
Flexible and Formal Modeling of Microprocessors with Application to
Retargetable Simulation

Wei Qin Sharad Malik

Princeton University
Princeton, NJ 08544, USA

Abstract

Given the growth in application-specific processors, there is a
strong need for a retargetable modeling framework that is capable
of accurately capturing complex processor behaviors and gener-
ating efficient simulators. We propose the operation state machine
(OSM) computation model to serve as the foundation of such a
modeling framework. The OSM model separates the processor
into two interacting layers: the operation layer where operation
semantics and timing are modeled, and the hardware layer where
disciplined hardware units interact. This declarative model allows
for direct synthesis of micro-architecture simulators as it encapsu-
lates precise concurrency semantics of microprocessors. We illus-
trate the practical benefits of this model through two case studies
- the StrongARM core and the PowerPC-750 superscalar proces-
sor. The experimental results demonstrate that the OSM model has
excellent modeling productivity and model efficiency. Additional
applications of this modeling framework include derivation of in-
formation required by compilers and formal analysis for processor
validation.

1 Introduction

Microprocessor modeling is critical to the development of
both hardware and software in the design cycle of new proces-
sors. With the growth in application-specific processors, there
is a strong need for modeling environments based on precise se-
mantics that can be used for rapid generation of detailed proces-
sor simulators. Microprocessors are well understood at two lev-
els of abstraction: the instruction-set-architecture (ISA) and the
micro-architecture. Accordingly, microprocessor simulation tech-
niques can be classified into instruction set simulation and micro-
architecture simulation. Instruction set simulators (ISS) emulate
the functionality of programs and are useful for software develop-
ment. Successful techniques in this category include interpreted
simulation, statically-compiled simulation [17] and dynamically-
compiled simulation [3]. Micro-architecture simulators are usu-
ally built on top of ISSs. Apart from simulating the functional-
ity of programs, they provide performance metrics such as cycle
counts and cache hit ratios – important feedback for both hardware
and software developers. However, existing simulation techniques
in this category are far less mature. To help characterize exist-
ing techniques in this category and to highlight the objectives of
this research, we identify four important characteristics of a high-
quality micro-architecture simulation framework:

Efficient Micro-architecture simulators are typically 3 to 4 orders
of magnitude slower than real hardware. For practical simu-
lation of real-world workloads, any possible speedup is highly
desirable.

Expressive Microprocessors range from simple non-interlocking
data-paths to complex superscalar or multi-threaded architec-
tures. Flexible models capable of capturing a wide range of
architectures precisely are essential to the retargetability and
usability of the simulation frameworks.

Declarative Rule-based declarative models help expose impor-
tant architecture properties for model analysis and validation
purposes. Such models are also the foundation for simple and
clean architecture description languages that are common in re-
targetable simulation frameworks.

Productive Fast development of microprocessor models enables
the parallel development of both software and hardware and
helps shorten time-to-market.

In reality, these requirements are often conflicting and are
very hard to satisfy simultaneously by a single modeling frame-
work. All existing retargetable simulation frameworks make cer-
tain trade-offs and emphasize some aspects at the cost of the oth-
ers.

An ideal foundation of a high-quality modeling framework is
a flexible and formal microprocessor model that is properly bal-
anced in terms of the above characteristics. We address this need
through the operation state machine (OSM) formalism described
in this paper. We demonstrate that this model is efficient in that
the resulting simulation speed is comparable to the popular micro-
architecture simulator SimpleScalar [2], expressive in that it can
model a wide range of architectures, declarative since it is a for-
mal rule-based model, and productive in that it greatly reduces the
simulator development effort.

This paper is organized as follows. Section 2 summarizes re-
lated work in the field. Section 3 presents the OSM formalism,
and Section 4 applies it to microprocessor modeling, followed by
two micro-architecture simulator case studies in Section 5. Other
applications of the model are described in Section 6. Section 7
concludes the paper.

