
SDRAM-Energy-Aware Memory Allocation for Dynamic Multi-Media Applications
on Multi-Processor Platforms

P. Marchal (marchal@imec.be, **) D. Bruni (dbruni@deis.unibo.it, ***)
J.I. Gomez (gomezjo@imec.be, *) L. Benini (lbenini@deis.unibo.it,***)
L. Piñuel (lpinuel@dacya.ucm.es,*) F. Catthoor(catthoor@imec.be,**)

H. Corporaal(heco@imec.be,****)

IMEC and K.U.Leuven-ESAT, Leuven, Belgium (**) DACYA U.C.M., Spain (*)
D.E.I.S. University of Bologna, Italy (***) IMEC and T.U. Eindhoven, Nederland (****)

Abstract

Heterogeneous multi-processors platforms are an interest-
ing option to satisfy the computational performance of dynamic
multi-media applications at a reasonable energy cost. Today,
almost no support exists to energy-efficiently manage the data
of a multi-threaded application on these platforms. In this pa-
per we show that the assignment of data of dynamically cre-
ated/deleted tasks to the shared memory has a large impact on
the energy consumption. We present two dynamic memory al-
locators which solve the bank assignment problem for shared
multi-banked SDRAM memories. Both allocators assign the
tasks’ data to the available SDRAM banks such that the number
of page-misses is reduced. We have measured large energy sav-
ings with these allocators compared to existing dynamic mem-
ory allocators for several task-sets based on MediaBench[5].

1 Introduction

In the near future, the silicon market will be driven by low-
cost, portable consumer devices which integrate multi-media
and wireless technology. Applications running on these devices
require an enormous computational performance (1-40����)
at a low energy consumption (0.1-2�). Additionally, they are
subjected to time constraints, complicating their design consid-
erably. The challenge to embed these applications on portable
devices is enlarged even further because of user interaction.
E.g. at any moment the user will be able to trigger new services,
change the configuration of the running services or stop ex-
isting services. Heterogeneous multi-processor platforms with
domain specific computational resources can potentially offer
enough computational performance at a sufficiently low energy
consumption. To store multi-media data these platforms need
to be connected to large off-chip SDRAMs. They contribute
significantly to the system’s energy consumption (see [17]).
The energy consumption of SDRAMs depends largely on how
data is assigned to the memory banks. Since in our application
domain the data which needs to be allocated is only known at
run-time (at a particular time-instance), fully design-time based

...

page

column
decoder

row
decoder

page
buffer

bank

output/input
register

Figure 1. Multi-banked SDRAM architecture

solutions as proposed earlier in the compiler and system syn-
thesis cannot solve the problem (see Sect.3). Run-time mem-
ory management solutions as present in nowadays operating
systems are too inefficient in terms of cost optimization (es-
pecially energy consumption). They are also not adapted for
the time constraints. We present twoSDRAM-energy-aware
memory allocators for dynamic multi-tasked applications. We
quantify the energy gains of both allocators with experimental
results obtained with a multi-processor simulator. The results
are based on task-sets derived from MediaBench[5]. They in-
dicate that both allocators significantly reduce the energy con-
sumption compared with the best known approach so far.

2 Platform and SDRAM Energy Model

In the context of this paper we assume a platform that con-
sists of a set of processor nodes (e.g. ARM [1]). Each proces-
sor is connected to a local memory and interacts with shared
off-chip SDRAM modules. SDRAM memories are present on
the platform because their energy cost per bit to store large data
structures is lower than of SRAMs. They are used to store large
infrequently accessed data structures. As a consequence, they
can be shared among processors to reduce the static energy cost
without a large performance penalty.

A simplified view of a typical multi-banked SDRAM ar-
chitecture is shown in Fig.1. Fetching or storing data in an
SDRAM involves three memory operations. An activation op-
eration decodes the row address, selects the appropriate bank
and moves an page/row to the page buffer of the corresponding
bank. After a page is opened, a read/write operation moves data

1530-1591/03 $17.00 2003 IEEE

to/from the output pins of the SDRAM. Only one bank can use
the output pins at the time. When the next read/write accesses
hit in the same page, the memory controller does not need to ac-
tivate the page again (a page hit). However, when another page
is needed (a page miss), precharging the bank is needed first.
Only thereafter the new page can be activated and the data can
be read. Similar to processor cores, SDRAMs nowadays sup-
port several energy states in which the SDRAM (see [16]) can
be used. We model three energy states:standby mode (����),
clock-suspend mode (��) andpower down (����). Switch-
ing between the different energy states comes at a transition
time penalty. We assume that in the future the energy states of
each bank can be controlled independently1.

