
Using RTL statespace information and state encoding
for induction based property checking

Markus Wedler, Dominik Stoffel, Wolfgang Kunz
Department of EE and IT, University of Kaiserslautern/Germany

email: wedler@eit.uni-kl.de

Abstract
This paper focuses on checking safety properties for se-

quential circuits specified on the RT-level. We study how
different state encodings can be used to create a gate-level
representation of the circuit that facilitates the computation
of effective invariants for induction-based property check-
ing. Our experiments show the strong impact of state en-
coding on the efficiency of the induction process.

1 Introduction

Checking safety properties is an unsolved problem in
design automation. We propose a method to generate in-
variants by using state encoding and RT-level information.
For large machines that can be independently controlled we
suggest a binary encoding and strengthen the property by
using the upper bound given by the RT-level description.
For coupled machines the proposed method uses structural
FSM traversal [6], [7], [8], to find an over-approximationof
the set of reachable states. This is only effective if an appro-
priate state encoding is chosen. The paper is organized as
follows: Section 2 gives a brief review on induction-based
property-checking. Section 3 shows how state encoding can
be used to strengthen properties automatically. Section 4
gives an overview over our implementation of the ideas pre-
sented in Section 3. Section 5 reports the experimental re-
sults.

2 Induction-based Property Checking

In [5] and [1] the authors study the use of induction
to verify safety properties. The basic model for sequen-
tial circuits is a finite state machine

�
which is a 6-tuple���������
	��
��
	����
�������

where
�

is the input alphabet,
	

is
the set of states,

����	�������� 	
is the next-state func-

tion,
	 �

is a set of initial states,
�

is the output alphabet
and
�!�"	#�$�%�����

is the output function. Given such
a machine, we would like to check whether a condition &
holds for all reachable states. If this is the case we call the
machine & -safe. In the following, we identify & with the
set of all states ')(where & holds.

Lemma 1. A finite state machine
�

is & -safe iff there is a*,+.-
such that the following conditions hold:

/ For all paths ' � � '0 �2131314� '65 in the state transition graph
of
�

with ' � (� , & holds in all '67 .
/ If & holds in the states on some path ' �8�9141313� ' 5 in the

state transition graph of
�

, with pairwise different ' 7
then it also holds in all next states reachable from ' 5 ,
i.e., :<;=(�>�?�@� ' 5 � ; � (A& .

However for practical use of induction-based methods,
we can afford only small values of

*
. An algorithm that is

based on Lemma 1 has to unroll the transition relation
*CBED

times and solve two satisfiability problems on this. If
*

is
unknown, as is the case in most applications the algorithm
has to perform a linear search for the right

*
. This implies

that the algorithm has to solve
DGF � *HB.D �

SAT problems.
In the next section we are going to analyze conditions

that help to minimize
*

in Lemma 1.

3 State Encodings

Standard property checking tools start from an RT-level
design specification in VHDL or Verilog that is augmented
by some property to be verified. From this specification the
front-end of the property checker generates a gate level de-
scription of the design and the property. This description is
the basis for applying standard boolean proving techniques
like SAT solving.

Several degrees of freedom exist when generating the
gate level model from the RTL specification. It should be
noted that the choice of an appropriate state encoding can
help significantly to reduce the proving complexity. For
example, in the context of symbolic FSM traversal it was
shown in [2] that retiming can have a strong impact on the
BDD sizes. In this paper, we demonstrate that this freedom
can also be used to reduce the induction length

*
of a prover

based on Lemma 1.
We will outline a method to strengthen the property with

information from the RT-level and with state space informa-
tion derived from synthesis for state space representability
and a structural FSM traversal [6], [7], [8].

1530-1591/03 $17.00 2003 IEEE

For each component of the design, we choose either bi-
nary or one hot encoding, depending on the size of the ma-
chine. Large machines like counters are encoded binary.
Small machines as they occur in many controllers are en-
coded one hot. To catch the dependencies between the ma-
chines, we perform a structural FSM traversal. From this
we derive a set of implications between the registers of the
model. These implications together with the one hot prop-
erty are an invariant that is usefull for induction methods.