2 Related Work

Micro-architecture modeling has been studied for more than
two decades. Various modeling frameworks and languages that
automate the development of micro-architecture simulators have
been reported.

1530-1591/03 $17.00 2003 IEEE

nML [8], ISDL [10], and EXPRESSION [11] take an
operation-centric approach by focusing on the execution of in-
dividual operations that comprise an instruction. These archi-
tecture description languages (ADL) automate the generation of
code generators and instruction set simulators. However, detailed
pipeline control-path specification is not explicitly supported by
these ADLs. As a result, implicit control-path templates have to
be used in order to synthesize micro-architecture simulators, which
significantly limits the flexibility of these languages.

The alternative to the operation-centric model is the hardware-
centric model. MIMOLA [21] is a computer design language
based on the discrete event (DE) model of computation (MOC)
and can model both combinational and sequential digital logic.
However, it is not suitable for complex microprocessor model-
ing purposes since the abstraction level of the models is low and
thus the simulation speed is very slow. HASE [4] is another ar-
chitecture modeling environment based on the DE MOC. Sys-
temC [9] is a C++ library supporting the same MOC and has been
used for microprocessor modeling [15]. Both HASE and SystemC
are based on the C++ programming language for module devel-
opment and have improved efficiency and productivity compared
with MIMOLA. Asim [7] is a microprocessor modeling frame-
work based on cycle-driven simulation, which specializes the DE
domain by aligning all events on clock boundaries, thus provid-
ing faster simulation speed. Liberty [20] is based on the het-
erogeneous synchronous-reactive MOC [6] and allows for intra-
cycle communication. Both Asim and Liberty emphasize clean
structuring of the modules and their interfaces to enable reuse.
In these hardware-centric frameworks, hardware execution is ex-
plicitly modeled and communication between modules is through
ports and connections. Explicit port-based communication neg-
atively impacts the resulting simulation speed. Furthermore, the
complexity of such hardware-centric models is large. In the Sys-
temC based PowerPC behavioral model [15], more than 200 wires
or buses are used to connect 20 modules. Complexity in the spec-
ification results in reduced productivity.

Specific attempts have been made to address the complexity is-
sue in hardware-centric approaches. UPFAST [16] abstracts the
ports and connections away to improve productivity as well as ef-
ficiency for synthesized simulators. However, since all pipeline
hazards need to be resolved explicitly by the user, for superscalar
processors with complex control, the modeling productivity is still
not ideal.

LISA [18] is a pipeline description language. It uses the L-chart
formalism to model the operation flow in the pipeline and simpli-
fies the handling of structure hazards. Data hazards and structure
hazards induced by resources other than the pipeline stages still
need to be explicitly resolved by users in the C language. There-
fore, the productivity is not significantly different from that of the
UPFAST system. The flexibility of LISA is also limited by the
L-chart formalism. No LISA based model for out-of-order archi-
tectures has been reported.

BUILDABONG [19] is an architecture and compiler design en-
vironment based on the abstract state machine (ASM) [1] formal-
ism. Since it models microprocessors at the register transfer level,
the modeling productivity is similar to that of MIMOLA.

SimpleScalar [2] is a tool-set with significant usage in the com-
puter architecture research community. Its micro-architecture sim-
ulators have very good performance. However, the model has
only limited flexibility through parameterization. When retarget-
ing SimpleScalar to a new microprocessor, programmers have to
sequentialize the concurrency of hardware in ad-hoc ways that can
be slow and error-prone.

3 Operation State Machine Model

Microprocessor specifications commonly partition their de-
scriptions into two fundamental layers: the operation layer includ-
ing the semantics and the timing of the operations, and the hard-
ware layer including various hardware units. Most of the existing
modeling frameworks focus on one layer or the other. Although
a few do take a balanced view of both, they have limited flexi-
bility since the layers are modeled in ad-hoc ways. In order to
distinguish the two layers clearly and to formalize the complex in-
teractions between the two, we propose the new OSM model as a
flexible and formal model for the operation layer and the interface
between the two layers.

