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Abstract cient methods which agree exactly with the original system
on sample points but, in general, give unpredictable accu-
A new model-order reduction technique for linear dy- racy at other points [3]. Finally, least-squares methods com-
namic systems is presented. The idea behind this technique ibine the accuracy feature of the min-max methods and the
to transform the dynamic system function from$tdomain efficiency of the series expansion and interpolation methods
into the zzdomain via the bilinear transformation, then use by controlling the error between the original system func-
Prony’s [1] least-squares approximation method instead of tion and the approximate function over all points and not just
the commonly employed Radpproximation method, and fi-  where the maximum error occurs (min-max) or at the sample
nally transform the reduced system back into shdomain data points (series expansion and interpolation).
using the inverse bilinear transformation. Simulation results
for large practical systems show that this technique based on
Prony’s method gives much higher accuracy than the tradi-
tional Pace method, and results in lower-order approxima-
tions without significant increase in simulation time.

The s-domainPack approximation [4] is a combination
of series expansion and interpolation methods that has been
used in the asymptotic waveform evaluation (AWE) [5] al-
gorithm in order to extract the dominant poles and residues
of the system. Other Péadtechniques based on Krylov-
subspace methods — such as ®ath Lanczos (PVL) [6]
and Arnoldi-based model-order reduction [7, 8] — provide
1. Introduction efficientestimation of the original system response. How-
ever, theaccuracyof these methods is limited by the or-
der of the Pad approximation (i.e. the number of moments
matched). The problem with the Radpproximation is that
it equates the approximating transfer function to the origi-
nal system function to obtain as many equations as there are
unknowns [3,4]. This equating technique is the major limita-
tion in the Paé approximation because the resulting transfer

The computation of equivalent linear system models of
large linear dynamic systems is a topic of considerable prac-
tical interest. This interest is motivated by the reduced com-
plexity obtained by reducing the large linear subnetwork in
a linear (or nonlinear) network. Ideally, linear analysis on
these linear subnetworks is performed by first computing a

state-space model, followed by the application of a suitable . X .
function must contain a large number of poles and zeros in

analysis method. However, the applicability of this method der for it to b Hiciently cl to the original svst
is limited since typical dynamic systems are represented byOr erforitto be sutmciently close to the oniginal system.

very large state matrices that require specialized large-scale In this paper, we present a novel model-order reduction
eigen-analysis programs and computer resources. To avoidechnique for obtaining a reduced-order transfer function ap-
this practical limitation, model-order reduction methods are proximation. The technique is based on three steps. First, the
widely used in the solution of such systems. The basic ideaoriginal large system transfer function is transformed from
behind model-order reduction is to replace the original sys- the ssdomain into thezzdomain via the bilinear transforma-
tem equations for the large linear network by an equivalenttion. It is well known that the bilinear transformation al-
system with a much smaller state-space dimension. In parways preserves system stability, and can always be made to
ticular, the identified reduced-order model frequency charac-preserve the system frequency response characteristics for a
teristics must approximate those of the full-order model. specified frequency range [9, 10]. Second, we propose to ap-
In general, from approximation theory, there are four ma- ply Prony’s least-squares approximation method to reduce
jor categories of approximation methods that one can use dethe order of thetransformedsystem function. Third, the
pending on the overall accuracy, efficiency, and reliability reduced-order system is transformed back togtdemain
desired [2]. The min-max methods rely on nonlinear opti- using the inverse bilinear transformation. We show that
mization techniques which make them inefficient but highly Prony’s approximation method performs much better than
accurate. Series expansion based methods are computatiomhe traditional Pagl approximation method. Furthermore, the
ally efficient but may provide inaccurate results. Interpola- derivation of this model-order reduction technique enables
tion methods, on the other hand, are computationally effi- the different Krylov-subspace algorithms [6-8], traditionally
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applied for the Pa@lapproximation, to be used with Prony’s andA e R™", andbandd € R"™™ represent excitations from
method to obtain efficient and accurate moment approxima-m independent sources. It can be shown that the resulting
tions. system transfer function of (3) is given by

The remainder of the paper is organized as follows. In T 1
Section 2, we describe theto-z system transformation to- He(s) =c (SE-A) b (4)

gether with moment computation techniques. We also de'AppIying the bilinear transformation in (1) to (4) for an ap-

scribe the connection of the different Krylov-subspace algo- propriately chosem to preserve the magnitude characteris-
rithms in this new representation. In Section 3, we explain tjcs thez-domain transfer function becomes

