
Enhancing Signal Integrity through a Low-overhead Encoding Scheme on
Address Buses

Abstract
Signal integrity is and will continue to be a major

concern in deep sub-micron VLSI designs where the
proximity of signal carrying lines leads to crosstalk,
unpredictable signal delays and other parasitic side
effects. Our scheme uses bus encoding that guarantees
that at any time any two signal carrying lines will be
separated by at least one grounded line and thus
providing a high degree of signal integrity. This comes
at a small overhead of only one additional bus line (the
closest related work needs 14 additional lines for a 32-
bit bus) and a small average performance decrease of
0.36%. By means of a large set of real-world
applications, we compare our scheme to other state-of-
the-art approaches and present comparisons in terms of
degree of integrity, overhead (e.g. additional lines
required) and a possible performance decrease.

1 Introduction
Increasing signal integrity is an important challenge in

deep sub-micron designs since the proximity of signal
carrying lines leads to coupling induced by
electromagnetic fields. Undesired coupling can lead to
various effects: a) a line 'a' may falsely trigger an
adjacent line 'b' and thus alter the data word on a bus
line, for example; b) due to the electromagnetic coupling
between two adjacent lines 'a' and 'b', the signal on line
'a' may be delayed by line 'b', or vice versa, and lead to
either a delayed signal or even a logic error due to the
late signal arrival. Designers have sought to minimize
the probabilities of these effects by various means that
can be divided into physical approaches and higher-level
approaches. A straightforward physical (geometrical)
approach is to simply increase the distance between two
signal-carrying lines. The integrity will then
approximately increase with the square of the distance
between two signal lines. However, this method may be
costly in terms of area especially when applied to wide
buses (32-bit, 64-bit). Another physical means to reduce
coupling is through usage of selected materials: for
example, choosing materials with a high dielectric
constant applied as a thin layer on signal lines can
significantly reduce mutual coupling effects. Other
methods are routing-related as they aim to periodically

segment the lines of a bus. Then, the interfaces of the
segments are transposed and thus preventing two bus
lines from being adjacent for the entire length of the bus.

In recent years various approaches for bus encoding
have been proposed (see related work) that aim to send
more information via bus lines but have less energy
consumption. It should be noted that a majority of these
approaches increase the informational entropy and thus
increasing the bus lines’ susceptibility to coupling
effects. This is an additional reason for the increasing
importance to decrease coupling effects. Our approach
addresses the signal integrity problem at a high
abstraction level: rather than changing the physics
(geometry, materials) of signal carrying lines, we assign
logical bus lines to physical bus lines by an encoding
scheme. This comes at a small overhead of only one
additional bus line (the closest related work needs 14
additional lines for a 32-bit bus) and an average
performance decrease of 0.36%.

The rest of the paper is organized as follows: Section
2 gives the problem description and motivation while
Section 3 introduces the related work. Our
encoding/shielding method is presented in Section 4
whereas experimental results are discussed in Section 5.
Finally, Section 6 concludes the paper.

2 Problem and Motivation

Ground

Substrate

n+1
R R R

Cp

Ci Ci Ci
n

Fig. 1: Simplified physical bus model

Fig. 1 shows a simplified physical bus model as a
cross-sectional cut. In a first approximation the major
capacitances can be represented as a base (intrinsic)
capacitance between bus line and metal layer(s) and a
coupling (or ‘inter-wire’) capacitance between two
adjacent bus lines. Modeled as a RC circuit, we obtain
the rise time of a signal transmitted via a bus line that
shows the dependency on the capacitances and the

Jörg Henkel
NEC, USA

Haris Lekatsas
NEC, USA

Tiehan Lv
Princeton University

Wayne Wolf
Princeton University

1530-1591/03 $17.00  2003 IEEE

resistance (with rise time being the time when 90% of
the whole voltage swing is reached), we obtain:

RCRCtimerise 2.2
9.0
1.0ln_ ≈−= Eq. 1

For the purpose of maximizing the bus clock rate, it is
desirable to minimize RC. The coupling capacitances are
also responsible for signal coupling (crosstalk) effects.