In the OSM model, machine operations are modeled as state
machines whose states represent the execution steps of the op-
erations. A director [13] coordinates the state transitions of the
state machines. Each state transition may require one or more to-
kens, representing specific structure or data resources, for execu-
tion. The hardware layer is represented by token managers, which
control the use of tokens by the operations. The state machines
communicate with the hardware layer through token transactions
defined by a formal language. The organization of the OSM model
is illustrated in Figure 1.

Token
Managers

OSMs
Director

Language

Hardware
Layer

Operation
Layer

Tokens

Figure 1. The OSM model

3.1 Operation State Machines

Figure 2 shows an example state machine. The vertices de-
fine the states and the edges define the possible transitions among
the states. Each edge of the state machine is associated with a
guard condition defined in the language. A state transition along
an edge can happen only if the corresponding condition is satisfied.
The multiple outgoing edges from a state have static priorities, and
when more than one outgoing edges are simultaneously satisfied,
execution proceeds along the edge with the highest priority. This
models execution with multiple paths commonly seen in super-
scalar processors. Each state machine contains a token buffer for
allocated resources. It also has an initial state I in which the token
buffer is empty.

OSMs do not directly communicate with each other. The only
means by which they interact with the environment is through to-
ken transactions.

3.2 Tokens and Token Managers

Microprocessor operations require structure and data resources
for their fetching, issuing, execution and completion. In the OSM
model, we model the resources as tokens. A token manager man-
ages one or more closely related tokens. It can grant a token to, or
reclaim a token from an OSM upon request. Token managers may
check the identity of the requesting OSMs when making decisions.

F E

R

I

W

e0

e2

e1

e3

e4

e5

Figure 2. An operation state machine example

3.3 Language

To formalize the token transactions between the state machines
and the token managers, we define the language as the four basic
primitive transactions listed below.

Allocate An OSM may request a token from a manager by pre-
senting a token identifier. The manager interprets the identifier
and maps it to a token. If the token is available to the OSM,
the primitive succeeds and the manager will grant the owner-
ship of the token to the OSM. On success, the OSM can either
commit the transaction by accepting the token or abandon the
transaction. This primitive is used to model the transactions of
exclusive resources. Most structure resources in a micropro-
cessor are exclusive.

Inquire An OSM may inquire about the resource unit represented
by a token without the intention to obtain the token. The primi-
tive succeeds if the token is available to the OSM. The primitive
is used for non-exclusive resource transactions. One example
of non-exclusive transactions is reading the state of a machine
register.

Release An OSM may request to return a token to its manager
if the token is no longer used, which is the opposite behav-
ior to allocation. If the manager rejects the request, the OSM
must retain the token. Otherwise, the primitive succeeds and
the OSM can either commit the transaction by releasing the to-
ken or abandon the request and keep the token.

Discard An OSM can discard a token. This transaction requires
no permission from the token manager and always succeeds.
Discard can be used when the OSM is reset.

In Section 3.1, we mentioned the condition associated with
each edge of the OSM. It is defined as the conjunction of a set of
primitives. A condition is satisfied only if all its primitives succeed
simultaneously. If a condition is satisfied, the OSM can transi-
tion to the next state along the edge and commit all transactions
of the condition simultaneously. If all primitives do not succeed,
the condition is not satisfied and all transaction requests are aban-
doned. Disjunction is not supported by the language. It can be
realized through parallel edges between two states.

3.4 Director

An OSM model may contain multiple state machines and token
managers. At each control step, the state machines voluntarily
send token transaction requests to the token managers and change
their states if possible. The director coordinates the OSMs and
ensures that the behavior of the model is deterministic.

To avoid the possible non-determinism when multiple OSMs
are competing for the same resource, the director ranks each OSM
at the beginning of each control step. The ranking may be based
on the status and the identity of the operations represented by the
OSMs. An OSM with a higher rank has higher token transaction
priority than an OSM with a lower rank. The scheduling rules for
individual OSMs are listed below.

