
Non-Intrusive Concurrent Error Detection in FSMs through
State/Output Compaction and Monitoring via Parity Trees

Petros Drineas and Yiorgos Makris
Departments of CS & EE, Yale University
{petros.drineas, yiorgos.makris}@yale.edu

1. Abstract We discuss a non-intrusive methodology for
concurrent error detection in FSMs. The proposed method is
based on compaction and monitoring of the state/output bits
of an FSM via parity trees. While errors may affect more than
one state/output bit, not all combinations of state/output bits
constitute potential erroneous cases for a given fault model.
Therefore, it is possible to compact them without loss of error
information. Thus, concurrent error detection is performed
through hardware that predicts the values of the compacted
state/output bits and compares them to the actual values of
the FSM. In order to minimize the incurred hardware over-
head, a randomized algorithm is proposed for selecting the
minimum number of required parity functions.

2. Problem Statement Consider the FSM withp inputs,n
outputs, andk state bits shown in Fig. 1. For every combi-
nation of inputIN and previous statePS, any error caused
by a faultf in the stuck-at fault model will manifest itself as
a difference between the error-free responseGM(IN, PS)
and the erroneous responseBMf (IN, PS). This difference
is detectable in a non-empty set of the state and/or output bits
S1 . . . Sn+k; each such set is defined as anErroneous Case,
EC(IN, PS, f). Clearly, several combinations of transition
(IN, PS) and faultf may lead to the same erroneous case,
i.e. the same set of bits through which the effect of faultf
on transition(IN, PS) may be detected. The union of all er-
roneous cases may be represented in the table format of Fig.
2, where columns correspond to state/output bits, rows cor-
respond to erroneous cases, and entries in the table indicate
the state/output bits at which each erroneous case is detected.

Detecting all circuit errors requires that at least one
state/output bit for each erroneous case be predicted through
additional hardware and compared to the actual value. To
minimize the incurred hardware overhead, we seek to min-
imize the number of predicted bits. Unfortunately, since
stuck-at faults on a state/output bit may only be detected on
this bit, it is likely that all state/output bits will be included in
the solution, leading to duplication. To overcome this limita-
tion, our method employs state/output compaction via parity
trees. Thekey observationis that the parity (XOR) function
of several state/output bits, an odd number of which detects
an erroneous case, also detects the erroneous case. There-
fore, it is possible that a small number of parity functions
will be adequate to cover all erroneous cases. However, a
large number of alternative parity functions exist, exponen-
tial to the number of state/output bits. Expanding the error
detectability table to explicitly incorporate these functions

and solving a minimum cover problem on the expanded table
is infeasible. Therefore, selecting the minimum number of
parity functions that will cover all erroneous cases poses an
interesting problem; we present a novel algorithm based on
linear programming and randomized rounding [1].

The proposed methodology is straightforward, as depicted
in the form of a block diagram in Fig. 3. Given an FSM
with p inputs, n outputs, andk state bits, XOR trees are
employed to implement thè parity functions required for
lossless state/output bit compaction. Combinational logic is
employed to predict the values of the` bits that compact the
k + n state/output bits for each FSM transition, and a com-
parator is employed to identify any discrepancy. Registers
are added to hold the output and the predicted values so that
comparison is performed one clock cycle later in order to also
detect faults in the State Register. Thus, all FSM errors are
detected with latency of one clock cycle.

The aforementioned problem – in various forms and con-
texts – has been extensively studied in the literature [2, 3, 4,
5, 6, 7, 8, 9, 10, 11]. Our contribution is twofold: we formu-
late the problem as a set of integer constraints and we employ
the randomized algorithm of [1] to efficiently – and provably
– identify a solution that satisfies all the constraints.

3. Proposed Algorithm In this section, we demonstrate
how to model the problem as a set of integer inequalities; we
then userandomized roundingto identify feasible points-
namely points satisfyingall the constraints. Combining this
idea with binary search allows us tominimizethe number of
parity bits. The FSM has a total ofn+k next state and output
bits {S1, S2, . . . , Sn+k}. We are given a set ofm erroneous
casesF = {EC1, EC2 . . . , ECm} and anm×(n+k) matrix
V such thatVij = 1 if erroneous caseECi is detected by the
j-th state/output bitSj ; otherwise,Vij = 0. We remind the
reader that, for boolean variablesx, y, x⊕y = (x+y) mod2
and any subset of{S1, S2, . . . , Sn+k}may be represented by
ann+k-dimensional binary vector (e.g. the subset{S1, S3}
may be represented by[1010 . . . 0]). The problem may now
be restated as follows:

Statement 1 Given a positive integer̀ , find ` vectors
β(1), . . . , β(`) ∈ {0, 1}n+k such that

∑̀

i=1

n+k
∑

j=1

Vxjβ
(i)
j

 mod2

 ≥ 1, ∀x = 1 . . . m

or report the lack thereof.

1530-1591/03 $17.00 2003 IEEE

NEXT STATE /
OUTPUT

COMBINATIONAL
LOGIC

k-BIT
STATE

REGISTER

S1

S2

Sk

I1

I2

Ip

Sk+1Sk+2 Sk+n

INPUT

OUTPUT

PREVIOUS STATE

NEXT
STATE

Figure 1. Example FSM

S1

1

.

