
Self-Testing Embedded Checkers for Bose-Lin,
Bose, and a Class of Borden Codes

Steffen Tarnick

SATCON GmbH

Satellitenkommunikationsgesellschaft
Warthestr. 21

D-14513 Teltow, Germany

Abstract—A new approach for designing t-UED and
BUED code checkers is presented. In particular we con-
sider Borden codes for t = 2k − 1, Bose and Bose-Lin
codes. The design technique for all three checker types fol-
lows the same principle, which is mainly based on averag-
ing weights and check symbol values of the code words.
The checkers are very well suited for use as embedded
checkers since they are self-testing with respect to single
stuck-at faults under very weak assumptions. All three
checker types can be tested by 2 or 3 code words.

1 Introduction

A Borden codeB(n, t) [1] is the set of all lengthn code-
words whose weight is congruent to �n/2� mod (t + 1).
For t = 1, B(n, t) becomes an even/odd parity code if
�n/2� is even/odd. A cyclic shift of a Borden code word is
a Borden code word as well.

Bose’s BUED code B1(n, k) [2] has n information bits
and k check bits. The code is constructed as follows.
Let x(i) = (x(i)

n−1, x
(i)
n−2, . . . , x

(i)
0) be the n-bit informa-

tion bit vector and x(c) = (x(c)
k−1, x

(c)
k−2, . . . , x

(c)
0) the k-bit

check symbol. The check symbol x(c) is given by x(c) =
k0 mod 2k where k0 denotes the number of 0’s in the in-
formation bit vector. The information and check part are
merged but the order of the code word bits do not influence
the checker design. For k = 1, Bose’s code becomes an
even/odd parity code if n is even/odd.

Bose-Lin t-UED codesB2(n, k) [3] are constructed rel-
atively similar to Bose codes. For k ≤ 3, the check symbol
is x(c) = k0 mod 2k or x(c) = 2k − 1− (k1 mod 2k), where
k0 and k1 denote the number of 0’s and 1’s in the informa-
tion bit vector. For k ≥ 4 the check symbol has the form
x(c) = (k0 mod 2k−1) + 2k−2.

In this paper we propose a new approach for designing
checkers for Borden codes B(n, t) with t = 2k − 1, Bose
codesB1(n, k), and Bose-Lin codesB2(n, k). The checker
design for all three types of codes is based on averaging
code words. The result of the averaging operation is a word
of the same code type, but for k − 1, which is checked by
a lower-level checker for the same code type. For k = 1 it
is a simple parity checker.

2 Checker Architectures

An essential part of the proposed checkers are averaging
circuits. A weight averaging circuit (WAC), shown in Fig-
ure 1, consists of two D-flip-flops and n full adders (FA)
where the roles of the sum bit and the carry-out bit are
exchanged, i.e. the sum output of the i-th full adder is con-
nected to the carry input of the i + 1-st full adder, and the
carry output of the i-th full adder is the i-th bit of the result
of the operation. The D-flip-flops are initialized with two
complementary values.

The inputs of a WAC are two n-bit words, x and y. The
outputs are the n-bit word z and the two signals d0 and d1.
With w(x) denoting the weight of a word x, the signals of
a WAC satisfy the equation

w(x) + w(y)
2

= w(z) +
cn − c0

2
.

A WAC maps two words x, y ∈ B(n, 2k − 1) to a word
z ∈ B(n, 2k−1 − 1) and a two-rail signal d0d1 ∈ {01, 10}.

For systematic codes, an averaging circuit (AC) based
on a similar principle is used. It consitsts of two parts,
as shown in Figure 2. The first part performs the weight
averaging operation on the information parts x(i) and y(i)

of the code words x and y, and yields z(i), the informa-
tion part of the result z. The second part operates on the
check parts x(c) and y(c) and computes their mean value
z(c). The least significant sum bit d1 is the rest of the divi-
sion (x(c) + y(c))/2. The two D-flip-flops have to be initial-
ized complementary. For the signals in an AC the follow-
ing equations hold:

w(z(i)) +
d0

2
=
w(x(i)) + w(y(i)) + c(i)0

2

z(c) +
d1

2
=
x(c) + y(c) + c(c)0

2
mod 2k−1.

An AC maps two words x, y ∈ B1(n, k) to a word z ∈
B1(n, k−1) and a two-rail signal d0d1 ∈ {01, 10}. An AC
also maps two words x, y ∈ B2(n, k) with k ≥ 4 to a word
z ∈ B1(n, k − 2) [4].

For all considered codes, if either x or y is a noncode
word then z is a noncode word or d0d1 is not a two-rail

1530-1591/03 $17.00  2003 IEEE

d-ff FA FA

x0 x1y0 y1 xn– 1 yn– 1

d0

...FA

z0 z1 zn– 1

d-ff

d1
c0 c1 cn– 1

cn

Figure 1: Weight averaging circuit WAC.