Unfortunately, the advent of silicon technology with
shrinking feature sizes actually increases the inter-wire
capacitances.

A high-level (i.e. non-physical/geometrical) solution
has been proposed by Victor/Keutzer [2] who eliminate
crosstalk delay by a scheme that needs additional bus
lines (explained in more detail later). They address only
the worst-case transitions on two adjacent lines i.e. those
transitions where one line switches from ‘1’ to ‘0’ and
the adjacent line switches from ‘0’ to ‘1’ and vice versa
(according Fig. 2). In this case, the effect of the inter-
wire capacitance is effectively doubled due to the
charge/discharge processes.

1

0

C
+
-

0

1

C
-
+

Line a, T=n Line a, T=n+1

Line b, T=n Line b, T=n+1
Fig. 2 Worse case transitions

Their (Victor/Keutzer) scheme converts a bus data
sequence into a self-shielding sequence in which no two
adjacent bus lines will change in opposite directions at
the same time. Thus, the before-mentioned worst-case
transitions are eliminated. However, this approach does
not provide full bus shielding, since it does not solve
those cases where a transition on one bus line triggers
the transition of another bus line. In short, their approach
reduces worst-case cross talk but does not shield in all
transition cases. In addition, they need an overhead of 14
bus lines (46 on a 32-bit bus).

Another possible approach to solve the problem is the
usage of a pipelined bus as shown in Fig. 3: A bus is
separated into segments.

R
eceiver

Bus Segments

Sender

Latch

Latch

Latch

Fig. 3: Discussing the advantages/disadvantages of a

pipelined bus in terms of crosstalk effects

Fig. 4 shows the effect on inter-wire capacitances
which are effectively halved in each section (assuming a

separation in two segments) due to the length reduction
(same holds for the intrinsic capacitances).

As a consequence, crosstalk is obviously reduced
(since inter-wire capacitances decreased). However, this
approach does not provide shielding (falsely triggered
signals can still occur), it only reduces the probability.

Latch

Latch

Bus

Bus

Bus

Bus
C C/2 C/2

L L/2

Fig. 4 Inter-wire capacitances in pipelined buses

Our approach, on the other side, provides full
shielding (as far as the closest signal carrying bus line is
concerned) at an overhead of only one additional line
and a small performance decrease of 0.36%. Using our
solution, any two adjacent signal carrying bus lines are
separated by at least one grounded line at any time.

3 Related Work
Besides the paper from Victor/Keutzer (see previous

section) which is the closest work related to our
approach, we discuss in the following routing related
work as well as approaches to bus encoding (even
though the latter may not be aimed at signal integrity).

Zhou/Wong propose a global routing scheme with
crosstalk constraints [4] that is based on Steiner Tree and
Lagrangian Relaxation techniques. Kirkpatrick and
Sangiovanni-Vincentelli show that crosstalk channel
routing is an NP-complete problem and they propose a
heuristic algorithm for a crosstalk-avoiding router [8].
Chang/Cong introduce a method for crosstalk-
controlling routing using a pseudo pin assignment
algorithm [5]. Kastner et al. use a model for the coupling
free routing (CFR) problem to describe the cross-talk
controlled routing [6]. Their model aims to solve the
CFR problem and generates a crosstalk-reduced net.
Jiang et al. propose an algorithm based on Lagrangian
Relaxation to solve an optimization problem related to
simultaneous switching [7].

