does
not deliver a prototype.

The emulation of the processor core using conventional
(e.g. FPGA-based) systems [7] provides maximal accuracy
but especially for modern processor architectures it is so
costly, that it cannot be used in practice. Besides this disad-
vantage the emulation using FPGAs often suffers from low
performance.

The creation of a prototype using another type of proces-
sor and recompilation of software normally also leads to a
functioning laboratory sample, but the timing of the target
system is reproduced very inaccurately. Furthermore, an-
other processor than the target processor uses another com-
munication model, therefore a validation of the connected
hardware is only possible in a limited way.

code
binary

HardwareSoCCEr system

ISE

ISS BFM
Hard−

ware

Figure 1. Overview

In the following, an approach toInstruction Set Emula-
tion (ISE) that allows a cycle accurate reproduction of the

1530-1591/03 $17.00 2003 IEEE

target processor is presented. In this approach an emulation
system namedSoC processorCore Emulator (SoCCEr)
will be introduced (shown on the left side of Figure 1).

This system allows a direct connection of further hard-
ware to the emulated processor core in contrast to anin-
struction set simulation(ISS) running on a workstation. The
hardware environment used is based on theRAVE hardware
platform described in [4, 5].

The main part of the hardware of theSoCCEr system
consists of a VLIW processor and FPGAs. The ISS which
executes the instructions of the software of the processor
core on the SoC is running on this VLIW-processor whereas
thebus functional model(BFM) [12] of this processor core
was implemented using FPGAs. In the following, this im-
plementation of the BFM will be calledBus Emulation
Module(BEM).

Using four 96 pin edge-connectors, other hardware like
the WEAVER boards [4] can be connected directly to the
emulated bus (shown on the right side of Figure 1). This
way, a real prototype of the SoC can be built.

In opposite to the approaches mentioned above, this
method emulates the target processor fastand accurate.
Moreover, the possibility to “trade” accuracy for speed and
vice versa is given.

The remainder of this paper is structured as follows: Sec-
tion 2 shows a short overview on the state of the art in in-
struction set simulation and implementation of a bus func-
tional model. The implementation of the ISS and the BFM
in the SoCCEr system is shown in Section 3 and Section
4. Finally benchmark results for the ISS are presented in
Section 5.

2. State of the art
The approach toInstruction Set Emulationpresented in

this paper consists of two parts, as shown in Figure 1: the
ISS and the implementation of the BFM. In usual imple-
mentations both parts are implemented in software on a
workstation. In contrast to these implementations, FPGAs
are used on theSoCCEr system for a fast implementation of
the BFM. These FPGAs are closely coupled with the VLIW
processor running the ISS and allow a direct connection of
hardware to the emulated bus. This allows fast bus accesses
of the emulated processor to the attached hardware.

2.1. Instruction Set Simulation
The technology of ISS is widely spread in the area of

all-purpose computers. It is, amongst other things, used for
the migration of software and the evaluation of processor
architectures. In this case there are different reasons for
the usage of ISS, and the corresponding systems have other
properties. However, the basic approach stays the same.

Two different approaches to ISS have emerged: the use
of an interpreter and the use of binary translation which
means static or dynamic compilation.

An interpreter is a reproduction of the fetch-decode-
execute-loop of a processor. The big advantage of an in-
terpreter against the compiled simulation is that in theory
the simulation can have any desired accuracy. For example,
caches as well as pipelining and branch prediction of the
emulated processor can be reproduced.

Static compilation translates the binary code of one pro-
cessor into binary code of another. An introduction into
static compilation and an overview on existing static com-
pilers can be found in [2]. The major advantage of the static
compilation technique is a very fast execution of the trans-
lated code. An important disadvantage of it is that no cal-
culated branches can be executed.

Fortunately these approaches do not exclude each other.
Hybrid forms of them can be used which can combine the
advantages of both approaches at least partially. One pos-
sibility is to use a so-called fall-back interpreter [1] for in-
structions that cannot be translated.

As the code of an interpreter or static compiler is highly
dependent on the processor it simulates, it has to be rewrit-
ten for the implementation of every new processor. To avoid
this, the processor can be modelled with anArchitecture De-
scription Language(ADL). Using a description in an ADL,
an interpreter or static compiler can be generated automati-
cally. A good overview on ADLs is shown in [3].

2.2. Bus Functional Model

The BFM of a processor is a cycle-accurate model of
the bus transactions of this processor. It cannot execute any
instructions; this has to be done by the ISS. A definition of
the BFM can be found in [8].

