

 Building Fast and Accurate SW Simulation Models Based on Hardware

 Abstraction Layer and Simulation Environment Abstraction Layer

 Sungjoo Yoo Iuliana Bacivarov Aimen Bouchhima Yanick Paviot Ahmed A. Jerraya
 System-Level Synthesis Group

 TIMA Laboratory
 Grenoble, France

Abstract
As a fast and accurate SW simulation model, we present a
model called fast timed SW model. The model enables
fast simulation by native execution of application SW and
OS. It gives simulation accuracy by timed SW and HW
simulation. When building fast timed SW models, we
need to solve two problems: (1) how to enable timing
synchronization between the native execution and HW
simulation and (2) how to obtain the portability of native
execution (that needs multi-tasking from simulation
environments to emulate its multi-tasking operation) on
different simulation environments (that give different
types of multi-tasking). In this paper, to enable the
synchronization, we present a synchronization function.
To enable the portability, we present an adaptation layer
called simulation environment abstraction layer. We
present our case studies in building fast timed SW models.

1. Introduction

Since SW complexity grows rapidly in SoC designs, to
achieve short time-to-market, SW validation needs to be
fast and accurate. Conventionally, two methods of SW
validation have been used in embedded systems design
domain and in classical software design domain: ISS
(instruction set simulator) execution and native execution
of application SW and OS.

Figure 1 exemplifies the two methods. Figure 1 (a)
shows a processor and the other HW of the system. The
other HW includes processor local bus, peripherals, on-
chip communication network, other processors and HW
IPs connected to the network, etc. Figure 1 (b) shows
classical ISS execution in timed HW/SW cosimulation. In
this method, an ISS and a BFM (bus functional model)
replaces the processor of Figure 1 (a). The BFM works as
a cosimulation interface between the ISS and the other
HW (at RTL) of the system. The BFM provides the ISS
with two kinds of function: interrupt check and read/write
operation. Although the advantage of this method is
accuracy (at instruction/cycle/phase-accuracy), its main
drawback is the slow simulation speed.

Figure 1 (c) shows the classical native execution of
application SW and OS. In this method, application SW

and OS are targeted on a simulation host OS, e.g. Unix.
We call the classical native execution of OS native OS. An
example of commercial native OS is VxSimTM of
VxWorks [1].

The advantage of classical native execution method
is simulation speed since the application SW and OS are
not interpreted by a simulator, but executed natively on
the simulation host machine. However, the main drawback
of this method is lack of accuracy in terms of modeling
SW execution time and in terms of HW modeling. It is
because this method takes functional simulation for the
SW and HW parts of the system.

(b) (c)

BFM

ISS

HW (RTL)

Processor

OS

(functional) HW
+ Host OS

Processor

rd/wrintr_chk
rd/wr
multi-tasking
sync-trap
timer

async-
trap

(a)

HW (RTL)

Processor
(e.g. ARM7)

Application SW

Figure 1 Processor to be modelled (a), classical ISS
execution in timed HW/SW cosimulation (b) and
classical native execution of application SW and OS (c).

In this paper, to take advantage of both of the

advantages of the two classical methods, i.e. simulation
accuracy and speed, we present a fast and accurate SW
simulation model called fast timed SW model.

To achieve fast simulation, the fast timed SW model
uses native execution of application SW and OS instead of
running the ISS. To enable accurate simulation, it
performs timed simulation of application SW and OS.

When building fast timed SW models, we need to
solve two problems: (1) how to enable timing
synchronization between the native execution and HW
simulation and (2) how to obtain the portability of native
execution (that needs multi-tasking from simulation
environments to emulate its multi-tasking operation) on

1530-1591/03 $17.00  2003 IEEE

different simulation environments (that give different
types of multi-tasking). To solve the problem of
synchronization, we present a function called delay(). To
enable the portability, we present an adaptation layer
called simulation environment abstraction layer (SEAL).

This paper is organized as follows. Section 2 and 3
give a short review of related work and preliminaries.
Section 4 presents the fast timed SW model and our
problems. Section 5 and 6 address our solution to the two
problems. Section 7 gives our case studies. Section 8
concludes this paper.