We model the timing behavior of the SDRAM memory with
a state-machine similar to [11]. The timing parameters of the
different state transitions have been derived from Micron 64Mb
mobile SDRAM[16]. The energy consumption of the SDRAM
is computed with the following formula:
� �

�������

����
���

������ ���
��	�
���

��
������ � �������� � �������

�
����

� ���	��
�
��	

��
��	�
�� � � �

������ �� �
����

where:
��� � �����	
� � �����������������
�
�� � �����	
� � ����������
� �
�� � ������
� �������� ��� ��������
�� ������ �

� �
� � ������
� ����� ��������� ������ �

Our energy model is based on an SDRAM power estimation
tool provided by Micron[16]. It decomposes the energy con-
sumption in a static and a dynamic part. The static energy con-
sumption is the standby power of the SDRAM. It depends on
which energy states are used during execution. An energy state
manager (see [9]) controls when the banks should transition
to another power state. As soon as the bank idles for more
than one cycle, the manager switches the bank to the��-mode.
When the bank is needed again it is switched back to�����-
mode within a cycle. Finally, we switch off the bank as soon as
it remains idle for longer than a million cycles2. The dynamic
energy consumption depends on which operations are needed to
fetch/store the data from/into the memory. The energy parame-
ters are presented in Tab.1. The remaining parameters (� �

�����
and�����������	
) are obtained by simulation (see Sect.6).

������������������� 14000 pJ/miss
���������� 2000 pJ/access
������ 50 mW
��� ��� ���� ������� 10.8 mW
���	 0 mW

Table 1. Energy Consumption Parameters

3 Motivation and Problem Formulation

According to our experiments, on a multi-processor archi-
tecture the dynamic energy contributes on an average 68% to
the total consumption of an SDRAM. The remaining static en-
ergy is usually not dominant because the SDRAM is shared

1Although the energy-state of an SDRAM today can only be controlled at
the granularity of an entire memory chip, many authors (e.g. [4] and [12]) make
this assumption.

2similar to [4].

by multiple tasks. As a consequence, it is more actively used
compared to uni-processor architectures and it burns less static
energy waiting between consecutive accesses. Moreover, even
though in future technologies leakage energy is likely to in-
crease, many techniques (at the technology, circuit and mem-
ory architecture level) are under development by DRAM man-
ufactures to reduce the leakage energy during inactive modes
(see [10]). Also existing hardware power state controllers (see
Sect.4) can significantly decrease the static energy. Therefore,
in this paper we focus on data assignment techniques to re-
duce the dynamic energy. At the same time, our techniques
reduce the time of the SDRAM banks spent in the active state,
thereby thus reducing the leakage loss in that state which is
more difficult to control (see [10]). We motivate with an ex-
ample how a good data assignment can significantly reduce the
number of page-misses, thereby saving dynamic energy. The
example consists of two parallel executing tasks,Convolve and
Cmp_threshold.

Convolve

for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
... = imgin[i][j] *

kernel[i*K][j];

imgout[r*col][] = ...

Cmp_threshold

for (i = 0; i < row; i++)
for (j = 0; j < col; j++)
tmp1 = img1[i][j];

Figure 2. Extracts from Convolve and Cmp_threshold

The code of both tasks is presented in Fig.2. Page-misses
occur when e.g.kernel andimgin of Convolve are assigned to
the same bank. Each consecutive access evicts the open-page of
the previous one, causing a page-miss (�� �-misses in total).
Similarly, when data of different tasks are mapped to the same
bank, (e.g.kernel of Convolve and img1 of Cmp_threshold),
each access to the bank potentially causes a page-miss.
The number of page-misses depends on how the accesses to
the data structures are interleaved. Whenimgin andimgout are
mapped in the same bank, an access toimgout is only scheduled
after�� accesses toimgin. Therefore, the frequency at which
accesses to both data structures interfere is much lower than for
kernel andimgin. The resulting number of page-misses in this
case is only two. The energy benefit of storing a data structure
alone in a bank depends on how much spatial locality exists in
the access pattern to the data structure. E.g.kernel is a small
data structure (it can be mapped on a single page) which is
characterized by a large spatial locality. Whenkernel is stored
in a bank alone, only one page-miss occurs for all accesses to
it.

