
Profile-driven Selective Code Compression

Yuan Xie and Wayne Wolf
Electrical Engineering Department

Princeton University
Princeton, NJ 08540, USA

yuanxie,wolf@ee.princeton.edu

Haris Lekatsas
NEC USA

4 Independence way
Princeton, NJ, 08540
lekatsas@nec-lab.com

Abstract

In the embedded system design, memory is one of the
most restricted resources. Code compression has been pro-
posed as a solution to reduce the code size of applications
for embedded systems. Data compression techniques are
used to compress programs to reduce memory size. Most
previous work compresses all instructions found in an ex-
ecutable, without taking into account the program execu-
tion profile. In this paper, a profile-driven code compression
design methodology is proposed. Program profiling infor-
mation can be used to help code compression to selectively
compress non-critical instructions, such that the system per-
formance degradation due to the decompression penalty is
reduced.

1 Introduction

Embedded computing systems are space and cost sensi-
tive. Memory is one of the most restricted resources, which
poses serious constraints on program size. For example, in
an application such as a high-end hard disk drive [5], an
embedded processor occupies a silicon area of about six
mm2, while the program memory for that processor takes
20 to 40mm2. As a result, in many embedded systems,
the cost of RAM or ROM often outweighs that of the main
processors. Choosing a processor for an embedded system
is sometimes determined by the code size, not the perfor-
mance, since the difference between one CPU’s object code
and another’s can be as much as a 3:1 ratio. This problem
has led to many executable code compression efforts. One
industrial example is the IBM Power PC 400 series proces-
sor, shown in Figure 1. Compressed code is stored in the
external memory and a decompression core, which is called
CodePack [5], is placed between the memory and cache. A

0Yuan Xie is currently with IBM Microelectronics Division. His cur-
rent email is yuanxie@us.ibm.com.

table called LAT (Line Address Table) [9] is used to map the
compressed instruction addresses into the original instruc-
tion addresses.

Power PC 40x

Embedded
Processor

Cache Decompression
Core

Decoder Tables

External
Memory

Processor Local Bus
Figure 1. IBM Codepack for PowerPC

Most previous code compression schemes follow apost-
compilationcompression scheme: The source code is com-
piled; the code compression schemes take the output of the
compiler and compresses it into object code; a correspond-
ing decompression hardware is designed. Typically, code
compression schemes compress the whole program, with-
out any knowledge of the program behavior.

In this paper, we propose a code compression design
flow that takes into account the behavior of the program.
After the compiler generates the executable code, we per-
form a profiling task, gathering instruction fetch informa-
tion of the program. The instruction fetch statistics are
then used to help code compression algorithms to selec-
tively compress those less frequently fetched instructions
and leave those most frequently fetched instructions uncom-
pressed.

This paper is organized as follows. Section 2 reviews
previous related work. Section 3 describes decompression
architectures. Section 4 and Section 5 introduce the selec-
tive code compression methodology. We then present our

1

1530-1591/03 $17.00  2003 IEEE

experimental results. Finally we conclude the paper.

2 Related Work

There have been various approaches to code compres-
sion. Wolfe and Chanin [9] were the first to propose an
embedded processor design that used Huffman coding to
compress cache blocks. A similar technique, which uses
more complicated Huffman tables called CodePack [5], has
been developed by IBM and used in their PowerPC proces-
sor. Lekatsas and Wolf [7] proposed an algorithm called
SAMC, which is based on arithmetic coding in combina-
tion with a precalculated Markov model. A decompression
architecture for SAMC is described in [10]. Xieet al. [11]
proposed an algorithm that uses variable-to-fixed coding al-
gorithm. These code compression schemes compress all
instructions in the program, therefore, the decompression
overhead occurs at every instruction fetch.

Selectively compressing only part of instructions rather
than compressing all instructions is not a new idea. There
has been some previous work on selective code compres-
sion. Beniniet al. [1] proposed a technique of selective in-
struction compression for reducing the energy required by
the program to execute on embedded systems. The method
is based on the idea of compressing the most commonly
executed instructions so as to reduce the energy dissipated
in memory accesses. Their profiling results shows that the
top 256 most used instructions in their benchmark occupied
a large percentage of the program execution time. There-
fore, they only compressed these 256 32-bit instructions
into a dictionary with eight-bit index. The advantage of
their choice is that the decompression table width is fixed
and limited, and the decompression logic has reduced com-
plexity. However, their major objective of code compres-
sion is not memory savings, but memory energy reduction.
Therefore, their experimental results only show the energy
savings and no memory saving result is mentioned.