Prony’s least-squares approximation method and compare it
to the traditional Pa&l approximation. We corroborate the Ha(2) £ He(s)|

_q1-z1
derived results in Section 4 with simulations of large practi- . &al“fl L L
cal systems and show the accuracy of our technique. Finally, =c (I+z°)(1-z"M) T, (5)

Section 5 provides some concluding remarks.
P g whereM = (0E — A)"}(aE +A) andr = (aE —A)~b. In

. order to invert the ternil —z-tM) in (5), we need to diag-
2 sto-zSystem Transformation onalizeM, which is numerically expensive and impractical
In this section, we briefly describe the bilinear transfor- to perform for typical large dynamic systems. Instead, one
mation and then apply this transformation to represent a gen+esorts to using Neumann’s expansion [11]:
eralized linear, time-invariant (LTI) system in tzelomain.

T 2y 42

We then describe three methods for computing the moments (I=Z"M)" =142 M+Z M- (6)

of thez-domain system function. Substituting (6) in (5), the-domain transfer functiohiq(z)
becomes

2.1 The bilinear transformation

The bilinear transformation is a nonlinear mappipg Ha(2) = (14+2Y Z)mcjz*i, (1)
C — C defined by =

o+s where mg; = c"M'r are thes-domain momentsf Hq(s).
B:s—z=—— 1) Hg4(z) can also be written in a more convenient form by

a-—s’
defining thez-zdomain moments
wherea € R is a constant equal to twice the sampling rate.

This mapping has the property that it transforms jtfdeaxis Mg,i = Meji—1+Me,j, (8)
in thes-plane onto the unit circlez= el®) in thez-plane [9].

Moreover, the left-halfs-plane Re(s) < 0) is mapped in- @ ,

side the unit circle in the-plane and the right-hak-plane Ha(2) = Z}f‘ﬂd.if'- 9)
(Im(s) > 0) is mapped outside the unit circle in thglane, i=
thus preserving system stability. The inverse bilinear trans-

formation is given by 2.3 Computing the moments

It is usually sufficient to compute the finst+ 1 moments
1. o z—1 in (7) or (9), wherew depends on the choice of the approx-
B z—s=a —. (2) Lo . .
imation algorithm used in the second step of the proposed
model-reduction technique. In AWE [5], the momentg;

The main advantage of using the bilinear transformation - ; . . .
. ) are explicitly computed by first recursively solving the linear
over other transformations such as the impulse- and step-

invariant transformations, is that it preserves the magnitudeSyStem of equations

characteristics of the transfer function. This follows from (@E—Au=—-Eu_1, i=12---,w, (10)
the fact that the parametearprovides a one degree of free-

dom that can be used to make the frequency response charaéor Ui with up = r, and thenmg; = c'u;. However, due to
teristics of thez-domain system functioll4(z) approximate  finite machine precision, this approach is numerically ill-

those of thes-domain system functioH ¢(s) [10]. conditioned; see [6]. A better alternative is to use Krylov-
subspace methods which enable a more stable computation
2.2 z-domain system representation of the moments. For instance, in the Lanczos algorithm,

A generalized LTI system of equations can be used to these moments are obtained by

model a dynamic system as follows: M = |TfeITvivel, i=01,--,w (11)
EX(t) = Ax(t) + bu(t), 3 wheree; is the first unit vector ifR% and Ty, is a tridiago-
y(t) = cTx(t) + dut), 3) nal matrix; see, e.g., [6] for further details. Similarly, in the

Arnoldi process thenc; moments are given by
wherex € R" represents the state variables of the system,

T i .
RRP are thep outputs of the system defined using R™P, E mei = [|rfl2l VuHyer, i=0,1,---,w, (12)



whereV,, € R™Y, andH,, is aw x w upper Hessenberg ma- is no bound on the error between the two responses. This is
trix whose scaler entries are generated by the Arnoldi algo-the major limitation with the Padapproximation, and hence
rithm; see [12] for details. Finally, thedomain moments  the resulting transfer function must contain a large number

are easily computed from th.; moments using (8). of poles and zeros in order for its impulse response to be suf-
ficiently close to the response of the original transfer func-
3 Reduced-Order Modeling tion. Furthermore, the Padapproximation results in a per-

i fect match with the original momentsy; only when the
The.mO(_jeI-order reduction problem can now be stated asyyiginal system is rational and we have prior knowledge of
follows: Given thetransformedz-domain system response s number of poles and zeros. However, this is not usually

as described by equation (9), find an approxin®main  he case since we only know the impulse response data as
transfer function of the form given in (7).