FA FA FA

x0 y0 x1 y1 yk– 1

zk– 2

d1

d-ff

()c ()c ()c ()c xk– 1
()c ()c

z0
()c ()c

FA FA FA

x0 y0

d-ff

x1 y1 yn– 1

d0

...

()i ()i ()i ()i
xn– 1
()i ()i

z0 z1 zn– 1
()i ()i ()i

c0
()i

c1
()i

cn– 1
()i

c0
()c

c1
()c ck– 1

()c

cn
()i

Figure 2: Averaging circuit AC.

signal or both, except for one case: If the most significant
check bit x(c)

k (or y(c)
k) of a Bose-Lin code word with k ≥ 4

is affected by a single bit error then this would not be indi-
cated by the averaging circuit. Fortunately, in B2(n, k) the
two most significant check bits are always complementary
which can be checked by a two-rail checker.

The proposed architecture of a Borden code checker is
shown in Figure 3. The checker works as follows. x is
the n bit word that the checker gets from the circuit under
check, x ∈ B(n, 2k − 1). The n-bit word y is generated
by a ring counter (RC) that is initialized with a word of
B(n, 2k − 1) that contains at least one 0 and at least one
1. Therefore, the RC generates a subset of B(n, 2k − 1).
Both words, x and y are the inputs of the weight averaging
circuit WAC that computes z ∈ B(n, 2k−1 − 1). z is then
the input of a checker for Borden code B(n, 2k−1 − 1),
that is designed in the same way as the checker that is just
explained. ForB(n, 1) this checker is a parity checker. The
output of this checker and the two-rail signal d = d0d1 are
fed into the two-rail checker TRC.

We assume that y is a code word ofB(n, 2k−1). If x is
a word ofB(n, 2k− 1) then z is a word of B(n, 2k−1− 1).
Both, the output of the checker for B(n, 2k−1 − 1) and the
output d = d0d1 of the weight averaging circuit are two-
rail signals which is confirmed by the two-rail checker.
If x does not belong to B(n, 2k − 1) then either z /∈
B(n, 2k−1 − 1) or/and d is not a two-rail signal. The two-
rail checker will get a non-two-rail code word, and an error
is indicated.

The architecture of a Bose code checker is very similar
to the proposed Borden code checker architecture and also
works similarly. The ring counter is replaced by a Bose
code word generator (CWG) which is shown in Figure 4,

WAC

TRC

x

y

2

n

n

n

2

2

d

error signal

B(,2 1)n k 1– – Checker

B(,2 1)n k–
Checker

CounterRing

z

Figure 3: Embedded Borden code checker.

up/down

...

...

...

Shift Register

y0 y1 y2
()i ()i ()i

y0 y1
()c ()cyn– 2

()i
...

yk– 1
()c

Up/DownCounter
modulo2k

...
Feedback LogicLinear

count enable

yn– 1
()i

Figure 4: Bose-Lin/Bose code word generator.

the WAC is replaced by an AC, and the B(n, 2k−1 − 1)
checker is replaced by a B1(n, k − 1) checker. The Bose
CWG generates all words of B1(n, k), except the all-0 in-
formation bit vector and the corresponding check symbol.
The checker for Bose codeB1(n, k−1) has the same struc-
ture as the checker that is just explained, but for k − 1 in-
stead of k check bits. For k = 2 it is a parity checker.

The design of a Bose-Lin code checker is similar to that
of a Bose code checker with the following differences. The
B1(n, k− 1) checker is replaced by a B1(n, k− 2) checker
and the 4-bit TRC is replaced by a 6-bit TRC in order to
check also the two most significant check bits of x. The
CWG has to be initialized with a Bose-Lin code word. It
generates Bose-Lin code words and also noncode words in
which the check symbols y(c) differ from the correct check
symbols by ±2k−1. The most significant counter bit y(c)

k−1
of the CWG is duplicated and inverted.

All three checker architectures are self-testing with
respect to every single stuck-at fault, provided that no
checker input line gets a constant signal and the code words
occur randomly. Depending on the code parameters they
can be tested with only 2 or 3 code words [4].

References

[1] J.M. Borden, “Optimal Asymmetric Error Detecting Codes,” In-
formation and Control, Vol. 53, April 1982, pp. 66–73.

[2] B. Bose, “Burst Unidirectional Error-Detecting Codes,” IEEE
Trans. Computers, Vol. C-35, No. 4, April 1986, pp. 350-353.

[3] B. Bose and D.J. Lin, “Systematic Unidirectional Error-Detecting
Codes,” IEEE Transactions on Computers, Vol. C-34, No. 11,
November 1985, pp. 1026–1032.

[4] S. Tarnick, Self-Testing Embedded Checkers for Bose-Lin, Bose,
and a Class of Borden Codes, Research Report, SATCON GmbH,
Teltow, Germany, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