2. Related Work

To have accurate SW simulation, we need to simulate the
OS and HAL as well as application SW. In conventional
cosimulation methods (e.g. described in [2]), only
cosimulation with ISS can simulate them. In [3], an ISR is
modelled as a part of BFM. However, the timing delay of
ISR is not simulated and no OS is simulated. In [4], a
method of automatic generation of OS simulation models,
for cosimulation purpose, is presented. Our method
improves the method by introducing the synchronization
function, delay() and SEAL to achieve a systematic
method of building timed simulation models of OS and
application SW.

Conventionally, a HAL is used to ease OS porting on
target processors/boards. WindowCE OAL (OEM
abstraction layer) [5] and a HAL of eCos [6] are some of
HAL examples. These HALs are usually dependent on
OSs. a386 is a HAL which is originally dependent on i386
processor [7]. Later, a386 is ported on different processors
(e.g. ARM7) than i386. Recently VSIA is working on a
standard of embedded SW interface called HW dependent
SW (HdS) by defining HAL APIs [11].

When building native OSs, the HAL is used to target
the real OS on a simulation host OS [8][9]. In Xenomai
project [8] (which is based on CarbonKernel OS
simulation model [10]) and in Choices (a component-
based OS design environment) [9], a nanokernel is used as
a HAL. The nanokernel is processor-dependent codes in
the OS. The nanokernel is ported on a simulation host OS.
The other processor-independent OS codes run on top of
the nanokernel. As mentioned in Section 1, native OS
lacks in timed SW simulation and the support for timed
HW/SW cosimulation.

In SoCOS [14], an emulation of OS APIs is supported
in the simulation of entire SoC including embedded SW.
However, the emulation does not validate a real OS design.
In addition, the synchronization between the OS
emulation and HW simulation including the propagation
of processor interrupt is not clearly explained.

In [15], using a conventional native OS (VxSim in
this case), OS simulation is performed in HW/SW
cosimulation. Compared to the method, our method has

three major contributions. One is to present a systematic
method of developing the SW simulation model based on
the simulation model of HAL while the method in [11]
does not present a method of developing the simulation
model. Another contribution is more flexible and accurate
synchronization between the SW simulation model and
HW simulation. The method in [11] offers a periodic
synchronization while our method can offer more
flexibility and timing accuracy in synchronizing both SW
and HW simulation by annotating SW execution delay
anywhere in the real code of application SW and OS. The
other contribution is the portability of SW simulation
model.

3. Preliminaries: SW in SoC Design

In SW design for SoC, the following two problems are
crucial: (1) dealing with the design complexity of OS
design and (2) hardware independent SW design. The OS
design is complex since it includes sophisticated
functionalities such as task scheduling, synchronization,
interrupt management, memory management and I/O
(device drivers). The OS design needs to be HW
independent to enable the portability of OS and
application SW over several HW architectures to enable
the exploration of different HW architectures with the
same SW code.

To tackle the complex OS design, the designer needs
to implement the OS in a modular and incremental way.
To enable the HW independent OS design, the designer
needs an abstraction of underlying HW architecture.

Figure 2 shows a simplified view of SW in SoC. We
design the SW over three abstraction levels: OS
architecture level, HAL level, and ISA (instruction set
architecture) level.

The application SW is designed using OS APIs. At
the OS architecture level, the OS APIs are determined, but
the specific implementations of OS APIs are not yet
determined. To enable modular and incremental OS
design, we divide the OS into three parts: task scheduling,
interrupt management, and I/O (communication). At OS
architecture level, the designer determines a set of OS
APIs among possible sets of APIs (e.g. POSIX APIs).

HAL is an abstraction of underlying HW architecture.
We define HAL as all the software that is directly
dependent on the underlying HW. The examples of HAL
include boot code, context switch code, codes for
configuration and access to HW resources, e.g. MMU, on-
chip bus, bus bridge, timer, etc. HAL provides the virtual
SW component with a set of HAL APIs. As the HAL
APIs, we can use a standard HAL for SoC design, e.g.
HdS-API in VSIA [11], OS vendor-specific HAL APIs [6],
or SoC architecture specific ones.