.

.

Erroneous Casem

.

.

.

Erroneous Case2

Erroneous Case1

S2

1

.

.

.

1

...

.

.

.

Sk

1

.

.

.

Sk+1

.

.

.

Sk+2

.

.

.

...

.

.

.

1

Sn+k

1

.

.

.

1

Figure 2. Error Detectability Table

In order to understand the above constraints, observe that
if

(

∑n+k
j=1 V1jβ

(i)
j

)

mod2 = 1, the XOR of the bits in the

set represented by the vectorβ(i) detects the erroneous case
EC1. Thus, in order to detectEC1, we require thatat least
oneof the ` subsets represented by the vectorsβ(i) detects
the erroneous case. The same constraint is repeated for allm
ECi ∈ F . We note that if we can solve the above problem
in time T , then we may easily minimizèin T · log(n + k)
time: since1 ≤ ` ≤ n + k, we may perform binary search
and find the optimal̀. We now remove themodoperator:

Statement 2 Given a positive integer̀, find vectorsβ(i),
r(i), w(i), i = 1 . . . ` such that

V · β(i) = 2 · w(i) + r(i), i = 1 . . . `

r(1) + . . . + r(`) ≥ ~1m

β(1), . . . , β(`) ∈ {0, 1}n+k

r(1), . . . , r(`) ∈ {0, 1}m

w(1), . . . , w(`) ∈ {0, 1, . . . , b(n + k)/2c}m

In the above,w(i) is anm-dimensional vector which es-
sentially removes themod 2 operation; we also require that
the sum of ther(i) is, element-wise, at least one, thus guar-
anteeing that every erroneous case is detected.

In statement 2, we described our problem as aninteger
program. Our goal is to find afeasible point; namely, values
for all r(i), w(i) and β(i) (a total of `(2m + n + k) vari-
ables) such thatall the restrictions of statement 2 are sat-
isfied. Identifying a feasible point for an integer program
is NP-complete; we employ a technique calledrandomized
rounding [1] to solve it. The idea of randomized rounding
is simple: solve the linear programming relaxation of the in-
teger program (which is done in polynomial time using the
Simplex algorithm) and round the resultingreal valuesprob-
abilistically, thus forcing them to integers. We can prove that
such an algorithm identifies a feasible point for the integer
program of statement 2 with high probability (if one exists).

ORIGINAL FSM H/W

TESTABILITY H/W

NEXT STATE
COMBINATIONAL

LOGIC

p-bit INPUT

STATE
REGISTER

k-bit
NEXT STATE

k

OUTPUT
COMBINATIONAL

LOGIC

 OUTPUT
HOLD

REGISTER

PREDICTION
HOLD

REGISTER

PARITY TREE
FUNCTIONS

n

PREDICTION
LOGIC

l-bit
PREDICTION

n-bit
OUTPUT

INEQUALITY
COMPARATOR

TEST OUTPUT
(ERROR IF '1')

l

l

Figure 3. Proposed Methodology Overview

The proposed methodology has been implemented and ap-
plied on several MCNC benchmark FSMs. Experimental re-
sults demonstrate that a very small number of parity func-
tions is adequate to detect all errors, thus leading to signifi-
cant hardware cost reduction over duplication.

References

[1] P. Raghavan and C. Thompson, “Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs,” Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[2] G. Aksenova and E. Sogomonyan, “Synthesis of built-in test
circuits for automata with memory,”Automation and Remote
Control, vol. 32, no. 9, pp. 1492–1500, 1971.

[3] V. V. Danilov, N. V. Kolesov, and B. P. Podkopaev, “An al-
gebraic model for the hardware monitoring of automata,”Au-
tomation and Remote Control, vol. 36, no. 6, pp. 984–991,
1975.

[4] G. Aksenova and E. Sogomonyan, “Design of self-checking
built-in check circuits for automata with memory,”Automa-
tion and Remote Control, vol. 36, no. 7, pp. 1169–1177, 1975.

[5] S. Dhawan and R. C. De Vries, “Design of self-checking
sequential machines,”IEEE Transactions on Computers, vol.
37, no. 10, pp. 1280–1284, 1988.

[6] M. Gossel and S. Graf,Error Detection Circuits, McGraw-
Hill, 1993.

[7] S. Tarnick, “Bounding error masking in linear output space
compression schemes,” inAsian Test Symposium, 1994, pp.
27–32.

[8] R. A. Parekhji, G. Venkatesh, and S. D. Sherlekar, “Concur-
rent error detection using monitoring machines,”IEEE De-
sign and Test of Computers, vol. 12, no. 3, pp. 24–32, 1995.

[9] S. J. Piestrak, “Self-checking design in Eastern Europe,”
IEEE Design and Test of Computers, vol. 13, no. 1, pp. 16–25,
1996.

[10] K. Chakrabarty and J. P. Hayes, “Test response compaction
using multiplexed parity trees,”IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems, vol.
15, no. 11, pp. 1399–1408, 1996.

[11] O. Sinanoglu and A. Orailoglu, “Space and time compaction
schemes for embedded cores,” inInternational Test Confer-
ence, 2001, pp. 521–529.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