Lekatsaset al. [8] proposed dictionary-based code com-
pression algorithm to compress frequently appearing in-
structions. Similar to Benini’s approach, they use a dic-
tionary table of 256 entries. Due to the limited size of the
table, only the top 256 most frequent appearing instructions
are compressed while other instructions of the code are left
uncompressed. They designed a one-cycle code decompres-
sion unit that enhances the performance of the core system
by an average of 25% and achieves a code size reduction of
35% on average for Xtensa 1040 processor.

Debray and Evans [3] described an approach to selec-
tively compress infrequently executed portions of a pro-
gram. The decompression is done in software. The infre-
quently executed functions is replaced by a stub that invokes
a decompression procedure. This procedure decompress the
code for a function into a runtime buffer. The runtime over-

head caused by the dynamic decompression is reduced, be-
cause only infrequently executed functions are compressed.

3 Code Compression Algorithm and Decom-
pression Architecture

3.1 Compression Algorithm

The code compression algorithm used in our research is
called V2FCC (Variable-to-Fixed Code Compression). It
was first proposed by Xieet al. and described in detail
in [11]. The algorithm is a variable-to-fixed (V2F) length
coding algorithm based on Tunstall coding. It translates
variable-length bit sequences into fixed-length bit code-
words.

Any compression algorithm needs a probability model to
select appropriate codes during compression. In our exper-
iments we have used two different models, a static one, and
a Markov-based one. A static V2F code compression al-
gorithm uses a statici.i.d probability model, which assumes
that the ones and zeros in the executable code have indepen-
dent and identical distribution. Decompression is fast since
each fixed-length codeword can be decompressed in paral-
lel. For example, the average compression ratio (which is
defined as the ratio of compressed code size over the orig-
inal code size) for applications of TMS320C6x, a VLIW
processor by Texas Instruments, is about 82%; it takes about
5 cycles to decompress an instruction word, which is 256-
bit long.

A Markov V2F code compression algorithm uses a more
complicated probability model; probabilities are derived
from a Markov model, which improves compression ratio.
A Markov model consists of a number of states, where each
state is connected to other states and each transition has a
probability assigned to it. By using a Markov model, com-
pression ratio is improved but the decompression speed is
much slower than the static V2FCC because the decom-
pression cannot be done in parallel. The average compres-
sion ratio for TMS320C6x is about 70% by using a 4X32
Markov model (the model width is four and the model depth
is 32); it takes average 40 cycles to decompress a 256-bit
long instruction words.

Readers can refer to [11] for more details about the code
compression algorithm as well as an elaborate explanation
of the probability models.

3.2 Decompression Architecture

Depending on where to place the decompression engine
in the memory hierarchy, the decompression architecture
can be classified into two categories:

2

1. Pre-cache architecture.The decompression engine is
placed between the memory and the cache and decom-
pression happens on cache refill. The main memory is
compressed but the instruction cache is uncompressed,
such that the instruction cache contains decompressed
instructions ready for execution. Decompression hap-
pens whenever there is a cache miss. The advantage
of this architecture is that the decompression is not
time-critical since it happens only when the instruction
cache needs refill. The direct impact is that thecache
miss penaltyis increased since additional decompres-
sion cycles are added. Compression does not improve
the utilization of the cache since it is not compressed.

CPU

Main

memory
I-cache D-unit

 Instruction address bus

Bus1 Bus2

 Figure 2. Pre-cache architecture

CPU

Main

memory I-cache D-unit

Instruction address bus

Bus1 Bus2

 Figure 3. Post-cache architecture

2. Post-cache architecture.The decompression engine
is put between the cache and the processor. The mem-
ory and cache are both compressed. Decompression
happens at every instruction fetch. When the CPU
generates and sends the program address through the
instruction address bus, the compressed code is read
from the instruction cache and decompressed on–the–
fly by the decompression core. Therefore, decompres-
sion is on the critical path of the instruction execution
pipe line. Assuming that the latency to decompress
an instruction isN cycles, if the decompression pro-
cedure is not pipelined, the pipeline has to stall for
N cycles and wait for the decompression to finish. If
the decompression procedure is pipelined, then the ef-
fect of decompression is actually adding N stages to
extend the pipeline depth. The branch penalty is also
increased since the branch target is solved after the in-
structions are decoded.