From this, we conclude that the data assignment should (1)
separate the most important data structures with a large spa-
tial locality from the other data structures, since this results in
large energy savings; (2) we should share the remaining data
structures in such a way that the number of page-misses is mini-
mized. The assignment problem is complicated by the dynamic
behavior of modern multi-media applications. Only at run-time
it is known which tasks are executing in parallel and which data
needs to be allocated in the memory. A fully static assignment
of the data structures to the memory banks is thus impossible.

2

Dynamic memory allocators are a potential solution. However,
existing allocators do not take the specific behavior of SDRAM
memories into account to reduce the number of page-misses.

To solve above issues we introduce in this paper two dy-
namic memory allocators which reduce the number of page-
misses. The first, abest-effort allocator shares the SDRAM
banks between the tasks. However, it does not guarantee time-
constraints. Therefore, when hard real-time requirements are
an issue, banks should not be shared among tasks. The number
of page-misses can still be reduced by cost-efficiently distribut-
ing the available banks to the tasks. This idea is implemented
in our second, theguaranteed performance memory allocator.

4 Related Work

In the embedded system community the authors of [14] and
[2] have presented assignment algorithms to improve the per-
formance of SDRAM memories. Both algorithms distribute
data with a high temporal affinity over different banks such that
the number of page-misses is minimized. Their optimizations
rely on the fact that the temporal affinity in a single threaded
application is analyzable at design-time. This is not the case
in our application domain (i.e. dynamic multi-threaded appli-
cations). The temporal affinity between tasks depends on their
actual schedule which is only known at run-time. This renders
these techniques not directly applicable in our context.
In [4], techniques are presented to reduce the static energy con-
sumption of SDRAMs in embedded systems. The strategy of
this paper consists of clustering data structures with a large tem-
poral affinity in the same memory bank. As a consequence the
idle periods of banks are grouped, thereby creating more oppor-
tunities to transition more banks in a deeper low-power mode
for a longer time.
Several researchers (see e.g. [12], [4] and [9]) present a hard-
ware memory controller to exploit the SDRAM energy modes.
As soon as a memory bank remains idle for a predefined pe-
riod, the memory controller transitions the bank to a low power
state. The main advantage of hardware controlled policies is
that SDRAM memories can be managed at a much finer level
of granularity than pure software approaches.
The authors of [3] present a data migration strategy. It detects
at run-time which data structures are accessed together, then it
moves arrays with a high temporal affinity to the same SDRAM
banks. By bringing these arrays together, the chances are in-
creased that fewer banks need to be active in a given period
of time. The research on techniques to reduce the static en-
ergy consumption of SDRAMs is very relevant and promising.
Complementary to the static energy reduction techniques, we
seek to reduce the dynamic energy contribution.
The most scalable and fastest multi-processor virtual memory
managers (e.g. [15] and [6]) use a combination of private heaps
combined with a shared pool to avoid memory fragmentation.
They rely on hardware based memory management units to
map virtual memory pages to the banks. These hardware units
are unaware of the underlying memory architecture. There-
fore, in the best-case memory managers randomly distributes
the data across all memory banks (random allocation). In the

worst-case, all data is concentrated in a single memory bank.
We will compare our approach to both extremes in Sect.7.

5 Bank Aware Allocation Algorithms

We first present a best effort memory allocator (BE) which
searches the most energy-efficient assignment for all the data
in a task-set. The allocator can map data of different tasks in
the same bank in order to minimize the number of page-misses.
Hence, accesses from different tasks can interleave at run-time,
causing unpredictable page-misses. We do not exactly know
how much the page-misses will increase the execution-time of
the tasks. As a consequence, the best effort allocator cannot be
used when hard real-time constraints need to be guaranteed and
little slack is available. The goal of the guaranteed performance
allocator (GP) is to minimize the number of page-misses while
still guaranteeing the real-time constraints.