Address buses have drawn increased interest from
researchers due to their regularity. Many of the work has
focused on low-power encoding, though. Mehta et al.
introduce gray code for address bus producing fewer
transitions when the memory is accessed sequentially
[14] Benini et al. propose a method for low power bus
encoding, which uses the fact that a processor accesses
the instructions mostly in a sequential way [9]. The
receiving end of the address bus calculates the address
by adding an offset to the last received address rather
than receiving the whole new address. In the case, such a
prediction is correct, the bus transition can be reduced
and energy associated with the transition is reduced.
Hsieh and Pedram propose a method to reduce bus

energy consumption by using a split bus [12]. In this
approach, the whole system bus is separated into several
segments so that those transactions inside each segments
have less associated energy since the capacitance, delay
etc. is reduced on each bus segment.

Some recent work that is close to ours, proposed bus-
encoding methods to reduce crosstalk (See introduction
section on Victor/Keutzer’s work). However, the scheme
requires a substantial increase of the bus width.

4 Deriving a Shielding Scheme
We will first introduce experiments on data locality

on address buses as this is the prerequisite for our
approach. We then introduce our shielding scheme and
the necessary hardware architecture.

4.1 Data Locality
In a 32-bit processor, the memory space is 4GB.

However, few programs actually utilize the whole
memory space. Even if an application does need a large
memory space, it usually does not evenly spread
accesses across the whole memory space. Rather, a
program tends to spend execution in memory clusters for
some time and gradually switch to other clusters [10].
This memory locality is well known and caches have
been built to speed up memory access by targeting this
locality. The uneven usage of memory space provides an
opportunity for us to increase signal integrity. Since
memory accesses tend to be clustered, the upper part of
the address bus does not change as frequently as the
lower part of the address bus does.

Therefore, we may consider separating the address
bus in a lower and upper part and then only transfer the
lower (more often changing) part. The not-needed bus
lines could then somehow be used for shielding.

A critical factor of such an approach is that the
frequency the upper part needs to be transferred has to be
kept low, such that there is a real gain.

Patterson/Hennessy show that few branches have
offsets that need 16 bits to describe [10]. We performed
experiments to justify our approach on real-world
applications. We use the following formula in the
experiment:

}):({
}64)(:{

,)(1 xallxcard
kbytesxdxcard

rxxxd iii
<

=−= − Eq. 2

Here d is displacement, ix is the current instruction
address, and 1−ix stands for the previous instruction
address.)(⋅card calculates the number of elements in a
set. X stands for address, while r is the percentage of the
displacements that fall into a 64kbytes range (16 bits).
The range is 32kbytes or 128kbytes for 15 or 17 bits
respectively. The simulation results are pictured in Fig.
5: Shown are three address ranges (15, 16 and 17 bit) for
each application. It can be observed that in all the cases

16 bits cover more than 98.5% of the displacements
whereas the ratio for 15 bits is slightly lower and for 17
bit insignificantly higher. This characteristic will be used
by our encoding scheme to provide for shielding as
shown in the following.

98.0%
98.2%
98.4%
98.6%
98.8%
99.0%
99.2%
99.4%
99.6%
99.8%

100.0%

ad
pc

mde
c

ad
pc

men
c

co
mpre

ss gc
c go

ijp
eg

ijp
eg

1 li

m88
ksi

m pe
rl%

 d
isp

la
ce

m
en

ts
 in

sid
e

th
e

ra
ng

e

32kbyte 64kbyte 128kbyte

Fig. 5: Percentage of displacement

4.2 Our Shielding Scheme
According to the above experiments, the upper 16 bits

(the reason that the upper part is 16 bits will be
explained later) are changing infrequently and the lower
16 bits cover almost all the addressing. Looking from
another angle we can state that there is a large amount of
data redundancy since the informational entropy in the
upper 16 bus lines is much lower compared to the lower
16 bus lines.

This leads us to the idea to apply compression
techniques to the address bus and reserve superfluous
bus lines to act as shields (grounded). As we will show
in the following, we apply a dictionary-based
compression scheme [13]. Dictionary-based methods are
not only providing reasonable compression but they are
also low in implementational effort.