In existing approaches like co-simulation, the BFM is
a pure software implementation. It is connected through
some kind of IPC (e.g. sockets) to a HDL simulator that
simulates the connected hardware. These approaches suf-
fer from low performance and also existing real hardware
cannot be simply connected to the emulated processor.

3. Instruction Set Simulation

For the implementation of the ISS a combination of a
static compiler with a fall-back interpreter was chosen. This
was done because static compilation is the fastest known
technique for instruction set simulation. In the case of SoCs,
many of the disadvantages of static compilation are of no
significance. For example, SoCs usually do not make use of
self-modifying code, and no invocation of an application by
another application can occur. To overcome the remaining
disadvantages, the fall-back interpreter can be used.

At the moment the TriCore and the OpenRISC 1200 pro-
cessors are emulated by the system. The TriCore [6] pro-
cessor is microcontroller architecture from Infineon. The
OpenRISC 1200 [9] is a freely available RISC processor
core.

The TriCore processor was chosen due to a common
project with Infineon. Using an evaluation board with this
processor made it possible to show the performance and the
potential of the emulation by comparing it with an exist-
ing system. The OpenRISC 1200 was selected because its
specifications and its HDL code are publicly available. Both
processors are 32 bit RISC load-store architectures contain-
ing additional DSP instructions.

The emulation is running on a TMS320C6201 (C6x)
processor from Texas Instruments [13]. This is a VLIW pro-
cessor with eight functional units meaning that up to eight
instructions can be executed in parallel. Due to the parallel
execution of multiple instructions a very fast execution of
the translated code is possible. Also the parallelisation of
the code during compile time results in a highly predictable
code execution during run-time.

As the emulated processor is described in an XML file,
a later expansion to other processor cores is possible. This
file contains, amongst other things, the description of the
semantics of each processor instruction.

For the interpreter the semantics of the instruction is de-
scribed in C code as the interpreter consists of C code that
is generated automatically out of the description. Using an
assembler description for the interpreter would not give a
better performance because of the slow decoding of the in-
structions.

For the static compiler the semantics of the instructions
is modelled in an assembler intermediate representation.
This intermediate representation is quite similar to the as-
sembler language of the C6x-processor, but it allows sym-
bolic identifiers, and it is not restricted by the resources of
a real processor. In contrast to other existing description
languages, the semantics of the instruction is described rel-
atively close to the hardware of the target processor. This
leads to faster code than generic solutions which can gener-
ate code for different processors.

3.1. Static compilation

Static compilation translates the binary code of one pro-
cessor into functional equivalent binary code of another.
This translation of binary code is described in the follow-
ing.

The static compiler reads both the object file to be emu-
lated and the processor description. For reading the differ-
ent object file formats like COFF, it uses appropriate mod-
ules. In the same way a module is used for reading the
processor description.

After that, the instructions have to be decoded and re-
placed by their equivalents in assembler intermediate code.

Branches with calculated targets are translated into calls
to the fall-back interpreter. This interpreter executes the
branch instruction and the following code until the next
branch instruction with a non-calculated target occurs. Then

it jumps back to the compiled code. Therefore the inter-
preter needs a table containing the target addresses of all
branches with non-calculated targets. This table has to be
generated by the static compiler. Furthermore, the static
compiler has to generate a table of all I/O accesses it can
find.

Now the branch targets and the hardware accesses are
known and the program can be divided into basic blocks.

When no hardware access takes place, it is possible to
optimise over block boundaries. Possible optimisations like
loop-unrolling which takes advantage of the parallelism of
the VLIW-processor are known techniques in compiler de-
sign.

As up to now the blocks are only available in the assem-
bler intermediate representation, they have to be translated
into a valid C6x-assembler program. Therefore it is neces-
sary to perform certain transformation steps. These steps
include, amongst others, a scheduling within blocks and the
binding of symbolic registers to processor registers.

As this static compiler translates code written for proces-
sor cores running on SoCs, it has to deal with some prob-
lems which are not occurring in the code translation using
conventional static compilers. In the following three sec-
tions, these problems will be described and solutions will
be presented.

3.1.1. Handling of memory addresses
A system-on-a-chip for instance can contain different kinds
of memory. These can be ROM containing the program run-
ning on the processor core in addition to RAM and EEP-
ROM for data. The ISS has to provide this memory for the
emulated core.