5.1 Best Effort Memory Allocator

The BE (see Algo.1) consists of a design-time and a run-
time phase. The design-time phase bounds the exploration
space of the run-time manager reducing its time and energy
penalty. At design-time we characterize the data structures of

Algorithm 1 Best-Effort Memory Allocator
1: Design-Time:
2: for all � � ���� do
3: for all �� �� ���� ���������� � � do
4: Compute local selfishness:

������
��

� �������
��

�������

��

��		�����
��

5: Add�������� to����	��
6: end for
7: end for
8: Run-Time:
9: Initialize selfishness of all available banks:���	� � �

10: Initialize ordered queue�
11: for all � � ���������� do
12: for all �� � � do
13: Insert�� in � according decreasing��������
14: end for
15: end for
16: while � is not emptydo
17: �� = head of�
18: Insert�� in bank with smallest selfishness
19: Update selfishness of the bank:

���	�� � �
�����
��

20: end while

each task with a heuristic parameter:selfishness (line 4: � ����	�

). It expresses the energy benefits of storing data alone in a
bank. When accesses to a selfish data structure are not in-
terleaved with accesses to other data structures in the same
bank, page-misses are avoided. Selfishness of a data structure
is calculated by dividing the average time between page-misses
(������
	�) with the average time between accesses (��������	�).

This ratio expresses the available spatial locality and can be ei-
ther measured or calculated3 at design-time. We weigh it with
the importance of the data structure by multiplying it with the
number of accesses to the data structure (���������

	�). Finally, we
3with a technique similar to e.g. [13]

3

add extra data structures to the source code for the design-time
info needed at run-time (line 5:�
� �
�).

At run-time, when it is known which tasks are activated at
the start of a new frame and thus which data needs to be al-
located, the algorithm assigns the alive data to the memory
banks4. The algorithm distributes the data among the banks
such thatselfishness of all the banks is balanced. The self-
ishness of a bank (���
�) is the sum of the selfishness of all
data structures in the bank. The algorithm ranks the data struc-
tures according to decreasing selfishness (line: 11-15) and then
greedily assigns the data to the banks starting from the most
selfish one (lines: 15-20). Each data structure is put in the least
selfish bank. This strategy puts the most selfish data structures
in separate banks and clusters the remaining ones. The com-
plexity of the algorithm at run-time is�������� where� is
the number of data structures in the task-set.

5.2 Guaranteed Performance Allocation

The time guarantees are only possible when all page-misses
can be predicted, but that can be difficult due to the interference
between accesses of different tasks. An obvious way to avoid
interference is to assign the data of simultaneously active tasks
to independent banks. This implies that at least one bank per
task is required or extra task scheduling constraints need to be
introduced. The following two degrees of freedom remain: how
to partition the banks among the tasks and how to assign the
data of each task to its partition.

The number of page-misses of a task heavily depends on
the number of banks which are assigned to it (e.g. see tasks
in Tab.2). The sensitivity of the number of page-misses to the
number of banks varies from task to task. Some tasks ben-
efit more than others from having extra banks assigned to it.
Our guaranteed performance approach allocates more banks to
those tasks which benefit most.

We follow an approach similar to the task-scheduling
methodology of [8] to solve this problem. At design-time we
generate a data assignment for every task and for any possi-
ble number of banks. The resulting assignments for each task
can be presented in a Pareto curve which trades off the energy
consumption of the task i.f.o. the number of banks. With each
point in the curve thus corresponds an assignment, the number
of banks required for the assignment and the energy consump-
tion of the assignment. We also annotate each point with the
run-time of the task executed with the corresponding assign-
ment. The Pareto curves can be created with the best-effort
approach based on selfishness. The approach consists then of
assigning the data of asingle task to the SDRAM banks. In this
case no run-time information about other tasks is required. As
a consequence, we can compute at design-time the selfishness
of all data structures and generate the final data assignment.