Our adaptive dictionary encoding scheme works as
follows: Two register cells (i.e. ‘dictionaries’) are
placed on both sides of the buses. Each time after the
sender (encoder) processes a word, it saves the word into
its register. The receiver (decoder) does the same when it
receives a word. When a sender has a word to process, it
first identifies the displacement (see Eq. 2) between the
current word and the word previously saved. If the
displacement is small then the current word is
compressible, and only the displacement needs to be
transmitted. The receiver can recover the original word
by adding the received displacement to the previously
saved word. If the displacement is large, the current
word is not compressible (this case is explained later).
After each bus transaction, the receiver updates its
dictionary with the word received. This way, the
contents of the two dictionaries are synchronized.

An important factor in this scheme is the way we
divide the bus into upper part and lower part. It is clear
that when the upper part is not in the dictionary,
additional cycles have to be used since the effective bus
width is less than the original one (note that the other bus
lines will be used for shielding). Suppose the lower part
of the bus has the width n and the original bus has width
N, then the number of additional necessary bus cycles
Nadd-bcyc can be calculated as follows. (Here � �x is the
smallest integer that is greater than or equal to x.)

�
�

�
�
�

� −=− n
nNN bcycadd

Obviously, we want to keep the bus bandwidth high
and therefore we need to keep Nadd-bcyc low. However,
we also aim to keep the compressed (lower) bus part as
narrow as possible. In addition, we aim to not have more
than one additional bus cycle for the addresses, which
cannot be compressed. This suggests n=16 and that is
also in compliance with the observations made earlier
(see Fig. 5).

Our bus encoding and decoding algorithms are shown
in Fig. 6 and Fig. 7: when a new input word (address)
finds the upper match (i.e. upper part) in the sender’s
dictionary, then the encoder sends out only the lower
part and signals a successful compression on the status
line (an additional line). Otherwise, the encoder sends
out the input word in two cycles (this case will only
rarely happen), first the lower part, and then the upper
part. At the same time, the encoder indicates a
compression failure on the status line.

;15:015:0
) data original thesend :miss (

;31:16
) dictionary update (

miss) a (signal ;032

)match a (signal ;132
)energy save tobus ofpart upper changenot do :match (

31:16

;15:015:0
bus.) on thesent value theis Bus sent, be tordcurrent wo theis Data (

 :

kk

kk

k

k

k

k

kk

DataBus

DataEncDict

Bus

Bus

DataEncDict

DataBus

=

=

=

=

=

=

else

thenif

Encoder

Fig. 6: Encoder scheme

4.3 Implementation Issues
For an efficient (i.e. low area, low latency)

implementation, we have taken several means: first, we
use bit-wise xor operations to accomplish subtraction.
The sender (encoder) applies an xor to obtain the
difference (bit-wise) between current and previous data
(address) and the receiver (decoder) does the same to
recover the data (address). Secondly, we can just keep

the upper part of a word while simply passing the lower
part. At the receiver, the lower part can be combined
with the upper part from the dictionary to recover the full
word.

;15:0
) dictionary update (

;15:031:16sec
) data bus use :miss (

;31:16
) dictionary from datarecover :match (

132

;15:015:0
) decoder. theofoutput theis Data bus,on received value theis Bus (

:

kk

k

kk

k

k

kk

BusDecDict

BusDatacycleondtheinReceive

DecDictData

Bus

BusData

=

=

=

=

=

else

thenif

Decoder

Fig. 7: Decoder scheme

Fig. 8 shows the simple hardware of the bus
encoding/decoding and shielding scheme (shown for a
one-entry dictionary). It results an area cost equal to 380
AND gates for an encoding/decoding pair.

Our shielded bus has 33 lines including 17 signal lines
(16 bus lines plus one status line) and 16 grounded lines
(0V) for shielding.

The ratio of uncompressible input words over all
input words is critical. If the ratio is low, then we are
able to transmit the data on the address bus in almost one
cycle. In the following, we will denote this as a “miss
ratio”.

