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Abstract

Chip multiprocessing (or multiprocessor system-on-a-
chip) is a technique that combines two or more processor
cores on a single piece of silicon to enhance computing per-
formance. An important problem to be addressed in execut-
ing applications on an on-chip multiprocessor environment
is to select the most suitable number of processors to use
for a given objective function (e.g., minimizing execution
time or energy-delay product) under multiple constraints.
Previous research proposed an ILP-based solution to this
problem that is based on exhaustive evaluation of each nest
under all possible processor sizes. In this paper, we take a
different approach and propose a pure runtime strategy for
determining the best number of processors to use at run-
time. This approach is more general than static techniques
and can be applicable in situations where the latter cannot
be.

1. Introduction and Motivation

Several research groups agree that chip multiprocess-
ing is the next big thing in CPU design [5]. The per-
formance improvements obtained through better process
technology, better micro-architectures and better compil-
ers seem to saturate; in this respect, on-chip multiprocess-
ing provides an important alternative for obtaining better
performance/energy behavior than what is achievable using
current superscalar and VLIW architectures.

An important problem to be addressed in executing ap-
plications on an on-chip multiprocessor environment is to
select the most suitable number of processors to use. This is
because in most cases using all available processors to exe-
cute a given code segment may not be the best choice. There
might be several reasons for that. First, in cases where
loop bounds are very small, parallelization may not be a
good idea at the first place as creating individual threads
of control and synchronizing them may itself take signif-
icant amount of time, offsetting the benefits from paral-
lelization. Second, in many cases, data dependences impose
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some restrictions on parallel execution of loop iterations;
in such cases, the best results may be obtained by using
a specific number of processors. Third, data communica-
tion/synchronization between concurrently executing pro-
cessors can easily offset the benefits coming from parallel
execution.

As a result, optimizing compiler community invested
some effort on determining the most suitable number of pro-
cessors to use in executing loop nests (e.g., [8]). In the area
of embedded computing, the situation is even more chal-
lenging. This is because, unlike traditional high-end com-
puting, in embedded computing one might have different
parameters (i.e., objective functions) to optimize. For ex-
ample, a strategy may try to optimize energy consumption
under an execution time bound. Another strategy may try to
reduce the size of the generated code under both energy and
performance constraints. Consequently, selecting the most
appropriate number of processors to use becomes a much
more challenging problem. On top of this, if the applica-
tion being optimized consists of multiple loop nests, each
loop nest can demand a different number of processors to
generate the best result. Note that if we use fewer number
of processors (than available) to execute a given program
fragment, the unused processors can be turned off to save
energy.

Previous research (e.g., [7]) proposed a solution to this
problem that is based on exhaustive evaluation of each
nest under all possible processor sizes. Then, an inte-
ger linear programming (ILP) based approach was used
to determine the most suitable number of processors for
each nest under a given objective function and multiple en-
ergy/performance constraints. This approach has three ma-
jor drawbacks. First, exhaustively evaluating each alterna-
tive processor size for each loop can be very time consum-
ing. Second, since all evaluations are performed statically,
it is impossible to take runtime-specific constraints into ac-
count (e.g., a variable whose value is known only at run-
time). Third, it is not portable across different on-chip mul-
tiprocessor platforms. Specifically, since all evaluations are
done under specific system parameters, moving to a differ-
ent hardware would necessitate repeating the entire process.

In this paper, we take a different approach and propose
a pure runtime strategy for determining the best number of
processors to use at runtime. The idea is, for each loop nest,
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to use the first couple of iterations of the loop to determine
the best number of processors to use, and when this number
is found, execute the remaining iterations using this size.
Obviously, this approach spends some extra cycles and en-
ergy at runtime to determine the best number of processors
to use; however, this overhead is expected to be compen-
sated for when the remaining iterations are executed. This
is particularly true for many image/video applications in
embedded domain where multiple loops with large itera-
tion counts operate on large images/video sequences. Obvi-
ously, the main advantage of this approach is that it requires
little help from compiler and it can take runtime parameters
into account.

In this paper, we focus on array-intensive embedded ap-
plications and make the following contributions:

� We present a runtime loop parallelization strategy for
on-chip multiprocessors. This strategy uses the initial
iterations of a given loop to determine the best number
of processors to employ in executing the remaining it-
erations.