a1y —k w )
Ha(2) = % = zormiz", (13) 3.2 Prony’s approximation
218 = The main problem with the Padapproximation is that it

whose responséy; accurately approximate the response S€tSW=2q—1in order to getas many equations as there are

ma; of Ha(2). Once this approximate system is identified, it Unknowns. In Prony’s least-squares method [1, 13], this con-

is transformed back into tredomain using the inverse bilin- ~ Straint is removed and/ can be a large number{ 2q — 1)

ear transformation in (2) in order to obtain the reduced-order Without necessarily resulting in a large-order rational func-

s-domain transfer function. tion. This method tries to minimize the linear least-squares
The rational representation of the approximate transfer €Tor between the two responses

function given in equation (13) hdy unknowns, namely, w

the coefficients{ax}_, and {bx}j_5. Existing techniques €= Z}W’d,i — g%, (15)

employ the Pag approximation to determine these coeffi- =

cients [5—7] The grawback of this technique is that it equatesyyith respectto the COEfﬁCien{ﬁk} ofthe approximate trans-

thew+1terms ofHq(2) of (13) to the firstv+- 1 moments of  fer function Hy(z). This linear least-squares optimization

Ha(2) in (9) to get as many equations as there are unknowns.minimizes the linear prediction error, and not the original mi-

This technique, in turn, requires using a large-order ratio- nus approximate squared response error. The idea behind the

nal approximate function to achieve acceptable accuracy. Toinear prediction part is that instead of equatiig; = My

solve this problem, we propose using Prony’s least-squareor all i, recursively computéy ; using a linear predictor de-

method which determines the momentsef(z) over alarge  fined by the following set of linear equations

number of moments but using a low-order rational approxi- q

mate function. . Z M+ b, 0<i<qg-1, (16a)

. &1

3.1 Pack approximation Ma,i =

q

We will first briefly present the-domain Pad approxima- = D Mk, gsisw. (16b)
tion which is similar to the commonly usesdomain Pad k=t
approximation [5, 6] in order to compare with our proposed The coefficientax} are then chosen so as to minimize the
method. squared-prediction-error defined by

In this approximation, the parameteiis set to2q— 1 and

2
the responsedy; andmy; of the two transfer functions are B w q B
equated fo0 < i < 2q— 1, in order to obtain as many equa- €= iZq Mai +kzlakmd='*k , 1=1-.a
tions as there are unknowns. This results in the following B -
system of linear equations Settingde/0g to zero, results in the following set of linear
q equations
- > amyjk+bi, 0<i<q-1, (14a) a w w
- K=1 kMg = — imgi, I=1,---,q
ffuj = maj = ; k;akgqmd,l KMd,i—1 gqmd,lmd.l I ;.

k;akmd" K a a (14b) This set of equations can equivalently be written as

where it is assumed that moments with negative indices are J

zero. The coefficient§ay} are first obtained by solving k;akYk" =% =L (47
equations in (14b), which are then used to determine the co- o
efficients{b} in (14a). where, by definition,

Thus, the Pail approximation method results in a perfect w w
match between théy; and the originaimy; for the first2q Vi =) Mgj—kMgj—1 andy =% mgimg;i.
values of the impulse response. However, ifor 2q there i=q i=q



Equation (17) can be used to determine the coefficigats 4.2 Clamped beam

which are then used to determine ¢ir} coefficients using The clamped beam model of [15] has 348 states. The in-
a put represents the force applied to the structure at the free
by — 7 Mar i for K=0.-- g—1. 18 end, and the outpuft is the resulting dlsplace_m_ent. We plot in
k md’kJri;a*md’k b o (18) Figure 3 the magnitude response of the original system to-
gether with that of the reduced models. The&aukthod re-
quires a system of order 54 to obtain an exact match, whereas