C
om

pare

Lower Part

O
ne/Tw

o Stage
Sender

Da
ta

In

Input

Upper Part

DataOut

Bus

Status Line
W

Select

O
ne/Tw

o Stage
Receiver

O
utput

D
at

aI
n

D
at

aO
utW

DecoderEncoder

16

Signal Line
Zero level
Signal Line

Zero level
Signal Line

Dictionary

Dictionary

. . .

Fig. 8: Implementation

Improving the miss ratio can be controlled by the
number of entries and their organization provided in the
dictionary. A dictionary can have more than one entry.
The index of the matched entry needs to be transferred in
the lower part. We call the width of this index
entry_depth. The entries in the dictionary can also be
divided into groups and indexed by a part of the input
address. We use term index_width for the number of the
groups. In the following section, we conduct
experiments to explore the best parameterization for our
scheme.

5 Experiments and Results
It is our goal to minimize the miss ratio i.e. the

number of times where our scheme cannot compress the
bus word and therefore needs an additional cycle to send
the word via the fully shielded bus. Fig. 9 and Fig. 10
show these miss ratios in dependency of the index_width
and entry_depth for the instruction address bus and data
address bus as an average of all applications (our
simulations are based on a sub-system comprising a
CPU, L1 caches for data and instructions and the address
and data buses; see also Fig. 11). As a compromise
between effort of implementation and sufficiently low
miss ratios, we have chosen index_width=16,
entry_depth=4. The results for these parameters are
comprised in Table 1. Thus, we obtain a low miss ratio
of 1.6% in average (we will show later that the all over
performance decrease is even lower than this).

Application Description Instr.

Addr.
Data
Addr.

adpcm-enc ADPCM voice encoder 0.00% 0.00%
adpcm-dec ADPCM voice decoder 0.00% 0.00%
compress File compr. (UNIX) 0.00% 0.28%
gcc GNU C compiler 0.24% 2.55%
go game from SPEC95 0.04% 8.87%
Ijpeg JPEG encoder/decoder 0.00% 0.02%
li Lisp interpreter 0.02% 0.44%
m88ksim ISS for M88k 0.04% 0.20%
Perl script lang. interpreter 0.19% 2.01%

average 0.06% 1.60%

Table 1: Applications and their encoding miss ratios on
instruction and data address buses

1
3

5
71 2 4 8 16 32 64

0.0%

0.2%

0.4%

0.6%

M
is

s R
at

io
s

Entry
Depth

Index Width
0.00%-0.20% 0.20%-0.40% 0.40%-0.60%

Fig. 9 Average miss ratios on an instruction address bus

In addition to the miss ratios from above, it is
necessary to measure the actual performance in terms of
used clock cycles and total execution time (the latter
accounts also for latency). Our experimental setup is as
follows: we used the sim-outorder of the SimpleScalar
tool-suite [11] and modified it according to Fig. 11 i.e.,

we enhanced it by encoding/decoding subroutines and
simulated all applications assuming the shown computer
sub-system.

1
3

5
71 2 4 8 16 32 64

0.0%

0.5%

1.0%

1.5%

2.0%

M
is

s R
at

io
s

Entry
 DepthIndex Width

0.00%-0.50% 0.50%-1.00%
1.00%-1.50% 1.50%-2.00%

Fig. 10 Average miss ratios on a data address bus

We used system configurations (e.g. cache sizes etc.)
that seemed appropriate for every application (note that
they vary in size). The ratio between base and coupling
capacitance has been chosen to 3.0 (this is in compliance
with [3] and also with our own simulations).
Furthermore, we assume a mµ10.0 silicon technology
that has a global wire delay of 3.4ns [1] (we scaled this
number according to our dimension of a 10 mm address
bus length). Another assumption is that the wire delay is
the bottleneck for the clock cycle.