At HAL level, HAL provides the OS with HAL APIs.
The OS is designed (from scratch or configuring an

existing OS) using the HAL APIs. At HAL level, the
specific implementations of OS APIs are determined.
However, those of HAL APIs are not yet determined.

Processor

HAL level

OS arch. level

ISA level

HW

Task
man.

Application SW

Sync
IT I/O

OS API

HAL API

HW Abstraction Layer

OS

Figure 2 SW architecture and abstraction levels.

At ISA level, the designer implements the HAL APIs.

At this level, all the SW code can be compiled and
downloaded on to the target processor.

To validate the implementation at a level, the
designer uses simulation models suitable to the abstraction
level. At ISA level, an ISS is used as a SW simulation
model. The fast timed SW model is a HAL level
simulation model that uses ISA level delay information.

4. Proposed Simulation Model and Problems
Definition

4.1 Fast Timed SW Model
Figure 3 shows a simple view of fast timed SW model. It
consists of application SW, OS, the simulation model of
HAL and a BFM called EBFM (extended BFM).

As the native execution of application SW and OS in
Figure 1 (c), the fast timed SW model executes
application SW and OS natively on the simulation host
machine. To achieve accurate, i.e. timed simulation in the
native execution, the SW execution delay is annotated into
the code of application SW and OS and into the
simulation model of HAL. In Figure 3, delay annotation is
exemplified with ‘+delay’.

Compared with the classical ISS execution in Figure
1 (b), the fast timed SW model replaces the BFM with the
EBFM. The EBFM consists of conventional BFM
(performing conventional memory accesses) and
simulation environment abstraction layer (SEAL).

Figure 4 shows code examples of fast timed SW
model: an application SW task, an OS function
(OS_init()), and a simulation model of a HAL API
(create_task()). As shown in the example of OS function
code in Figure 4, for delay annotation, we insert function

delay() (with SW execution delay) into the real OS code
as well as into the application SW code and the simulation
model of HAL. For the delay calculation, we use
conventional methods of SW execution delay estimation,
e.g [12][16].

Processor

EBFM (SEAL + BFM)

HW (RTL)

OS + delay
Sim. model of HAL + delay

Appl. SW + delay

memory
access

via BFM
call

SEAL_wait()

Figure 3 Fast timed SW model.

…
func_A();
delay(10);
OS_yield();
…

Task

void OS_init() {
…
delay(25);
create_task(…);
… }

OS

void create_task() {
…
delay(8);
create_abs_cxt(…);
… }

HAL sim. model

Figure 4 Code examples.

When building a native OS, first we need to separate

the real OS into two parts: one is dependent on the target
processor and the other is processor-independent. In our
case, the target processor dependent part is HAL. The
processor independent part is usually written in high-level
languages, e.g. in C/C++. HAL can be written in assembly
code or in high-level languages.

In the case of native execution of application SW and
OS, since we execute it on a simulation host, we can use
the processor independent code part of the OS (assuming
that the application SW is processor-independent) for
native execution without change. However, for the
processor dependent part, i.e. HAL, since we cannot run
the original HAL (possibly in assembly code) on the
simulation host, we need to build a simulation model (for
HAL) that can run on the simulation host.

Details of building the simulation models of HAL
APIs are given in our previous work [4]. This paper is to
focus on the timing synchronization and portability
problems in building the fast timed SW model.

4.2 Problems Definition

When building fast timed SW models, we need to solve
the following two problems: (1) how to enable timing
synchronization between the native execution and HW
simulation and (2) how to obtain the portability of native
execution on different simulation environments.