� We discuss how its behavior can be improved by be-
ing more aggressive in determining the best number of
processors.

� We argue that the overheads associated with our ap-
proach can be reduced using past history information
about loop executions.

It should be noted that an on-chip multiprocessor has, in
general, fewer functional units per processor than a conven-
tional superscalar or VLIW machine; therefore, the chances
are higher that the functional units will perform useful work
at a given time. Also, since different pieces of the appli-
cation can be executed in parallel, we can expect a better
throughput from an on-chip multiprocessor (as compared to
a single processor system with multiple functional units).
In addition, as compared to a more complex uniprocessor
architecture, using a smaller, less complex processors in a
multiprocessor chip is much easier; this allows us to reduce
design and verification times. Simpler processors also en-
able system designers to use higher frequencies. Because of
these reasons, we believe that on-chip multiprocessors will
be used very widely in the future.

The remainder of this paper discusses our approach in
detail. We are aware of previous research that used runtime
adaptability for scaling on-chip memory/cache sizes (e.g.,
[1]) and issue widths (e.g., [6]) among other processor re-
sources. However, to the best of our knowledge, this is the
first study that employs runtime resource adaptability for
on-chip multiprocessors. Recently, there have been several
efforts for obtaining accurate energy behavior for on-chip
multiprocessing and communication (e.g., see [4] and the
references therein). These studies are complementary to the
approach discussed in this paper, and our work can benefit
from accurate energy estimations for multiprocessor archi-
tectures.

The rest of this paper is organized as follows. Section 2
presents our on-chip multiprocessor architecture and gives
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Figure 1. Relevant parts of our on-chip multi-
processor.

the outline of our execution/parallelization strategy. Sec-
tion 3 explains our runtime parallelization approach in de-
tail. Section 4 presents our concluding remarks.

2. On-Chip Multiprocessor and Code Paral-
lelization

Figure 1 shows the important components of the ar-
chitecture assumed in this research. Each processor is
equipped with data and instruction caches and can operate
independently; i.e., it does not need to synchronize its exe-
cution with those of other processors unless it is necessary.
There is also a global (shared) memory through which all
data communication is performed. Also, processors can use
the shared bus to synchronize with each other when such
a synchronization is required. In addition to the compo-
nents shown in this figure, the on-chip multiprocessor also
accommodates special-purpose circuitry, clocking circuitry,
and I/O devices. In this work, we focus on processors, data
and instruction caches, and the shared memory.

The scope of our work is array-intensive embedded ap-
plications. Such applications frequently occur in image and
video processing. An important characteristic of these ap-
plications is that they are loop-based; that is, they are com-
posed of a series of loop nests operating on large arrays of
signals. In many cases, their access patterns can be stat-
ically analyzed by a compiler and modified for improved
data locality and parallelism. An important advantage of
on-chip multiprocessing from the software perspective is
that such an architecture is very well suited for high-level
parallelism; that is, the parallelism that can be exploited
at the source level (loop level) using an optimizing com-
piler. In contrast, the parallelism that can be exploited by
single processor superscalar and VLIW machines are low
level (instruction level). Previous compiler research from
scientific community reveals that array-intensive applica-
tions can be best optimized using loop-level parallelization
techniques [10]. Therefore, we believe that array-intensive
embedded applications can get the most benefit from an on-
chip multiprocessor.

An array-intensive embedded application can be exe-
cuted on this architecture by parallelizing its loops. Specif-



Minimize execution time min(X)

Minimize total energy min(
P

Ej)

Minimize energy of componenti
under performance constraint min(Ei) underX � Xmax

Minimize execution time
under energy constraint for componenti min(X) underEi � Emax

Minimize energy-delay product min(X
P

Ej)

Figure 2. Different compilation strategies
(note that this is not an exhaustive list).

ically, each loop is parallelized such that its iterations are
distributed across processors. An effective parallelization
strategy should minimize the inter-processor data commu-
nication and synchronization. In other words, ideally, each
processor should be able to execute independently without
synchronization or communication. However, as mentioned
earlier, in many cases, data dependences that occur across
loop iterations prevent synchronization-free execution. In
addition to effective parallelization, an equally important
issue that affects the behavior of the application is data lo-
cality. Since each processor has its private data cache, it is
very important that most of the time it finds the requested
data item in its cache. Going to the large shared memory
can be very costly from both the execution cycles and en-
ergy consumption perspectives.