4 Applications Prony‘s method requires only a 40th-order approximation.

In this section, we apply the proposed model-order reduc-
tion technigue using Prony’s method on four large practical 4.3 Large-order system
systems and compare their resulting responses with the cor- This example is similar in spirit to the example proposed
responding original system response. We also show the rein [16]. The system is of order 3018. The system eigenval-

sponses resulting from using the commonly employecPad ues areA(A) = {—14+ j10,—14 j700 -1+ j1200-1+
approximation method. The simulation times for the four ex- j140Q0—-1 + j260Q0—1 4+ j5800—-1 + j700Q-1 +

amples are shown in Table 1. j12000-1 + j4200Q-1,-2,---,—3000}. As can be
seen in Figure 4, using Prony’s method a 35th-order system
4.1 Fifth-order Chebyshev filter accurately approximates the magnitude waveform of the

original system. In contrast, a 35th-order Papproxima-
Consider a fifth-order Chebyshev filter with system func- tion fails to capture the magnitude response for frequencies
tion as given in equation (19), whesg = 2 x 10*rad/sec less tharR00rad/sec
The circuit implementation of this filter is shown in Figure 1.
It consists of two second-order LCR resonators and a first-
order op amp-RC circuit. Red&l41 op amp circuits were

T
—— Original

A
used in the design. Using SPICE, we performed an AC anal-  10° [- - - - 7.\ Z.. Sotnorder promy l
ysis over the linear frequency rangeldfizto 300MHz The N 3 A = 40th-order Pade
original system was of ordg20. Using modified nodal anal- 0F \ ) ! F
ysis (MNA) stamps extracted from SPICE, we performed the o' [ ‘J \ ’h‘ Lo ]
two approximation procedures and the resulting system re- . Py ‘i", ,"g,\ \
sponses are plotted in Figure 2. As seen, a 6th-ordeg Pad , ° ¢ i Y‘;' \/\ F

approximation of the resulting frequency response is a rel- -
atively poor approximation to the original response. How-
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.
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ever, Prony’s method performs significantly better using only ™ ™
a 4th-order approximation. By increasing the order of the <[ \ ]
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Pack approximation to a 7th-order approximation we finally et
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1The denominator coefficients can also be determined using a least .
squares minimization via a technique known as SHANK’s method [14]. Figure 4. Large order system response.
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Figure 1. Fifth-order Chebyshev filter circuit schematic implemented using real 741 op amps.
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He(s) = = 19
(9) = 514085+ 0.28950) (& + 0.4684n5 1 0.4293%2) (¥ + 0.178%05+ 0.9883%)" (19)
4.4 International space-station [3] M. Haque, A. El-Zein, and S. Chowdhury, “A new
This examp|e is a structural model of Componmus_ time-domain macromodel for transient simulation of uni-

sian service module) of the International Space Station (ISS) form/nonuniform multiconduction transmission-line intercon-
[17]. We plot in Figure 5 the magnitude responses for nections,” INIEEE/ACM DAG 1994, pp. 628-633. _
Hc,11(5)7Hc,lz(S),Hc,la(S) andHc,Zl(S)yHC,22(5)7Hc.ZS(S) of [4] S Bakig%]g., Essentials of Pa&l Approximants Academic
the original system as well as the reduced models. As shown ress, :

in the plots, Prony’s method accurately models the original [! ]I; I?illgge andl R. RIOEhISIrE _I_“/éiymptlotiC(::AvlvDa\éeformsg\éalgggon
system with lower orders than the Ragethod. :F:r'Tég% analysts, 0 vol. ) PP. 9927305,

. [6] P.Feldman and R. Freund, “Efficient linear circuit analysis by
5 Conclusion Pace approximation via the Lanczos procest£EE TCAD
In this paper, we have presented a new model-order re- vol. 14, pp. 639-649, May 1995.
duction technique for approximating large dynamic systems. [7] E. Grimme, Krylov projection methods for model reduction

We have shown through simulations of large practical sys- Ph.D. thesis, University of lllinois, 1997.
tems that Prony’s method can produce lower-order approxi- [8] A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive
mations than the Pé&dapproximation while maintaining suf- reduced-order interconnect macromodelling algorithiBEE
ficient accuracy and without significant increase in simula- TCAD, pp. 645-653, Aug. 1998.
tion time (see Table 1). [9] C. Chen and D. Wong, “Error bounded Raapproximation
. L . . 5 via bilinear conformal transformation,” IHEEE/ACM DAG
Table 1. Comparison in simulation times. 1999, pp. 7-12
E [ Pade P T i .
xampie W] filme Geo)| w ] rt?r?é (se0) [10] Makram M. Mansour and A. Mehrotra, zzdomain model-
Chebyshev fiter | 13 107 =0 143 ordgr rgductlon, Tech. Rep., CSL technical report, University
Clamped beai | 107 | 054 | 120 | 084 of llinois. - o
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Figure 5. Magnitude response for the international space-station example.



	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index