• State transition occurs at most once for each OSM at each con-
trol step.

• State transition occurs as soon as an outgoing edge has satisfied
condition.

• State transition along a higher priority edge is preferred.

Conforming to these rules, we chose a simple sequential
scheduling algorithm shown in Figure 3, which has low implemen-
tation overhead and guarantees deterministic OSM behavior. The
OSMList is first sorted according to the ranks. The OSM with the
highest rank is scheduled first so that its token transaction requests
can be served first. The EdgeList contains the outgoing edges of
the current state of the OSM. It is sorted by the static edge prior-
ities from the highest to the lowest. When an OSM changes its
state and commits its primitives, it is removed from the list so that
it will not be scheduled for state transition again in the current con-
trol step. During its state transition, an OSM may free resources
useful to its dependent OSMs that have higher ranks and have been
blocked on the resources. To allow these OSMs to obtain the re-
sources, we restart the outer-loop from the remaining OSM with
the highest rank. When the OSMList becomes empty or when no
more OSM can change its state, the director stops.

In general, scheduling deadlock may occur in the model if
cyclic resource dependency involving two or more OSMs exists.
Deadlocks are considered pathological situations and the director
will abort in such cases. In OSM based microprocessor models,
such cyclic dependency implies a cyclic pipeline, which occurs
only under faulty situations. Therefore, this property of the direc-
tor does not affect the usability of the model.

Director::control_step()
{

updateOSMList();
OSM = OSMList.head; // head.next is the first
while ((OSM=OSM.next)!=OSM.tail) {

EdgeList = OSM.currentOutEdges();
foreach edge in EdgeList {

result = OSM.requestTransactions(edge);
if (result == satisfied) {

OSM.commitTransactions(edge);
OSM.updateState(edge);
OSMList.remove(OSM);
OSM = OSMList.head;
break;

}
}

}
}

Figure 3. The scheduling algorithm

4 Modeling Microprocessors

In the OSM-based modeling scheme, we model a microproces-
sor in two layers: the operation layer where operations are mod-
eled as OSMs, and the hardware layer where hardware modules
interact with each other under the DE MOC. To communicate with
the operation layer, each hardware module directly interacting with
the operations should implement a token manager interface (TMI).
A TMI contains four methods corresponding to the four primitives
of the language. The methods implement the resource manage-
ment policies of the hardware module and will be activated upon
incoming token transaction requests. TMIs do not communicate
with each other directly.

Since operations flow in a microprocessor synchronously, the
control steps of the OSM model are synchronized with the clock
edges of the hardware layer. Depending on the implementation,
the interval between two control steps may correspond to either a
clock cycle or a phase. In the simulation kernel, the OSM MOC is
embedded inside the DE scheduler, as shown in Figure 4.

During the interval between two control steps, the hardware
modules communicate with one another and exchange informa-
tion with their TMIs. At the end of each phase or clock, an OSM
control step is activated. Since no event should be introduced by
the control step directly, from the viewpoint of the DE domain, the
control step finishes in zero time.

nextEdge = 0;
eventQueue.insert(new clock_event(nextEdge));
while (!eventQueue.empty())
{

event = eventQueue.pop();
if (event->timeStamp >= nextEdge) {

director.control_step();
nextEdge += regularInterval;
eventQueue.insert(new clock_event(nextEdge));
break;

}
event->run();
delete event;

}

Figure 4. The simulation kernel

We illustrate this modeling scheme with the example of a sim-
ple 5-stage pipelined processor shown in Figure 5. Operation
flow in such a pipeline can be modeled by the L-chart used in
LISA [18]. In comparison, we will show that OSM can cover not
only the operation flow, but also pipeline control behaviors under
the same model.