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

SoC

EEPROM

RAM

ROM

0

I/O

mapped RAM

used by interpreter

mapped EEPROM

mapped ROM

handled by

ISS

0

translated
program

Memory map of

BEM

Figure 2. Mapping of memory addresses

This leads to the problem that usually the memory ad-
dresses containing data in the SoC are different from mem-
ory addresses which are available to the ISS. The solution
to this problem is that addresses of load/store instructions
to SoC memory have to be mapped to corresponding ad-
dresses in the memory of the ISS. Figure 2 shows an exam-
ple of such a mapping of memory addresses to the emulated
system.

Load/store instructions to I/O addresses have to be re-
placed by accesses to the BEM. Here no address translation
takes place. More about theses accesses is explained in Sec-
tion 4.2.

It is also possible to connect memory to the emulated
bus. This can be done in order to validate the read/write
accesses of the emulated processor core to the memory. In
this case the remapping of the addresses would be done by
the address decoding hardware, but for performance reasons
usually only I/O accesses are handled by the BEM whereas
memory accesses are handled by the ISS.

For a load/store instruction using absolute addressing it
is no problem to map the address used by this instruction to
the memory map of the ISS and to translate this instruction
to instructions making the appropriate I/O accesses respec-
tively.

In the remaining cases where the address cannot be stati-
cally determined a dynamic solution is used. The load/store
instructions have to be translated to a code sequence which
checks the source/target address during runtime. Depend-
ing in which range the address resides, an I/O access or a
memory access is done. In case of the memory access the
address has to be mapped to the corresponding address of
the emulation system during runtime.

3.1.2. Synchronisation
For hardware accesses it is important that the code is exe-
cuted cycle accurately. Cycle accurate execution means that
the execution of a translated code piece has to be taken place
in exact the same cycle count as the corresponding piece of
the original binary code.

Usually there is an external common clock for the pro-
cessor and the attached hardware, but in this case there is no
such common clock. Instead, the emulated processor has to
generate the clock cycles for the attached hardware itself.
This is done with the help of a hardware device in the BEM.
By accessing this device clock pulses can be generated for
the attached hardware. The device and how it is accessed is
described in Section 4.1.

The most obvious approach to a cycle accurate emulation
using this device would be the following: For each instruc-
tion it is determined how many clock cycles it uses. Then it
is translated to an access to the synchronisation device gen-
erating this amount of cycles followed by the translation of
the instruction.

Using this approach, a significant potential for optimi-
sation would remain unused. The reason for this is that the
attached hardware only gets knowledge about the semantics
of the program when there is an I/O access. Until this access
the hardware only knows the number of past cycles.

Therefore complete blocks of instructions between I/O
accesses along with the appropriate accesses to the synchro-
nisation device can be generated. An example of such a
block is shown in Section 4.1.

As the code in these code blocks does not contain hard-
ware accesses, it can be optimised by the static compiler.
One resulting possibility for an optimisation is the parallisa-
tion of instructions in order to achieve an optimal utilisation
of the execution units of the VLIW processor.

4. Bus Functional Model

The BFM is implemented using four FPGAs that con-
nect the C6x processor running the ISS and the external
hardware which can be connected directly to the edge-
connectors of the FPGA-board.

At the moment an emulation of the WISHBONE [11]
bus which is a non-proprietary SoC bus is implemented.
Other SoC busses like AMBA or CoreConnect are quite
similar. For the implementation of these busses the HDL
code of the FPGAs has to be changed. The interface be-
tween the BEM and the ISS is realised using registers which
can be accessed by the ISS.

The synchronisation between hardware and the emulated
software, the handling of bus accesses, and other functions
of the BEM will be described in the following sections.

In addition to the described features, the BEM also im-
plements interrupts and configuration ports.

4.1. Hardware-software synchronisation

The hardware connected to the bus has to receive a clock
signal. This clock signal has to be the clock signal of the
emulated processor. It cannot be the clock signal of the C6x
processor. For example, an instruction requiring one clock
cycle on the emulated processor may require when it is com-
piled more than one clock cycle on the C6x processor.

The solution for the problem is that there is no clock that
generates the clock for both the attached hardware and the
emulated processor. The clock cycles for this hardware are
generated by the emulated processor itself.

This is done by accessing the so-called synchronisation
device in the BEM using memory mapped I/O. The five
least significant bits of the address contain the information
about how many clock cycles have to be generated. A store
instruction to the address of this range generates the speci-
fied amount of clock cycles for the attached hardware.

The following block shows an example. To the left the
code for the OpenRISC 1200 is displayed to the right the
translation for the C6x.