At run-time we distribute the available banks of the plat-
form among the active tasks using the Pareto curves. We se-
lect a point on the Pareto curve of each task such that the en-

4We currently assume that tasks can only be started/deleted at predefined
points in the program. However, this is not a severe limitation for most modern
multi-media applications (see [8]).

 Task A

ARM7
Trace

Generator

 Task B

ARM7
Trace

Generator

...

Trace DB
Task

Schedule
DB

Memory
Hierachy
Evaluator

Memory
Config.

DB

Performance of
 Processing and
Memory Hierarchy

Energy of
Memory

Hierarchy

1. Generate for each Task
in the Application a
Memory Trace
for all the Data Structures
mapped on the Shared Memory

3. Configure and Run
Memory Hierarchy Evaluator

2. Generate a Schedule
for the Tasks in the
Application

Figure 3. Simulation Environment

ergy consumption of all tasks is minimized and that the total
number of banks for all tasks is less or equals the available
number of banks on the platform. We reuse for this purpose
a greedy heuristic which we have developed in the context of
task-scheduling (see [8]).

6 Evaluation Strategy

In this section we first present our simulation environment.
The main goal of our simulation environment (see Fig.3) is
to correctly study how multi-threaded applications should be
mapped on a shared memory hierarchy. We simulate the pro-
cessing elements and the memory architecture independently.
This allows us to quickly explore different allocations of the
data structures on the SDRAM memories while avoiding long
simulation times for the processing elements. The processing
elements and their performance are simulated using an adapted
ARMulator[1]. This simulator dumps a memory access trace
for each task in the parallel application. Each memory access in
the trace is annotated with its relative issue-time. We input the
memory traces together with the schedule of the correspond-
ing tasks in the performance and energy evaluation script. This
script combines the memory traces in a cycle-accurate way ac-
cording to the issue-time of each access, the task schedule and
the memory hierarchy. It outputs the total execution time of
each task5 and the energy consumption of the SDRAMs.

To evaluate the effectiveness of our assignment techniques,
we have generated representative task-sets. The tasks have been
extracted from MediaBench[5] (Cmp_threshold, Convolve, Dct
andRawcaudio). Two tasksConvolve andCmp_threshold ker-
nels are parts ofEdge_detection. We have also addedRgb2Yuv,
Quick24to8, Fir, Lzw andRinjadel which are typical for many
portable multi-media applications. In Tab.2 we enumerate the
tasks and show how their total energy consumption i.f.o. the
number of memory banks. The table contains measurements
for the tasks executed on a ARM7 running at 100MHz. The
results for this analysis were obtained with assignments based
on the BE-approach.

7 Experimental Results

We verify the quality of our heuristics (best-effortBE and
guaranteed performanceGP) against a Monte-Carlo approxi-
mation of the best-possible assignment (MA). The results of

5including both the processor and memory delay.

4

���	��

Task ��� 1 2 3 4 5 6

Cmp_threshold 3 4331 3293 993 - - -
Fir 3 1770 457 489 - - -

Lzw 3 6482 7004 7655 - - -
Rawcaudio 4 4202 2998 3234 4061 - -
Convolve 4 19222 8173 8474 8474 - -
Rinjadel 4 7037 6491 6870 7277 - -
Rgb2Yuv 5 528 796 1064 1333 1593 -

Dct 6 2552 2845 2118 2540 3015 3485
Quick24to8 10 6930 5597 4215 4417 4620 4824

Table 2. Energy for Benchmark Tasks @100MHz

1 2 3 4 5 6
N Banks

0

10000

20000

30000

E
ne

rg
y

[u
J]

MA 100 MHz
RA 100 MHz
BE 100 MHz
SA/CA 100 MHz
Static Energy 100 MHz
MA 600 MHz
RA 600 MHz
SA/CA 600 MHz
Static Energy 600 MHz
GP 100 MHz

Figure 4. Comparison of Allocation Strategies for Convolve
and Cmp_threshold

the latter were obtained by measuring 100 different data as-
signments. We compare our memory allocators against three
existing policies. The first reference policy, random alloca-
tion (RA) randomly distributes the data structures across the
memory banks similar to architecture-unaware allocators (see
Sect.4). We show the average energy consumption after 100
runs of the RA policy. In the second reference we do not share
the SDRAMs among the processors. Each processor owns an
equal number of memory banks. On each processor a local
memory allocator manages the private banks (sequential allo-
cationSA). Finally, we compare our results with a static en-
ergy reduction technique ([4]). This technique clusters the data
structures such that the number of active banks is minimized.
In the most extreme case, all data is clustered in a single bank
(clustered allocationCA).