We model each operation as an OSM shown in Figure 6. Since
multiple operations can flow in the pipeline simultaneously, mul-
tiple OSMs exist in the processor model. The states of the OSMs
correspond to the status of the operations in the pipeline and the
edges correspond to the possible paths of the operation flow. In
this simple example, an operation can go through the F , D, E, B

and W states which correspond respectively to the pipeline stages
of fetch, decode, execution, buffer and write-back. The initial state
I corresponds to the case when the OSM is unused.

We then provide TMIs for the 5 pipeline stages. Each TMI
controls one token indicating the occupancy of the corresponding
stage. The register file contains a TMI mr , which manages a set
of value tokens corresponding to the registers, and several register-
update tokens whose usage will be described below. Since the
memory subsystem does not communicate with the OSMs directly,

IF ID EX BF WB

I-Cache D-Cache

Memory

memory bus

Reg-File

ITLB DTLB

Figure 5. A 5-stage pipelined RISC processor

it is modeled purely in the hardware layer.
At the beginning of a clock cycle, the OSMs in state I post to-

ken allocation requests to the fetch manager mf , trying to enter
state F . If the fetch stage is available, mf will grant the token
to the requesting OSM with the highest rank, say α. α will then
advance to state F , while its competitors will remain in state I .
Holding the fetch token allows α to access the instruction word
when it is fetched from the memory. α can then decode the in-
struction and initialize all its allocation and inquiry identifiers.

In the next cycle, α will send a release request to mf and an
allocation request to the decode manager md, trying to enter the
decode stage. If both requests are satisfied, α will accept the de-
code token, advance to state D and release the fetch token, allow-
ing another operation to enter the fetch stage in the same control
step.

In the following cycle, α will send a release request to md and
an allocation request to me, asking for the permission to enter the
execution stage. Meanwhile, it will send two inquiries to mr about
the value tokens corresponding to its two source registers. It will
also send an register-update token allocation request to mr , asking
for the permission to update its destination register. If all requests
are satisfied, α will advance to state E.

In state E, α will compute the result based on the source regis-
ter values. In the next two cycles, α will perform a series of token
transactions with me, the buffer manager mb and the write back
manager mw and go through states B and W . In the cycle after
its arrival in W , α will release the write-back token to mw and the
register-update token to mr with the updated computation result,
and then return to state I . From there, it will send an allocation
request to mf again, waiting to start the life cycle of another oper-
ation.

So far we have described how to model the basic operation flow
in a pipeline. Below, we explain how common control behaviors
can be modeled.

Structure hazard As has been described, a pipeline stage con-
tains a token manager interface controlling one occupancy to-
ken. Since the token can be allocated to only one operation at
a time, at most one operation can occupy the pipeline stage at
a time. Structure hazards are therefore resolved.

Data hazard The register file manager mr serves to resolve data
hazards. In the above example, α retains a register-update to-
ken from state E to state W . During this period, the following
OSMs depending on the register should fail on inquiring about
the value token corresponding to the same register and will stall
at D. Data dependency is thus preserved. If the processor sup-
ports bypassing, we can create another manager working as the
bypassing logic. OSMs can inquire either mr or the bypassing
manager for source operand availability.

Variable latency Variable latency occurs very often in proces-
sors. For instance, the latency of cache access can vary de-
pending on whether the access hits or misses. We utilize the
release transaction to model the variable latency. Suppose that
an instruction cache miss occurs when OSM α is in state F .
When α tries to proceed to state D, the fetch manager mf can

F D E
e1 e2

B W

I
e0

e3 e4

e5

Figure 6. OSM of a pipelined processor

turn down its token release request until the cache access is
finished. α will have to stall until the request is satisfied.