Problem 1: Timing Synchronization
In the native execution, the task scheduler in the native OS
emulates the multi-tasking of application SW tasks. The
scheduling operation is closely related to the processor
interrupt processing since task execution is pre-empted by
the interrupts and new tasks can be scheduled by the task
scheduler invoked by the processor interrupts. In terms of
synchronization between SW and HW simulation, the
processor interrupt is modelled by the events propagated
from HW to SW simulation. Thus, the emulation of multi-
tasking and synchronization between SW and HW
simulation are closely related with each other via the
simulation of processor interrupt. This problem is a new
problem in the cosimulation area. To solve this problem,
we present a solution of synchronization function delay().
It performs the synchronization, propagates events that
represent processor interrupts from HW to SW simulation,
and enables the interrupt service routines to be invoked by
the processor interrupts.

Problem 2: Portability of Simulation Model
A simulation environment is an ensemble of SW and/or
HW simulators (e.g. SystemC, SpecC, etc) and/or host
machine OSs (e.g. Unix, Linux, Windows, etc.). For the
emulation of multi-tasking operation of native OS, we
need multi-tasking functions from the simulation
environment. Since there are various simulation
environments (different environments and different
versions of environments), depending on each of them, the
multi-tasking implementations are different. The
implementation of the same native OS on different
simulation environments can take a lot of efforts of
manual adaptation. Thus, the portability problem will limit
the (re)usage of SW simulation models in different or
future simulation environments. To enable the portability
of simulation model, we need to abstract simulation
environments, especially their multi-tasking
implementations. To this problem, we present an
adaptation layer called simulation environment abstraction
layer (SEAL) for the abstraction of simulation
environments.

5. Timing Synchronization between SW and HW
Simulation

In our method, function delay() enables timed SW
simulation and timing synchronization between SW and
HW simulation. Function delay() works in collaboration
with a SEAL API, SEAL_wait(). Figure 5 and 6 show
pseudo codes of delay() and SEAL_wait().

1 void delay(int delay) {
2 int last_time;
3 time2consume = delay:
4
5 while(time2consume > 0) {
6 last_time = cur_SW_time;
7 SEAL_wait(time2consume, event_return);
8 cur_SW_time = event_return->time;
9 time_elapsed = cur_SW_time – last_time:
10 time2consume -= time_elapsed;
11 if(event_return->flag == true) ISR();
12 }
13 }

Figure 5 Function delay().

1 void SEAL_wait(int delay, ext_event* event_value) {
2 target_SW_time = cur_HW_time + delay;
3
4 while(cur_HW_time < target_SW_time) {
5 if(proc_intr->new_event == true) {
6 event_value->flag = true;
7 event_value->time = cur_HW_time;
8 return;
9 }
10 advance_HW_time();
11 }
12 event_value->flag = false;
13 event_value->time = cur_HW_time;
14 }

Figure 6 Function SEAL_wait()

When function delay() is executed in the fast timed

SW model, the SW execution delay value is sent to SEAL
in line 7 of Figure 5 by calling a SEAL API,
SEAL_wait(). As shown in Figure 6, SEAL_wait()
advances HW simulation time watching on external events,
i.e. processor interrupts (in line 5 and 10 of Figure 6).

SEAL_wait() returns in two cases. Before time
period delay elapses, if there is a processor interrupt event,
the function returns (line 5-8 in Figure 6). If there is no
interrupt event during the time period, it returns after the
entire time period delay elapses (after line 12-13).

When function SEAL_wait() returns in function
delay() of Figure 5, both SW and HW simulation times
are synchronized (in line 8 of Figure 5). Note that the

return value of SEAL_wait(), event_value->time is set to
current HW simulation time (cur_HW_time) in line 7 or
13 of Figure 6.

If there is an interrupt before time period delay
elapses, there is a remaining delay for the preempted SW
task or OS code. Thus, the remaining delay value is
calculated (line 10 of Figure 5). Then, if there is an
interrupt, the interrupt service routine (ISR) is simulated
(line 11). When the ISR returns, if there remains still a
time delay for the (preempted) SW task or OS code,
function SEAL_wait() is called again (line 7).

Note that, even in the ISR execution, function delay()
can be executed and that during the ISR execution, the OS
scheduler can be called and another (preempted) task can
be resumed.

As shown in Figure 5 and 6, function delay() detects
events for processor interrupts (line 11 in Figure 5) and
propagates them to the native execution by calling the
simulation model of ISR. It also synchronizes SW and
HW simulation time (line 8 in Figure 5).