4 Implementation of the property checker

In this section we give a brief overview over our imple-
mentation based on the ideas in this paper.

The VHDL of the design is augmented by combinational
logic that calculates the property. We create a gate level
representation of our designs using the front-end of an in-
dustrial property checker. Note again, that the encoding for
verification can be chosen in the RT-to-gate front-end of the
verification tool independently of the encoding that is used
for the actual implementation. The property is strengthened
with upper bounds for binary encoded state variables that do
not consume the entire

D?I
state space and with the results of

a structural FSM traversal. After this we prove the property
by induction starting with induction length 0, increasing the
induction length until a proof is found, a counterexample
is generated or a user-defined upperbound for the induction
length is reached.

The proofs for each induction length are translated into
SAT problems and given to the well-known SAT-solver
CHAFF [4]. During structural FSM traversal implications
are calculated using recursive learning [3]

5 Experimental Results

To examine the benefits and the limitations of our ideas
we created designs that are hard to prove for induction-
based methods. Table 1 shows the results for some of these
designs containing

*
copies of identical state machines us-

ing two interchangeable resources in common. We consider
the property that never more than two of them try to use the
resource at the same time. The induction length and CPU-
time needed to prove is reported in columns three to six for
both binary (B) and one-hot(O) encoding of the component
machines. The results show that structural FSM traversal
can generate powerful invariants in the case of one-hot en-
coding. Sometimes it also reduces induction length in the
case of binary encoding. But this reduction is not as power-
ful as in the case of a one-hot encoding. Instead of minutes
it takes hours to finish the proof.

6 Conclusion

In this paper we exploit that the choice of state encod-
ing during verification is independent from the state encod-

k enc induction length CPU-time (hh:mm:ss)
P P J Impl P P J Impl

4 O K 32 3 aborted 0:00:57
5 O K 32 3 aborted 0:01:16
6 O K 32 3 aborted 0:02:15
7 O K 32 3 aborted 0:05:59

4 B K 32 24 aborted 0:56:02
5 B K 32 26 aborted 2:49:22
6 B K 32 21 aborted 10:09:31
7 B K 32 K 27 aborted aborted

Figure 1. Multiple coupled machines with non-
binary dependencies

ing of the actual implementation. We show that this can be
used to reduce the complexity of induction-based property
checking. In particular, we introduce invariants for binary
encodings and demonstrate that one-hot encoding together
with structural FSM traversal creates useful invariants for
many applications.

References
[1] P. A. Abdulla, P. Bjesse, and N. E’en. Symbolic reachability

analysis based on sat solvers. In Proc. Sixth International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS-00), pages 411–425, March
2000.

[2] A. Kühlmann and J. Baumgartner. Transformation-based ver-
ification using generalized retiming. In Proc.Intl. Conf. Com-
puter Aided Verification(CAV-01), pages 104–117, July 2001.

[3] W. Kunz and D. Pradhan. Recursive learning: A new im-
plication technique for efficient solutions to CAD problems:
Test, verification and optimization. IEEE Transactions on
Computer-Aided Design, 13:1143–1158, Sep. 1994.

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient sat solver. In Proc. Intl. De-
sign Automation Conference (DAC-01), pages 530–535, June
2001.

[5] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety
properties using induction and a sat solver. In Proc. Intl.
Conf.Formal Methods in Computer-Aided Design(FMCAD
2000), volume 1954 of Lecture Notes in Computer Science.
Springer, November 2000.

[6] D. Stoffel and W. Kunz. Record & play: A structural fixed
point iteration for sequential circuit verification. In Proc. Intl.
Conference on Computer-Aided Design (ICCAD-97), pages
394–399, Nov 1997.

[7] C. van Eijk. Sequential equivalence checking without state
space traversal. In Proc. Conference on Design, Automation
and Test in Europe (DATE-98), pages 618–623, Paris, France,
March 1998.

[8] M. Wedler, D. Stoffel, and W. Kunz. Improving structural
fsm-traversal by constraint-satisfying simulation. In Proc.
IEEE Computer Society Annual Symposium on VLSI 2002
(ISVLSI 2002), pages 151–158, April 2002.

1530-1591/03 $17.00 2003 IEEE

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