In Fig.46 we visualize the energy consumption of the dif-
ferent allocators for theConvolve andCmp_threshold task-set.
Similar results for other tasks-sets are presented in Tab.3.

The energy consumption of all allocators, except for CA and
SA, first decreases when the number of banks is increased. The
allocators distribute the data across more banks, thereby reduc-
ing the number of page-misses and the dynamic energy. At the
same time, the static energy consumption slightly reduces since
less misses results in a shorter execution time (see the static en-
ergy of the example in Fig.4 executed at 600 MHz.).

However, when extra banks do not significantly reduce the
page-miss rate anymore, the dynamic energy savings become

6Note that the SA and GP curves only start from two banks, which is the
minimum number of banks needed by these policies.

smaller than the extra static energy needed to keep the banks
in
����� -mode. The total energy consumption increases
then again. A nice illustration of this isQuick24to8 in Tab.2.
The total energy consumption decreases up to three banks and
then increases again due to the extra static energy. Also, in
Fig.4 the total energy consumption increases again when more
than five banks are used. From these examples, we see that an
optimal number of active banks exists. The optimal number
of banks depends on the ratio of static versus dynamic energy.
When the banks become more active (e.g. because more tasks
are activated or the processor frequency is increased), the dy-
namic energy becomes more important than the static energy
and the optimal number of banks increases. E.g. in Fig.4 the
optimal number of banks increases from five to six when the
processor frequency changes from 100MHz to 600MHz. We
plan to further explore this trade-off between static and dy-
namic energy in the future.

CA clusters the data in as few banks as possible to limit the
static energy of memories, but it comes at the cost of extra page-
misses and thus more dynamic energy. Therefore, CA increases
the total energy consumption when the energy is dominated by
the dynamic energy (see Fig.4).

SA also performs poorly under these conditions. It can-
not exploit idle banks owned by other processors to reduce
the number of page-misses. The difference between SA and
MA (an approximation of the best-possible assignment) is large
(more than 300% for theRgb2Yuv/Cmp_threshold task-set with
6 banks), indicating that sharing SDRAM memories is an in-
teresting option for heterogeneous multi-processor platforms.
It increases the exploration space such that better assignments
can be found. When the banks are not too heavily used, even
no performance penalty is present (see below).

We also observe in Fig.4 that existing commercial multi-
processor memory allocators (RA) perform badly compared to
MA. This suggests that a large headroom for improvement ex-
ists. When only one bank is available, obviously all memory al-
location algorithms produce the same results. With an increas-
ing number of banks the gap between RA and MA first widens
as a result of the larger assignment freedom (up to 55 % for
Rgb2Yuv andCmp_threshold with four banks). However, the
performance of the RA improves with an increasing number of
banks: the chances increase that RA distributes the data struc-
tures across the banks which significantly reduces the energy
consumption. Therefore, when the number of banks becomes
large the gap between RA and MA becomes smaller again (50
% for Rgb2Yuv andCmp_threshold with six banks). For higher
processor frequencies the static energy consumption decreases
and the potential gains become larger. E.g. forConvolve and
Cmp_threshold the gap increases from 26% to 34%.