Control hazard To accurately model control hazard, we create a
reset manager mreset. We also augment the OSM in Figure 6
by adding reset edges from state F and D to state I . Each re-
set edge is assigned a higher static priority than normal edges
and contains an inquiry request to mreset and one or more dis-
card primitives. mreset will reject inquiry requests from nor-
mal OSMs so that their behaviors are not changed.
Now suppose a branch mis-prediction occurs and several OSMs
speculatively leave state I . After the mis-predicted branch op-
eration leaves state E where the branch condition is resolved,
the execution stage will notify the fetch stage to alter the pro-
gram counter. It will also notify mreset so that mreset will ac-
cept inquiry requests from the speculative OSMs. At the next
control step, the speculative OSMs will execute along their re-
set edges, discard their tokens and return to I . In other words,
the speculative operations are killed.

In summary, the OSM model can easily model common
pipeline behaviors in the form of state transitions and token trans-
actions. In an OSM-based microprocessor model, the operation
flow paths, execution timing and resource consumptions are cap-
tured in the OSMs in the operation layer; while structure and
data resources and their management policies are captured in the
TMIs in the hardware layer. The clean separation of the two lay-
ers helps orthogonalize design considerations and significantly im-
proves modeling productivity. It also enables object-oriented mod-
eling in both layers.

Compared with a microprocessor model purely in the hardware
domain, a model utilizing the OSM can be much simpler and more
efficient. An OSM can collect arbitration results from various
TMIs and can decide the transition of state by itself according to
the conjunction of the transaction request responses and the static
edge priorities. The effect of this is two-fold: the operation for-
warding paths between pipeline stages in the hardware layer are
replaced by the state transition edges in the OSM, and a large por-
tion of the pipeline forwarding and steering control semantics is
now encoded in the conditions and priorities of the OSM. As a re-
sult, the OSM model greatly simplifies the modules and their inter-
connections in the hardware layer. In the above example, modules
such as the register file, the decode stage and the write back stage
need no interconnection with others and contain no more code than
their TMIs. Such reduced complexity of the hardware modules im-
proves both the modeling productivity and the efficiency of the re-
sulting simulator. Furthermore, TMIs of the same nature are very
much alike and code reuse can be exploited to a great extent. The
specification of OSMs is purely declarative and can therefore be
automated through the use of description languages.

5 Case Studies

To demonstrate the advantages of the OSM model, we con-
ducted case studies with two popular microprocessors, the Stron-
gARM [5] core and the PowerPC 750 [14] core.

We first implemented an OSM library as the foundation of both
simulators. In the implementation, the director ranks the OSMs
according to their ages, i.e. the order in which they last leave state
I . Since no senior operation will depend on junior operation for
resources in both processors, the director does not need to restart
the outer-loop in Figure 3 when an OSM transitions its state.

We based both models on existing ISSs, which are capable of
simulating user-level ELF binaries. We utilized cycle-driven sim-
ulation for the hardware layer. The development of both micro-
architecture simulators, including implementing the OSM library,

studying the processor specifications, coding and validation, was
completed in two man-months – a testament to the increased pro-
ductivity of this model.

5.1 StrongARM

The StrongARM [5] is a five stage pipelined implementation of
the Advanced RISC Machine (ARM) architecture. It is integrated
in Intel’s SA-1100 chip and is widely used in modern hand-held
devices. The structure of the StrongARM is similar to the pipeline
in Figure 5, but it includes forwarding paths and a multiplier. We
implemented TMIs for the pipeline stage modules, the combined
register file and forwarding paths module, and the multiplier mod-
ule. The caches, the TLBs and the bus interface unit do not interact
directly with operations and do not need any TMI.

The resulting simulator runs at the average speed of 650k cy-
cles/sec on a P-III 1.1GHz desktop. In comparison, the ARM sim-
ulator of the SimpleScalar tool-set runs at 550k cycles/sec on the
same machine. To ensure the accuracy of the model, we validated
the simulator against an iPAQ-3650 PDA containing a SA-1100.
We used 40 small kernel loops to diagnose timing mismatches be-
tween the model and the real processor. We then compared the
performance metrics between the two by running the largest ap-
plications from the MediaBench [12] benchmarks. The iPAQ run
time was collected by the Linux utility time. The results shown
in Table 1 validate the accuracy of the model. We attribute the
remaining differences to the resolution of the time utility and the
interpretation of system calls in the ISS. Since all details of the
memory subsystem were not available, the memory modules may
have also contributed to the differences.