6. Simulation Environment Abstraction Layer

To abstract different multi-tasking implementations in
different simulation environments, SEAL gives an
abstraction of task context to the simulation model of
HAL. To do that, it provides for a data structure of an
abstract context and a set of APIs to use the abstract
contexts. The abstract context includes host machine
register values and stack pointer. There are three APIs for
the abstract contexts: create/delete_abs_cxt(),
abs_cxt_switch().

Figure 7 shows an example of SEAL API. In the
figure, we implement the SEAL API with Unix as a
simulation environment. In this case, the data structure of
abstract context abstract_cxt has, as the only member, a
data structure of Unix user-level context (ucontext_t).

In Figure 7, SEAL API create_abs_cxt() creates an
instance of abstract context. As shown in the figure, a
HAL API, create_task() uses the SEAL API,
create_abs_cxt(). In this case, when we use another
simulation environment (e.g. Windows) than Unix, to
build a new fast timed SW model, we have only to port
the SEAL APIs on the new simulation environment
without changing the simulation models of HAL APIs and
the other codes of application SW and OS.

7. Case Studies

In our case studies, to show the application of
synchronization function delay() and SEAL, we
implement three different cases of execution model for the
fast timed SW model. By the execution model, we mean a
configuration of simulation environment. Figure 8 shows
the three cases.

// SEAL abstract task data structure
class abstract_cxt { ucontext_t task_cxt; };
abstract_cxt cxt_inst[NO_TASKS];

// SEAL API
create_abs_cxt(int id, func_ptr task_fcn) {

cxt_inst[id].task_cxt->uc_link=0;
cxt_inst[id].task_cxt->uc_stack.ss_sp=malloc(STACK);
cxt_inst[id].task_cxt-> uc_stack.ss_size=STACK;
cxt_inst[id].task_cxt-> uc_stack.ss_flags=0;
makecontext(cxt_inst[id].task_cxt, task_fcn, 1); }

// HAL API
create_task(int task_id, func_ptr* task_entry_func) {

…
create_abs_cxt(task_id, task_entry_func);
… }

Figure 7 SEAL API example.

In Case 1 (in Figure 8 (a)), we implement a native OS

as a Unix process. For HW simulation, we use SystemC.
Since we run SystemC simulation and the native OS in
different Unix processes, we use Unix IPC for the
communication between two processes. In this case, the
native OS itself implements Unix-specific multi-tasking
for the emulation of its multi-tasking operation. Thus, the
EBFM has only to support function SEAL_wait() for the
function delay() called in the native execution of
application SW and OS and in the execution of HAL
simulation model. Case 1 is very useful when we use
native OSs from commercial OS vendors (e.g. VxSim [1]).
In this case, the native OS already exists as a separate
process on a simulation host.

In Case 2, we integrate the native OS into SystemC
environment. In Figure 8 (b), a bold rectangle represents a
SystemC module. As shown in the figure, application SW,
OS, and HAL are contained in a SystemC module. In this
case, we use only one Unix process for the SystemC
simulation. The HAL of the native OS uses the SEAL
APIs of EBFM (in this case, using Unix user-level multi-
tasking). In Case 2, when we move the SystemC model on
another simulation environment, e.g. Windows or Linux,
we have only to change the SEAL without changing the
other part of fast timed SW model. In terms of simulation
speed, Case 2 can be a better solution than Case 1 since
IPC is not used for the communication between the native
OS and HW simulation in Case 2.

In Case 3, we do not use Unix user-level multi-
tasking in SEAL, but use SystemC multi-tasking function
for the emulation of native OS multi-tasking. To do that,
we model a SW task as a SystemC module. In Figure 8 (c),
each of three application tasks T1, T2, and T3 is
represented as a SystemC module, respectively. By using
SystemC modules, context switch between tasks can be
emulated with SystemC multi-tasking, i.e.

notify(sc_event) and wait(event). Case 3 is one of
candidate solutions of SW validation when building OSs
using SystemC

T1 T2

OS

HAL

EBFM

T3

HW (RTL)

Native exe.
on Unix

SystemC

T1 T2

OS

HAL

EBFM

T3

HW (RTL)

Native exe.
on Unix

SystemC

OS

HAL

EBFM

HW (RTL)

SystemC

IPC

(a) Case 1 (b) Case 2 (c) Case 3

T1 T2 T3

Figure 8 Three execution models.