According to Lekatsaset al. [7], the post-cache architec-
ture has advantages over the pre-cache architecture in terms

of memory saving and power saving. However, the decom-
pression design for post-cache architecture is more critical
than the design for the pre-cache architecture, since in the
pre-cache architecture, the decompression latency only in-
creases the cache miss penalty, while in the post-cache ar-
chitecture the decompression is on the critical path of pro-
gram execution. In order to reduce the CPU performance
degradation caused by the decompression penalty in a post-
cache architecture, in the next section a selective code com-
pression scheme is proposed for the post-cache architecture,
where the decompression is on the critical path of program
execution.

4 Selective Code Compression

Most of the previous work on code compression treat
the executable code as a simple linear sequence of instruc-
tions and compress the whole program sequentially block
by block.

In this section, we propose a trace-based selective code
compression scheme to reduce the performance penalty that
caused by the decompression overhead. We do not com-
press the whole program. On the contrary, we selectively
compress some instructions while keep other instructions
uncompressed. Therefore, the performance is only affected
when the fetched instruction is compressed.

The idea stems from one of the most important and per-
vasive principles in computer design:making the common
case faster. Designer always favor the frequent case over
the infrequent case. Improving the frequent event rather
than the rare event will definitely help the overall improve-
ment. To apply this simple principle to code compression,
such that we can achieve good compression while the per-
formance does not deteriorate greatly, we have to decide
what the frequent case is and how much improvement we
can gain by making the common case faster. A simple “90-
10” rule can be used to help identify the frequent case, and a
fundamental law calledAmdahl’s law, can be used to quan-
tify this principle.

The “90-10” rule states that most programs obey the
“90/10” locality rules [4], which means that program tend
to reuse instructions they have used recently. A widely held
rule of thumb is that a program spends 90% of its execution
time in only 10% of the code.Amdahl’s law [4] states that,
if we only change part of the system, the overall change
(Overall Change) to the whole system is limited by the
fraction of the part that has been changed:

Overall Change = 1 − Fractionchanged +
Fractionchanged ∗ Change

Following the simple “90-10” rules, if 90% of the in-
frequently used code are compressed, and the compression
ratio for this fraction of the code isR, then according to
Amdahl’s law, the overall compression ratio we can achieve

3

is 0 .1 + 0 .9 ∗ R. This means that the compression ratio
for the infrequently used code contribute a significant im-
provement in the overall size reduction.

On the other hand, since the other 10% of the code
occupy 90% of the execution time, assuming the perfor-
mance penalty that caused by the decompression over-
head is Penalty , the overall performance change is
0 .9 + 0 .1 ∗ Penalty . This means that the penalty caused
by the decompression of the infrequently used code would
not induce a significant performance degradation.

5 Design Methodology

Figure 4 shows the basic design methodology. The
source code is compiled into executable code for the target
CPU architecture. After the executable binary program is
generated, we do not compress it immediately. Instead, we
do a execution profiling, generating the execution trace. The
profiling information is then passed to the next step to be an-
alyzed. A code compression algorithm uses the information
and selectively compresses some instructions while leaving
other instructions uncompressed. The partially compressed
code is then fed into a performance evaluation stage to see if
the performance is acceptable. If not, the compression algo-
rithm chooses different parameters and compresses the code
again until the performance evaluation is satisfied. The par-
tially compressed code and the corresponding decompres-
sion hardware are the final output.

The key issue in the design flow is what kind of profil-
ing information are useful and how to identify the candidate
instructions to be compressed. From the execution profile,
we only care about when and which instruction is fetched
into the CPU pipeline. We do not care about the execution
time of the instructions. This is because the decompres-
sion penalty only occurs when a compressed instruction is
fetched. We trace all the instructions that are fetched into
the CPU and sort them by how many times they are fetched
into CPU, in a decreasing order.

We define a thresholdth, 0 ≤ th ≤ 1, to specify the ratio
of instruction fetching that should not incur decompression
overhead over the total instruction fetching. The higher the
threshold, the less instructions are compressed. Whenth =
1, all instructions fetched into CPU are not compressed and
the performance is not affected.