The Fig.4 shows how BE outperforms RA. Results at the top
part of Tab.3 suggest an improvement up to 50% (seeRgb2Yuv
and Cmp_threshold with four banks). Moreover, BE often
comes close to the MA results. The difference between BE
and MA is always less than 23%. When the number of tasks in
the application becomes large (see last task-set in Tab.3 which
consists of 10 tasks), we note a small energy loss of BE com-
pared to RA for the first task-set and eight banks are used. In

5

�����

Task(100MHz) �
��

1(CA) 2 3 4 5 6

Fir.+Conv.(SA) 7 - 20993 20993 20993 20993 20993
Fir.+Conv.(MA) 7 20958 9858 9269 8641 8641 8641
Fir.+Conv.(RA) 7 20958 15712 13834 12381 12436 10990
Fir.+Conv.(GP) 7 - 20993 9943 8641 8641 8641
Fir.+Conv.(BE) 7 20958 10250 9269 9515 8942 8964

R2Y.+Cmp_t.(SA) 8 - 4859 4859 4859 4859 4859
R2Y.+Cmp_t.(MA) 8 4986 3832 1877 1521 1521 1521
R2Y.+Cmp_t.(RA) 8 4986 4362 3733 3407 3368 3209
R2Y.+Cmp_t.(GP) 8 - 4859 3821 1521 1521 1521
R2Y.+Cmp_t.(BE) 8 4986 4041 2031 1553 1821 2089

R2Y.+Cmp_t.+Conv.(SA) 12 - - 24082 24082 24082 24082
R2Y.+Cmp_t.+Conv.(MA) 12 23531 13872 12456 11392 10109 10060
R2Y.+Cmp_t.+Conv.(RA) 12 23531 19730 17005 15444 14977 14533
R2Y.+Cmp_t.+Conv.(GP) 12 - - 24082 13034 11987 9695
R2Y.+Cmp_t.+Conv.(BE) 12 23531 13769 13468 11515 9907 10206

R2Y.+Cmp_t.+Conv.+Dct (SA) 18 - - - 26647 26647 26647
R2Y.+Cmp_t.+Conv.+Dct (MA) 18 26195 16684 15165 13665 13132 12514
R2Y.+Cmp_t.+Conv.+Dct (RA) 18 26195 21896 19332 17947 17517 17696
R2Y.+Cmp_t.+Conv.+Dct (GP) 18 - - - 26647 15598 14551
R2Y.+Cmp_t.+Conv.+Dct (BE) 18 26195 16212 16143 14224 13405 12758

Task(600 MHz) �
��

1(CA) 2 3 4 5 6

Fir.+Conv.(SA) 7 - 20305 20305 20305 20305 20305
Fir.+Conv.(MA) 7 20480 9261 7582 6600 6494 6473
Fir.+Conv.(RA) 7 20480 14938 11664 11421 10115 9196
Fir.+Conv.(GP) 7 - 20305 8395 7842 6494 6473
Fir.+Conv.(BE) 7 20480 9526 8219 7623 6494 6473

Task �
��

8 16 32

2Quick.+2R2Y+2Rin.+Cmp_t.+2Lzw(SA) 50 - 48788 48788
2Quick.+2R2Y+2Rin.+Cmp_t.+2Lzw(RA) 50 49525 41872 45158
2Quick.+2R2Y+2Rin.+Cmp_t.+2Lzw(MA) 50 47437 37963 41610
2Quick.+2R2Y+2Rin.+Cmp_t.+2Lzw(GP) 50 - 38856 34236
2Quick.+2R2Y+2Rin.+Cmp_t.+2Lzw(BE) 50 51215 40783 35371

Static Energy 50 10227 9045 8489

Table 3. Energy Comparison of Several Allocation Strategies

this case 50 data structures are allocated in a small amount of
banks. As a result, a limited freedom exists to reduce the num-
ber of page-misses, i.e. the energy gap between maximum and
minimum energy consumption is small. Note that currently BE
cannot detect the optimal number of banks. When the banks
are not actively used, its energy consumption increases (com-
pare e.g.Cmp_threshold andConvolve for five and six banks),
but it remains lower than existing dynamic allocation policies.

GP performs equally well for a sufficiently large number of
banks. The main advantage of this technique is that the execu-
tion times of the different tasks can be predicted and guaran-
teed. Moreover, it will never use more than the optimal num-
ber of banks, but its performance breaks down when only few
banks are available per task. In this case, it maps similar to SA
all data structures of each task in a single (or few) banks. It
then consumes more energy than RA (29% forConvolve and
Cmp_threshold with two banks).