In our case studies, we used three system examples:

McDrive, VDSL, and IS-95 [13]. As the target
architectures, McDriver system has one ARM7, three IPs,
and point-to-point (p2p) interconnections. VDSL system
has two ARM7s, one IP, and p2p interconnections. IS-95
system has two ARM7s, two 68000s, and p2p
interconnections.

In terms of simulation runtime, the fast timed SW
model gives orders of magnitude higher performance
compared to cycle-accurate cosimulation using ISSs. An
implementation of Case 3 for the IS-95 example, for the
simulation of 0.4 sec in real time, the fast timed SW
model (communication between processors are modelled
at a transaction-level) gives 37 sec of simulation runtime
while cycle-accurate cosimulation with four ISSs
(ARMulators and 68000 ISSs) and SystemC (HW
simulation) gives 72,744 sec of simulation runtime.

8. Conclusion

As a fast and accurate SW simulation model, we present a
model called fast timed SW model. The model enables
fast simulation by native execution of application SW and
OS and simulation accuracy by timed SW and HW
simulation.

To solve the problem of timing synchronization
between SW and HW simulation, we present function
delay() to detect and propagate processor interrupt events
from HW to SW simulation. To enable the portability of
native execution of application SW and OS on different
simulation environments, we present an adaptation layer

called simulation environment abstraction layer. In our
case studies, we present three cases of execution model
for fast timed SW models and simulation runtime results.

References

[1] VxSim, Windriver Systems Inc. Available at
http://www.windriver.com/products/html/vxsim.html
[2] James A. Rowson, “Hardware/Software Co-
Simulation”, Proc. DAC, 1994.
[3] L. Semeria and A. Ghosh, “Methodology for
Hardware/Software Co-verification in C/C++”, Proc.
ASPDAC, 2000.
[4] S. Yoo, G. Nicolescu, L. Gauthier and A. A. Jerraya,
“Automatic Generation of Fast Timed Simulation Models
for OS in SoC Design”, Proc. DATE, 2002.
[5] Microsoft Windows CE 3.0, hal component,
http://msdn.microsoft.com/library/default.asp?url=/library
/ en-us/wcesdkr/htm/_wcesdk_hal_component.asp
[6] eCos, http://sources.redhat.com/ecos/
[7] a386, http://a386.nocrew.org/
[8] Xenomai project, http://savannah.gnu.org/projects/
xenomai/
[9] S. M. Tan, et. al., “Virtual Hardware for Operating
System Development”, Technical rep., UIUC, Sep. 1995.
http://choices.cs.uiuc.edu/uChoices/Papers/uChoices/
vchoices/vchoices.pdf
[10] Carbon Kernel, http://www.carbonkernel.org/
[11] Virtual Socket Interface Alliance, http://www.vsi.org
[12] M. Lajolo, M. Lazarescu, A. Sangiovanni-Vincentelli,
“A Compilation-based Software Estimation Scheme for
Hardware/Software Co-simulation”, Proc. CODES, 1999.
[13] S. Yoo, et. al., “Fast Prototyping of an IS-95 CDMA
Cellular Phone: a Case Study”, Proc. APCHDL, Oct. 1999.
[14] D. Desmet, D. Verkest, H. De Man, “Operating
System Based Software Generation for Systems-on-Chip”,
Proc. DAC, pp. 396-401, June 2000.
[15] M. Bradley and K. Xie, “Hardware/Software Co-
Verification with RTOS Application Code”, Mentor
Graphics Inc. http://www.mentor.com/soc/fulfillment/
mentorpaper_10280.pdf
[16] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto,
“Source-Level Execution Time Estimation of C
Programs”, Proc. CODES, pp. 98-103, May, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