STW A1,*B14[S_DEV+3*4]
l.movhi d0, 654 MVKH .S1 654, A1
l.movhi d1, 2322 ||MVKH .S2 2322, B2
l.and d0, d0, d1 AND .L1 A1, B2, A1

LDW *B14[S_DEV], B0

The code block on the left requires three clock cycles.
The translated code block on the right has to require the
same amount of clock cycles. This is done by accessing

the synchronisation device (STW instruction1) forcing it to
generate three cycles for the hardware. After this access the
execution of the translated code sequence is started and will
run in parallel with the generation of the clock cycles.

After the C6x has completed theAND instruction, the syn-
chronisation device either has completed generating the cy-
cles or is still busy generating the cycles. If it has com-
pleted it is no problem to run the next code sequence and
generate clock cycles for it. If is still busy the processor
has to be stopped until the generation of the clock cycles is
finished. This is done by a read access (LDW instruction) to
the synchronisation device after the execution of the code
sequence. The synchronisation device stops the processor
by not giving a ready signal to thisLDW instruction until all
cycles are generated.

4.2. Handling of bus accesses by the BEM

Read and write accesses to the BEM are accesses to reg-
isters implemented in the FPGAs. Figure 3 shows the struc-
ture of this BEM containing all signals and registers men-
tioned in the next two sections. In this figure the data and
the address bus of the C6x processor are labelled asd and
a, respectively.

4.2.1. Read access

The following example shows how a read access to a mem-
ory address of the hardware is translated. In the following
code blocks, again OpenRISC 1200 code is displayed on
the left whereas C6x code is displayed to the right.

r2 contains address A1 contains address

l.lwz r1, 0(r2) STW A1, *B14[ADR_OUT]
LDW *B14[DAT_IN], A2

The translated read access consists of two C6x instruc-
tions. The first one writes the address into theADR_OUT
register. No output on the bus happens up to now. The bus
cycle is started by the following load instruction. This load
instruction to the address of theDAT_IN register starts an
FSM in the FPGA that handles the bus access and stops the
execution of code on the processor during this access.

In the previous section it was shown how the clock cy-
cles for the attached hardware are generated for code not
containing I/O accesses. This was done using the synchro-
nisation device. In the case of hardware accesses the clock
cycles for the hardware are generated by the FSM. The gen-
erated clock signal is calledEMUCLK.

If there are no wait cycles, a read access to the hardware
consists of two cycles. On the first rising edge ofEMUCLK,
the signals of the control bus and the address are written

1In this and the following examples, the registerB14 is the base register
for the hardware access, and the embraced value is the offset which is
added to this base address. The symbol “||” before an instruction means
that this instruction and the previous one are executed in parallel by the
C6x processor.

d

a

clk

we_n

ACK_I

EMUCLK

TAGN_I

DAT_I

DAT_O

ADR_O

S
oC

 b
us DAT_IN

TAGN_IN

DAT_OUT

ADR_OUT

C
6x

 b
us

and
FSM used for bus access

synchronisation device

Q

Q DQ D

Q DQ D

QD

D

Figure 3. Structure of BEM

to the bus. The address is written to the bus by copying it
from registerADR_OUT to an address output register that is
connected directly to the bus. This prevents that the address
is on the bus before the signals on the control bus are set.

On the following trailing edge, the slave that is con-
nected to the bus takes the address and delivers the corre-
sponding data via the bus. After that it sets the acknowledge
signal (ACK_I) to show that the bus access was successful.
If the slave is not fast enough, it can demand the genera-
tion of additional bus cycles by not giving an acknowledge
signal.

If an acknowledge was given by the slave, the next ris-
ing edge latches the data on the data bus into the register
DAT_IN of the FPGA, and the C6x processor is signalled
that the data is ready. It copies the data from theDAT_IN
register into a processor register (in this case theA2 regis-
ter) and continues with normal execution.

4.2.2. Write access

A write access on the bus is handled basically the same way
as the read access described in the previous section. If we
take the following example:

r2 contains address, A1 contains address,

r1 contains data A2 contains data

l.sw 0(r2), r1 STW A1, *B14[ADR_OUT]
STW A2, *B14[DAT_OUT]
LDW *B14[TAGN_IN], A3

Here not only the address but also the data that has to
be stored has to be written in a register in the FPGA. After
that a read access to the registerTAGN_IN takes place. The
load starts the FSM in the FPGA which stops the processor
and makes the write access on the bus in quite a similar
way as the read access. When the bus access is finished, the
processor loads the tag information of the bus transfer into
a register and continues with normal execution.