5.2 PowerPC 750

PowerPC 750 [14] is a dual-issue out-of-order superscalar pro-
cessor. It has a 6-entry fetch queue, 6 function units with 6 inde-
pendent reservation stations, 5 register files with renaming buffers,
and a 6-entry completion queue. To faithfully model all these
units, we created 19 TMI-enabled modules. The memory sub-
system, the branch history table and the branch target instruction
cache of PowerPC 750 are implemented purely in the hardware
layer.

PowerPC 750 utilizes the reservation stations to increase its is-
sue rate. When an instruction is dispatched from the fetch queue,
it will check if all source operands and the function unit are avail-
able. If this is the case, it will enter directly into the unit. Other-
wise, it will enter the reservation station of the unit. Such typical
superscalar behavior cannot be modeled by L-chart, but it can be
easily modeled by an OSM as shown in Figure 2.

We validated our PowerPC 750 model against the SystemC
based model [15]. We tested a benchmark mix from MediaBench
and SPECint 2000 and found that the differences in timing are
within 3% in all cases. The remaining differences are mainly due
to subtle mismatches in interpreting the micro-architecture speci-
fications between the two models. The average speed of the OSM

benchmark iPAQ(sec) Simulator(sec) difference

gsm/dec 0.59 0.572 3.05%
gsm/enc 1.69 1.647 2.54%
g721/dec 2.23 2.205 1.12%
g721/enc 2.31 2.293 0.74%

mpeg2/dec 14.85 14.55 2.02%
mpeg2/enc 32.85 32.38 1.43%

Table 1. StrongARM model comparison

parts SA-1100 PPC-750

Modules with TMI 279 930
Modules without TMI 184 481
Decoding and OSM init. 2,130 2,963
Miscellaneous 439 630
Total 3,032 5,004

Table 2. Source code line numbers

model is 250k cycles/sec on a P-III 1.1GHz desktop, 4 times that
of the SystemC model.

Finally, we show the source code line counts for both simu-
lators in Table 2 as a measure of productivity. In comparison,
the micro-architecture simulator portion of the SimpleScalar ARM
target contains 4,633 lines of C code and the SystemC based Pow-
erPC model contains about 16,000 lines of C++ code. This does
not include the instruction semantics simulation portion, com-
ments and blank lines in all cases. About 60% of the source code
in Table 2 is dedicated to instruction decoding and OSM initial-
ization, which can be automatically synthesized through the use of
an architecture description language. Most hardware modules and
their TMIs were reused across the two targets.

6 Discussions

The case studies demonstrate the flexibility of OSM in mod-
eling scalar and superscalar architectures. Since Very Long In-
struction Word (VLIW) architectures have simpler pipeline con-
trol, they can be easily modeled by OSM as well. The OSM model
can also be used for the modeling of multi-threaded (MT) archi-
tectures. When modeling MT with OSM, each OSM carries a tag
indicating the thread that it belongs to. The tags are used as part
of the identifiers for token transactions and may contribute to the
ranking of the OSMs.

The OSM model is highly declarative. The state machines in
the model can be expressed in the ASM [1] formalism. Thus
it is possible to extract model properties for formal verification
purposes. Operation properties such as the operand latencies and
reservation tables can also be extracted and used by a retargetable
compiler during operation scheduling.

7 Conclusions and Future Work

In this paper, we propose the OSM model as a flexible for-
malism for micro-architecture modeling. We demonstrate that the
OSM model is efficient, expressive, declarative and productive. It
is suitable for use as the foundation of a retargetable simulator
generation framework for a wide range of architectures including
scalar, superscalar, VLIW and MT architectures.

The next step in our research is to devise an architecture de-
scription language based on the OSM model and to implement a
retargetable microprocessor modeling framework combining the
model and a general purpose hardware modeling environment.