D
ata Bus

Addr Bus

D
ata Bus

Instruction
C ache

Data
Cache

Processor Bus Encoder&D
ecoder

Addr Bus

Fig. 11 Modifying SimpleScalar by integrating encoding

and decoding modules

Table 2 gives detailed results comparing the “Basic”
bus (no shielding), the “Shielding Bus” (adding one
grounded line for each signal carrying line), the “Self-
shielding Bus” (Victor/Keutzer [2]), the “Pipelined
Bus” (according to Fig. 3), “Our Scheme” (see Section
4) and “Our Scheme + Pipeline” (our scheme applied on
top of the pipelined bus scheme).

“Our Scheme” and “Our Scheme +Pipeline” feature
the highest shielding (any two signal carrying bus lines
are always separated by a grounded line) at 33 bus lines.
Except for Victor/Keutzer [2], all other schemes are
either unacceptable in terms of shielding or high effort (#
bus lines). Compared to our approach, Victor/Keutzer
need more bus lines (46) and provide only “medium”

shielding since they address only the worst-case
transitions on two adjacent lines i.e. those transitions
where one line switches from ‘1’ to ‘0’ and the adjacent
line switches from ‘0’ to ‘1’. Other cases are not covered
by their approach. However, Victor/Keutzer do not incur
any performance penalty as seen in Table 2 that shows
for all approaches and all applications the execution time
in terms of cycles and absolute time. Our approaches do
show a performance penalty in some cases but the
allover penalty is rather small at an average of 0.36% in
terms of execution cycles. Therefore, we provide the
highest shielding protection at only one bus line
overhead (32+1). In lieu to these advantages the slight
performance decrease seems very reasonable. Moreover,
we predict that our bus can be clocked higher due to the
reduced coupling capacitance (see also Eq. 1). That
would result in a decreased clock latency and thus, the
actual execution time of an application might be even
smaller and actually yield a gain in performance. This,
however, has not been done and we refer it to our future
work.

 “Basic”
“Shielding

Bus”

“Self-
shielding
Bus”[2]

“Pipelined
Bus”

“Our
Scheme”

“Our
Scheme +
Pipeline”

Number of
Bus Lines 32 64 46 32 33 33
Shielding
Protection N/A High Medium Low High High
Benchmark Application Execution Time (cycle count)
adpcmdec 3.78E+06 3.78E+06 3.78E+06 4.07E+06 3.78E+06 4.07E+06
adpcmenc 5.64E+06 5.64E+06 5.64E+06 6.11E+06 5.64E+06 6.11E+06
compress 1.97E+06 1.97E+06 1.97E+06 1.98E+06 1.97E+06 1.98E+06
gcc 1.31E+09 1.31E+09 1.31E+09 1.35E+09 1.33E+09 1.36E+09
go 1.83E+08 1.83E+08 1.83E+08 1.88E+08 1.85E+08 1.90E+08
ijpeg 2.79E+08 2.79E+08 2.79E+08 2.84E+08 2.79E+08 2.84E+08
li 6.37E+08 6.37E+08 6.37E+08 6.61E+08 6.37E+08 6.61E+08
m88ksim 1.15E+05 1.15E+05 1.15E+05 1.18E+05 1.15E+05 1.18E+05
perl 1.98E+09 1.98E+09 1.98E+09 2.02E+09 2.00E+09 2.04E+09
benchmark Application Execution Time (seconds)
adpcmdec 1.28E-02 7.34E-03 7.34E-03 6.91E-03 7.34E-03 3.95E-03
adpcmenc 1.92E-02 1.09E-02 1.09E-02 1.04E-02 1.09E-02 5.94E-03
compress 6.69E-03 3.83E-03 3.83E-03 3.36E-03 3.83E-03 1.92E-03
Gcc 4.47E+00 2.55E+00 2.55E+00 2.29E+00 2.58E+00 1.32E+00
Go 6.22E-01 3.55E-01 3.55E-01 3.20E-01 3.59E-01 1.84E-01
ijpeg 9.50E-01 5.43E-01 5.43E-01 4.82E-01 5.43E-01 2.76E-01
Li 2.17E+00 1.24E+00 1.24E+00 1.12E+00 1.24E+00 6.42E-01
m88ksim 3.92E-04 2.24E-04 2.24E-04 2.00E-04 2.24E-04 1.14E-04
Perl 6.73E+00 3.85E+00 3.85E+00 3.44E+00 3.88E+00 1.98E+00