Timing measurements indicate that in 42 out of 47 cases the
execution time of the task-sets improves with BE/GP (up to
10%) on top of the energy gain. In the remaining 5 cases we
have measured a slowdown up to 0.42% (BE) and 8.93% (GP).
This data-assignment technique combined with task-scheduling
can significantly improve the performance of a task-set. Or, for
a given deadline, the joined approach can be used to reduce the
energy consumption of the application (see [7]).
The run-time overhead of both BE and GP is limited: usu-
ally, large time-intervals exist between successive calls to the
run-time manager, which allows to relax its time- and energy-
overhead over a large period. Also, in the context of run-time
task-scheduling (see [8]), we have shown that the time and en-
ergy overhead of a comparable run-time scheduler is low.

8 Conclusions and Future Work

Low-power design is a key issue for future dynamic multi-
media applications mapped on multi-processor platforms. On
these architectures off-chip SDRAM memories are big energy
consumers. A crucial parameter which controls the energy con-
sumption of SDRAMs is the number of page-misses. This
paper presents two dynamic memory allocators for bank as-
signment: a best-effort and a guaranteed performance allo-
cator. Both allocators assign the arrays of dynamically cre-
ated/deleted tasks to the memory banks, thereby reducing the
number of page-misses and thus the energy consumption. Ex-
perimental results obtained with a multi-processor simulator
are very promising. The allocators significantly reduce the en-
ergy consumption of SDRAMs compared to existing dynamic
memory managers. In the future, we would like to further
explore the trade-off between static and dynamic energy con-
sumption. Furthermore, we want to study how cache memories
affect the energy consumption of SDRAMs.

References

[1] ARM. www.arm.com.

[2] H. Chang and Y. Lin. Array Allocation Taking into Account SDRAM
Characteristics. InProc. ASP-Dac, pages 447–502, 2000.

[3] V. Delaluz, M. Kandemir, and I. Kolcu. Automatic Data Migration for
Reducing Energy Consumption in Multi-Bank Memory Systems. In
Proc. 39th Dac, pages 213–218, 2002.

[4] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. Irwin. Hardware and Software Techniques for Controlling DRAM
Power Modes.IEEE Trans. Computers, 50(11):1154–1173, Nov. 2001.

[5] C.Lee et al. MediaBench: a tool for evaluation and synthesizing mul-
timedia and communication systems. InInt. Symp. Microarchitecture,
1997.

[6] E. Berger et al. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. InProc. 8th Asplos, Oct. 1998.

[7] J.I. Gomez et al. Scenario-based SDRAM-Energy-Aware Scheduling for
Dynamic Multi-Media Applications on Multi-Processor Platforms. In
WASP (in conj. with MICRO), 2002.

[8] P. Yang et al. Managing Dynamic Concurrent Tasks in Embedded Real-
Time Multimedia Systems. InProc. Isss, Oct. 2002.

[9] X. Fan, C. Ellis, and A. Lebeck. Memory Controller Policies for DRAM
Power Management. InProc. Islped, pages 129–134, 2001.

[10] K. Itoh. Low-Voltage Memories for Power-Aware Systems. InProc.
Islped, pages 1–6, Monterey, CA, Aug. 2002.

[11] Y. Joo, Y. Choi, and H. Shim. Energy Exploration and Reduction of
SDRAM Memory Systems. InProc. 39th Dac, pages 892–897, 2002.

[12] A. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page Allocation.
In Proc. 9th Asplos, Nov. 2000.

[13] K. McKinley, S. Carr, and C. Tseng. Improving Data Locality with Loop
Transformations.ACM Trans. PLS, 18(4):424–453, July 1996.

[14] P. Panda. Memory Bank Customization and Assignment in Behavioral
Synthesis. InProc. Iccad, pages 477–481, Oct. 1999.

[15] M. Shalan and V. Mooney III. A Dynamic Memory Management Unit for
Embedded Real-Time Systems-on-a-Chip. InProc. Cases, pages 180–
186, San Jose, CA, Nov. 2000.

[16] Calculating Memory System Power For DDR. Technical report, Micron.

[17] M. Viredaz and D. Wallach. Power Evaluation of a Handheld Computer:
A Case Study. Technical report, WRL, Compaq, May 2001.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