5. Results
In order to show that theSoCCEr system has the poten-

tial to emulate systems as fast or nearly as fast as the real
system, its performance was compared with that of a Tri-
Core evaluation board.

Two example programs were used to show the perfor-
mance of the TriCore ISS running on theSoCCEr system.
Both programs were run in an interpreted and in a compiled
version on the C6x processor running at 200 MHz. The re-
sults are shown in Figure 4. The performance of the real
TriCore processor running at 48 MHz is shown on the right
side of the figure. The performance is measured in millions
of TriCore instructions per second.

The first of the two examples calculates the greatest com-
mon divisor of two numbers. It is control flow dominated.
The other example is an elliptical wave filter, a data flow
oriented program.

gcd filter

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

TriCore ISS on TMS320C6201 (200 MHz)

Interpreter
Compiler with sync
Compiler w/o sync
TriCore processor
(48 MHz)

M
IP

S

Figure 4. Results running TriCore ISS

The code running in the interpreter uses synchronisation.
The compiled code was generated in two versions: one with
synchronisation and one without.

As expected before, the interpreted versions have a very
low performance. The reason for this is the fetch-decode-
execute loop consisting of many branch-instructions. These
branches are executed very slowly by the C6x-processor.
Another reason for the low performance is that accesses
to the synchronisation device cannot be bundled like in the
compiled versions.

6. Conclusion
The extension of an existing board using a VLIW pro-

cessor for the emulation of synthesised RT-level description
to a platform for the emulation of processor cores has been
shown. In contrast to existing solutions, this approach of-
fers a possibility to emulate the processor within the real
environment. This avoids the bottleneck of coupling an ISS

running on a workstation using RPC to simulated or emu-
lated hardware in an HDL emulator.

For the implementation of the ISS, the combination of
interpretation and static compilation was chosen. The re-
sults show that this offers a fast execution of the emulated
code without having the disadvantages of a pure static com-
pilation.

Finally, a hardware implementation of a BFM for a SoC
bus using FPGAs has been shown.

References

[1] K. Andrews and D. Sand. Migrating a CISC Computer Fam-
ily onto RISC via Object Code Translation. InProceedings
of the Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), pages 213–222, 1992.

[2] C. Cifuentes and V. Malhotra. Binary Translation: Static,
Dynamic, Retargetable? InProceedings of the International
Conference on Software Maintenance (ICSM), pages 340–
349, 1996.

[3] A. Halambi, P. Grun, H. Tomiyama, N. Dutt, and A. Nico-
lau. Automatic Software Toolkit Generation for Embedded
Systems-on-Chip. InProceedings of the International Con-
ference on VLSI and CAD (ICVC), pages 107–116, 1999.

[4] G. Haug, U. Kebschull, and W. Rosenstiel. VLIW Based
Emulation of Digital Designs with the RAVE System. In
Proceedings of the International High Level Design Valida-
tion and Test Workshop (HLDVT), 1999.

[5] G. Haug, U. Kebschull, and W. Rosenstiel. A Hardware
Platform for VLIW Based Emulation of Digital Designs. In
Proceedings of the Design, Automation and Test in Europe
(DATE) Conference, page 747, 2000.

[6] Infineon Technologies Corp. TriCore Architecture v1.3
Manual, 2000-01 edition, 2001.

[7] J. Gateley and M. Blattet al. UltraSPARCTM-I Emula-
tion. In Proceedings of the Design Automation Conference
(DAC), pages 13–18, 1995.

[8] M. Keating and P. Bricaud.Reuse Methodology Manual
For System-on-Chip Designs. Kluwer Academic Publishers,
third edition, 2002.

[9] D. Lampret. OpenRISC 1200 IP Core Specification. Open-
Cores, September 2001.

[10] J. A. Rowson. Hardware/Software Co-Simulation. In
Proceedings of the Design Automation Conference (DAC),
pages 439–440, 1994.

[11] Silicore Corporation. Specification for the: WISHBONE
System-On-Chip (SoC) Interconnection Architecture for
Portable IP Cores, January 2001.

[12] L. Séméria and A. Ghosh. Methodology for Hard-
ware/Software Co-verification in C/C++. InProceedings of
the Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 405–408, 2000.

[13] Texas Instruments Incorporated.TMS320C62xx CPU and
Instruction Set Reference Guide, July 1997.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