Table 2 Comparison among different methods

6 Conclusion
We have presented an encoding/decoding scheme that

capitalizes on the characteristics of data sent via
addresses buses. The scheme uses actually dictionary-
based compression and effectively needs less physical
bus lines. We then take the free bus lines to obtain a high
shielding protection such that at any time any two signal

carrying adjacent bus lines are separated by a grounded
line. We have compared our method to state-of-the art
methods in terms of wire overhead, shielding protection
and performance. With these benefits, our approach
incurs only a slight miss ratio penalty of 1.6% in average
and an allover average performance penalty of a mere
0.36%.

References
[1]. M. Horowitz, R. Ho, and K. Mai, “Wires: A user’s

guide”, SRC/Marco workshop at CIS, Stanford, May
1999.

[2]. B.M. Victor and K. Keutzer, “Bus Encoding to Prevent
Crosstalk Delay”, in ICCAD, pp. 57--63, Nov 2001.

[3]. Z. Huang and M.D. Ercegovac, “Effect of Wire Delay
on the Design of Prefix Adders in Deep-Submicron
Technology”, Proc. 34th Asilomar Conference on
Signals, Systems and Computers, 2000.

[4]. H. Zhou and D.F. Wong, “Global routing with
crosstalk constraints”, In 35th Design Automation
Conference, pp. 374--377, 1998.

[5]. C.-C. Chang and J. Cong, "Pseudo pin assignment with
crosstalk noise control," in Proc. Int. Symp. on
Physical Design, pp. 41--47, 2000.

[6]. R. Kastner, E. Bozorgzadeh and M. Sarrafzadeh.
"Coupling Aware Routing", In IEEE International
ASIC/SOC Conference, Sept 2000.

[7]. H.-R. Jiang, Y.-W. Chang, and J.-Y. Jou, "Crosstalk-
driven interconnect optimization by simultaneous gate
and wire sizing", IEEE Trans. on Computer-Aided
Design, Vol. 19, No. 9, pp. 999--1100, Sept 2000.

[8]. D.A. Kirkpatrick & A.L. Sangiovanni-Vincentelli,
"Techniques for Crosstalk Avoidance in the Physical
Design of High-Performance Digital Systems",
ICCAD'94, pp 616-620, 1994.

[9]. L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C.
Silvano, "Asymptotic Zero-Transition Activity
Encoding for Address Busses in Low-Power
Microprocessor-Based Systems," Great Lakes VLSI
Symposium, pp. 77-82, Urbana IL, Mar 1997.

[10]. J. L. Hennessy, and D. A. Patterson, “Computer
Architecture: A Quantitative Approach”, Morgan
Kaufmann Publ., 1996

[11]. D. Burger, and T.M. Austin, “The SimpleScalar Tool
Set, Version 2.0”, Technical Report 1342, University
of Wisconsin Madison, CS Department, Jun 1997.

[12]. C-T. Hsieh and M. Pedram, "Architectural power
optimization by bus splitting", IEEE Transactions on
Computer Aided Design, pp. 408-414, Apr. 2002.

[13]. K. Sayood, “Introduction to Data Compression”,
Morgan Kaufmann Publishers, 1996.

[14]. H. Mehta, R. M. Owens, M. J. Irwin, "Some Issues
in Gray Code Addressing," GLS-VLSI-96, pp. 178-
180, Mar. 1996.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