There are different ways of parallelizing a given loop
nest (see Wolfe’s book [10]). A parallelization strategy can
be oriented to exploiting the highest degree of parallelism
(i.e., parallelizing as many loops as possible in a given nest),
achieving load balance (i.e., minimizing the idle processor
time), achieving good data locality (i.e., making effective
use of data cache), or a combination of these. Since we are
focusing on embedded applications, the objective functions
that we consider are different from those considered in gen-
eral purpose parallelization. Specifically, we focus on the
following type of compilation strategies:

minimize f(E1; E2; � � � ; Ek; X) under
gi(E1; E2; � � � ; Ek; X).

Here,k is the number of components we consider (e.g.,
processor, caches, memory).Ej is the energy consumption
for the jth component andX is the execution time.f(:)
is the objective function for the compilation and eachgi(:)
where1 � i � C denotes a constraint to be satisfied by
the generated output code. Classical compilation objectives
such as minimizing execution time or minimizing total en-
ergy consumption can easily be fit into this generic com-
pilation strategy. Figure 2 shows how several compilation
strategies can be expressed using this approach. Since we
parallelize each loop nest in isolation, we apply the compi-
lation strategy given above to each nest separately.

3. Runtime Parallelization

3.1. Approach

Let I be the set of iterations for a given nest that we
want to parallelize. We useI 0 2 I (a subset ofI) for de-
termining the number of processors to use in executing the
iterations in setI � I 0. The setI 0, called thetraining set,
should be very small in size as compared to the iteration
set,I. Suppose that we haveK different processor sizes. In
this case, the training set is divided intoK subsets, each of
which containingI 0=K iterations (assuming thatK divides
I 0 evenly).

Let fk denote the processor size used for thekth trial,
where1 � k � K. We useTfk(J ) to express the exe-
cution time of executing a set of iterations denoted byJ

usingfk. Now, the original execution time of a loop with
iteration setI using a single processor can be expressed as
T1(I). Applying our training-based runtime strategy gives
an execution time of

Tall =
KX

k=1

Tfk(I
0=K) + Tfkbest(I � I 0):

In this expression, the first component gives the training
time and the second component gives the execution time
of the remaining iterations with the best number of proces-
sors selected by the training phase (denotedfkbest). Con-
sequently,Tfkbest(I) � Tall is the extra time incurred by
our approach compared to the best execution time possible.
If successful, our approach reduces this difference to mini-
mum.

Our approach can also be used for objectives other than
minimizing execution time. For example, we can try to min-
imize energy consumption or energy-delay product. As an
example, letEfk (J ) be the energy consumption of execut-
ing a set of iterations denoted byJ usingfk processors. In
this case,E1(I) gives the energy consumption of the nest
with iteration setI when a single processor is used. On the
other hand, applying our strategy gives an energy consump-
tion of

Eall =

KX

k=1

Efk (I
0=K) +Efkbest0

(I � I 0):

The second component in this expression gives the energy
consumption of the remaining iterations with the best num-
ber of processors (denotedfkbest0 ) found in the training
phase. Note that in generalfkbest0 can be different from
fkbest.

Figure 3 illustrates this training period based loop paral-
lelization strategy. It should also be noted that we are mak-
ing an important assumption here. We are assuming that the
best processor size does not change during the execution of
the entire loop. Our experience with array-intensive embed-
ded applications indicates that in majority of the cases, this
assumption is valid. However, there exist also cases where it
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Figure 3. Parallelization based on training.
Each dot represents an iteration.

is not. In such cases, our approach can be slightly modified
as follows. Instead of having only a single training period
at the beginning of the loop, we can have multiple train-
ing periods interspersed across loop execution. This allows
the compiler to tune the number of processors at regular in-
tervals, taking into account the dynamic variations during
loop execution. The idea is discussed in more detail in Sec-
tion 3.5.

An important parameter in our approach is the size of the
training set,I 0. Obviously, if we haveK different proces-
sor sizes, then the size ofI 0 should be at leastK. In gen-
eral, larger the size ofI 0, better estimates we can derive (as
we can capture the impact of cross-loop data dependences).
However, as the size ofI 0 gets larger, so does the time spent
in training (note that we do not want to spend too many cy-
cles/too much energy during the training period). There-
fore, there should be an optimum size forI 0, and this size
depends strongly on the loop nest being optimized.