8 Acknowledgments

This work is supported by the Gigascale Research Center spon-
sored by DARPA/MARCO. We thank the Liberty group led by
Prof. David August for discussions, Prof. Margaret Martonosi for
providing experimental equipment, and Prof. Stephen Edwards,
Keith Vallerio and Subbu Rajagopalan for their generous help in
improving the paper.

References

[1] E. Börger. The Origins and the Development of the ASM Method
for High Level System Design and Analysis. Journal of Universal
Computer Science, 8(1):2–74, 2002.

[2] D. Burger and T. M. Austin. The simplescalar tool set version 2.0.
Technical Report 1342, Department of Computer Science, Univer-
sity of Wisconsin-Madison, June 1997.

[3] B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator
for execution profiling. Proceedings of the 1994 ACM SIGMET-
RICS Conference on the Measurement and Modeling of Computer
Systems, pages 128–137, May 1994.

[4] P. S. Coe, F. W. Howell, R. N. Ibbett, and L. M. Williams. Techni-
cal note: A hierarchical computer architecture design and simulation
environment. ACM Transactions on Modeling and Computer Simu-
lation, pages 431–446, Oct 1998.

[5] Digital Equipment Corporation, Maynard, MA. Digital Semicon-
ductor SA-110 Microprocessor Technical Reference Manual, 1996.

[6] S. A. Edwards. The specification and execution of heterogeneous
synchronous reactive systems. PhD thesis, University of California
at Berkeley, Berkeley, CA, 1998.

[7] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan.
Asim: A performance model framework. IEEE Computer, pages
68–76, February 2002.

[8] A. Fauth, J. V. Praet, and M. Freericks. Describing instructions set
processors using nML. In Proceedings of Conference on Design
Automation and Test in Europe, pages 503–507, Paris, France, 1995.

[9] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, Boston, MA, 2002.

[10] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction
set description language for retargetability. In Proceedings of Design
Automation Conference, pages 299–302, June 1997.

[11] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nico-
lau. EXPRESSION: A language for architecture exploration through
compiler/simulator retargetability. In Proceedings of Conference on
Design Automation and Test in Europe, pages 485–490, 1999.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A
tool for evaluating and synthesizing multimedia and communicatons
systems. In International Symposium on Microarchitecture, pages
330–335, Dec 1997.

[13] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented de-
sign of embedded hardware and software systems. Journal of Cir-
cuits, Systems, and Computers, 1, July 2002.

[14] Motorola Inc. MPC750 RISC Microprocessor User’s Manual, 1997.
[15] G. Mouchard. http://www.microlib.org, 2002.
[16] S. Önder and R. Gupta. Automatic generation of microarchitecture

simulators. In Proceedings of the IEEE International Conference on
Computer Languages, pages 80–89, May 1998.

[17] S. Pees, A. Hoffmann, and H. Meyr. Retargetable compiled sim-
ulation of embedded processors using a machine description lan-
guage. ACM Transactions on Design Automation of Electronic Sys-
tems, 5(4):815–845, Oct 2002.

[18] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA – machine
description language for cycle-accurate models of programmable
DSP architectures. In Proceedings of Design Automation Confer-
ence, pages 933–938, 1999.

[19] J. Teich, R. Weper, D. Fischer, and S.Trinkert. A joined architec-
ture/compiler environment for ASIPs. In International Conference
on Compilers, Architectures and Synthesis for Embedded Systems,
San Jose, CA, Nov 2000.

[20] M. Vachharajani, N. Vachharajani, D. Penry, J. A. Blome, and D. I.
August. Microarchitectural exploration with Liberty. In Interna-
tional Symposium on Microarchitecture, Nov 2002.

[21] G. Zimmerman. The MIMOLA design system: A computer-aided
processor design method. In Proceedings of Design Automation
Conference, pages 53–58, June 1979.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