3.2. Hardware Support

In order to evaluate a given number of processors dur-
ing the training period, we need some help from the hard-
ware. Typically, the constraints that we focus on involve
both performance and energy. Consequently, we need to be
able to get a quick estimation of both execution cycles and
energy consumption at runtime (during execution). To do
this, we assume that the hardware provides a set of perfor-
mance counters. These counters exist in several processors
(e.g., IBM Power2, MIPS, and Pentium) for counting var-
ious types of events, such as the number of cycles, cache
misses, memory coherence operations, branch mispredic-
tions, and several categories of issued and graduated in-
structions. They are very useful to application developers
for gaining insight into application performance and for pin-
pointing performance bottlenecks. As mentioned in [12],
in addition to application tuning, counters have many other
uses, including analyzing architectural tradeoffs, generat-
ing address traces or address statistics, evaluating compiler-
based code/data transformations, and characterizing work-
loads. With the proliferation of dynamic compilation tech-
niques, we can expect that most of the future processors will
provide large sets of performance counters that can be used
by application programmers and/or compilers.

In our approach, we employ these performance counters
for two different purposes. First, they are used to estimate
the performance for a given number of processors. For ex-
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Figure 4. Inputs and output of our compiler.

ample, by sampling the counter that holds the number of cy-
cles at the end of each trial (during the training period), our
approach can compare the performances of different proces-
sor sizes. Second, we exploit these counters to estimate the
energy consumption on different components of the archi-
tecture. More specifically, we obtain from these counters
the number of accesses (for a given processor size) to the
components of interest, and multiply these numbers by the
corresponding per access energy costs. For instance, by ob-
taining the number of L1 hits and misses and using per ac-
cess and per miss energy costs, the compiler calculates the
energy spent in L1 hits and misses. To sum up, we adopt
an activity based energy calculation strategy using the hard-
ware counters available in the architecture.

3.3. Compiler Support

In order to experiment with different processor sizes (in
the training period), we need to generate different versions
of each loop at compile time. Our compiler takes the in-
put code, constraints, and the objective function as input
and generates the transformed code as output (see Figure 4).
Figure 5 illustrates how a given loop nest is transformed by
our compiler. In the transformed code, the first nest iterates
over each processor size and records performance/energy
data. After each processor size is tried, the energy and per-
formance calculations are done. To do this, first, the coun-
ters are sampled and then the calculations to evaluate the
objective function and constraints (if any) are performed.
After this, a calculation (comparison) is performed to de-
termine the best processor size. Then, the second nest (i.e.,
the remaining iterations) executes with this best processor
size. In Figure 5,parfor indicates a parallel for-loop; i.e.,
a for-loop that will be executed by multiple processors.

3.4. Overheads

When one looks at the transformed code given in Fig-
ure 5, it is easy to see that there are several overheads that
will be incurred at runtime. In this subsection, we discuss
these overheads.



for(i=LB;i<UB;i++)
{

...
}

+

for(p=1;p<K+1;p++)
{

/* initialize counters */
parfor(i=LB*p;i<LB*(p+1);i++)

{
/* Execute the loop parallel using

fp processors */
...

}
/* sample the counters */
/* perform energy/performance

calculations */
}

/* select the best number of
processors (fbest) */

parfor(i=LB*(K+1);i<UB;i++)
{
/* Execute the loop parallel using

fbest processors */
...

}

Figure 5. Original and compiler transformed
loops.

3.4.1 Sampling Counters

The architectures that provide performance counters also
provide special instructions to read (sample) and initialize
them. We assume the existence of such instructions that
can be invoked from both C and assembly codes. Executing
these instructions consume both energy and execution cy-
cles in processor datapath, instruction cache, and memory.

3.4.2 Energy/Performance Calculations

As mentioned earlier, after trying each processor size, we
need to compute the objective function and constraints.
Note that this calculation needs to be done at runtime. To
reduce the overhead of these computations, we first calcu-
late constraints since if any of the constraints is not satisfied
we do not need to compute the objective function. After all
trials have been done, we compare the values of the objec-
tive functions (across all processor sizes experimented) and
select the best number of processors. Our implementation
also accounts for energy and execution cycle costs of these
runtime calculations.

3.4.3 Activating/Deactivating Processors

During the training phase we execute loop iterations using
different number of processors. Since re-activating a pro-
cessor which is not in active state takes some amount of
time as well as energy, we start trying different number of
processors with the highest number of processors (i.e., the

largest possible processor size). This helps us avoid proces-
sor re-activation during the training period. However, when
we exit the training period and move to start executing the
remaining iterations with the best number of processors, we
might need to re-activate some processors. An alternative
approach would be not turning off processors during the
training period. In this way, no processor re-activation is
necessary; the downside is some extra energy consumption.
It should be noted, however, when we move from one nest to
another, we might still need to re-activate some processors
as different nests might demand different processor sizes for
the best results.

3.4.4 Locality Issues

Training periods might have another negative impact on per-
formance too. Since the contents of data caches are mainly
determined by the number of processors used and their ac-
cess patterns, frequently changing the number of processors
used for executing the loop can distort data cache locality.
For example, at the end of the training period, one of the
caches (the one whose corresponding processor is used to
measure the performance and energy behavior in the case of
one processor) will keep most of the current working set. If
the remaining iterations need to reuse these data, they need
to be transferred to their caches, during which data locality
may be poor.

3.5. Conservative Training

So far, we have assumed that there is only a single train-
ing period for each nest during which all processor sizes are
tried. In some applications, however, the data access pattern
and performance behavior can change during the loop exe-
cution. If this happens, then the best number of processors
determined using the training period may not be valid any-
more. Our solution is to employ multiple training sessions.
In other words, from time to time (i.e., at regular intervals),
we run a training session and determine the number of pro-
cessors to use until the next training session arrives. This
strategy is called the conservative training (as we conserva-
tively assume that the best number of processors can change
during the execution of the nest).

If minimizing execution time is our objective, under con-
servative training, the total execution time of a given nest is

Tall =

MX

m=1

[

KX

k=1

Tfm;k
(I 0m;k) + Tfm;best

(I 00m)]:

Here, we assumed a total ofM training periods. In this
formulation,fm;k is the number of processors tried in the
kth trial of themth training period (where1 � m � M ).
I 0m;k is the set of iterations used in thekth trial of themth

training period andI 00m is the set of iterations executed with
the best number of processors (denotedfm;best) determined
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Figure 6. A program structure with nest reuse.

by themth training period. It should be observed that

MX

m=1

KX

k=1

I 0m;k +

MX

m=1

I 00m = I;

whereI is the set of iterations in the nest in question. Sim-
ilar formulations can be given for energy consumption and
energy-delay product as well. When we are using conser-
vative training, there is an optimization the compiler can
apply. If two successive training periods generate the same
number (as the best number of processors to use), we can
optimistically assume that the loop access pattern is stabi-
lized (and the best number of processors will not change
anymore) and execute the remaining loop iterations using
that number. Since a straightforward application of con-
servative training can have a significant energy and perfor-
mance overhead, this optimization should be applied with
care.

3.6. Exploiting History Information

In many array-intensive applications from the embedded
image/video processing domain, a given nest is visited mul-
tiple times. Figure 6 illustrates such an example scenario
where L different nests are accessed within an outermost
loop (e.g., a timing loop that iterates a fixed number of it-
erations and/or until a condition is satisfied). In most of
these cases, the best processor size determined for a given
nest in one visit is still valid in subsequent visits. That is,
we may not need to run the training period in these visits.
In other words, by utilizing the past history information,
we can eliminate most of the overheads due to running the
training periods.

It should be stressed that, in order to apply this optimiza-
tion, it is not necessary that all the nests in the application
are visited multiple times. We can simply apply it to the
nests visited multiple times. Also, to be on the conservative
side, after some number of visits, we can run a training pe-

riod to see whether there is any change in the best number
of processors.

4. Concluding Remarks

On-chip multiprocessing is an attempt to speedup appli-
cations by exploiting inherent parallelism in them. In this
paper, we have made two major contributions. First, we
have presented a runtime loop parallelization strategy for
on-chip multiprocessors. This strategy uses the initial it-
erations of a given loop to determine the best number of
processors to employ in executing the remaining iterations.
Second, we have discussed how the overheads associated
with our approach can be reduced using the past history in-
formation about loop executions.
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