Based on the thresholdth, we keep those most frequently
fetched instructions uncompressed and only compress other
less frequently fetched instructions. If the performance
evaluation is not satisfied, the thresholdth is increased and
the code is re-compressed until the performance is satisfied.

Our approach differs from the selectively compression
approach proposed by Lekatsas et al. [8] in two ways:

• Their approach does not use execution profiling. They
choose the most frequently appearing instructions in

C code

Compiling
source code

Trace Analysis
Parameters selection
Code Compression

Partially
compressed

code

Decompression
hardware

Profiling
executable code

Executable
code

Execution
trace

Performance
evaluation

 Figure 4. Profile-driven code compression de-
sign flow

the code and compress them. However, during pro-
gram execution, the most frequently appearing instruc-
tions in the code may not be the most frequently
fetched instructions that are requested by the CPU.

• Their approach compresses the most frequently ap-
pearing instructions, while we leave the most fre-
quently fetched instructions uncompressed. Their ap-
proach is based on a fast dictionary-based decompres-
sion engine that has no decompression penalty. Our
approach is suitable for the case where decompression
penalty may cause serious performance degradation,
especially for code compression schemes that use sta-
tistical coding algorithms.

Our approach differs from the profile-guide code com-
pression proposed by Debray and Evans [3] in that: their
approach is to reduce dynamical software decompression
overhead while ours is to reduce hardware decompression
overhead; they use function as a unit of compression and de-
compression, while we use block (an instruction or a fetch
packet) as a unit of compression and decompression.

6 Case Study on ADPCM Decoder

We use one of the multimedia benchmarks, ADPCM de-
coder [6], to demonstrate our design flow. ADPCM stands
for Adaptive Differential Pulse Code Modulation. It is
a family of speech compression and decompression algo-
rithms. A common implementation takes 16-bit linear PCM

4

samples and converts them to four-bit samples, yielding a
compression rate of 4:1. The profiling input we used isclin-
ton.pcm, downloaded from Mediabench’s website [6].

After compiling the source code with Code Composer
Studio from Texas Instruments, we generated executable bi-
nary code for TMS320C6x. A cycle accurate simulator [2]
was then used to generated execution trace. The program
takes515467 clock cycles to finish and performs90547
instructions fetches. We used the Tunstall coding based
V2FCC code compression algorithm described in Section
3, and used an instruction word (which is 32 bytes long
and is calledfetch packetin TMS320C6x) as the basic com-
pression block. We chose different probability models and
different threshold values to evaluate the compression ra-
tio and the performance. While doing performance evalu-
ation, we assumed the decompression penalty will cause a
pipeline stall until decompression is finished.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 threshold

Compression ratio

4-bit Tunstall code based V2F compression
 1-bit static iid model

Figure 5. Compression ratio vs. threshold
with V2FCC using static model

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

1 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
Threshold

Compression ratio

4-bit Tunstall code based V2F compression
 4x32 Markov model

Figure 6. Compression ratio vs. threshold
with V2FCC using Markov model

Figure 5 and Figure 6 show the compression ratios for
ADPCM decoder when we change the threshold while us-
ing a static model and a Markov model respectively . Fig-
ure 7 and Figure 8 show the normalized execution cycles for

ADPCM decoder when executable code is compressed. The
decompression latency for static V2F code compression is
five clock cycles and for Markov V2F code compression is
40 clock cycles.

It is interesting to note that when we set the threshold
value to be 1, which means all fetched packet in the execu-
tion profiling are not compressed, we can still achieve a cer-
tain compression ratio. The reason is that there always exist
instructions that are not executed in the profiling execution;
some are redundant, unreachable or dead code generated by
the compiler, or some are infrequently used functions, such
as error handling procedures. Therefore, we can always
achieve a certain compression ratio while performance is
not affected at all.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 0.99 0.98 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 threshold

N
or

m
al

iz
e

ex
ec

ut
io

n
cy

cl
es

Figure 7. Normalized execution time when
threshold changes with V2FCC using static
model

0

1

2

3

4

5

6

7

8

1
0.9

9
0.9

8
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Threshold

N
or

m
al

iz
ed

 e
xe

cu
tio

n
cy

cl
es

 Figure 8. Normalized execution time when
threshold changes with V2FCC using Markov
model

When the threshold is set to 0.99, we found that we can
achieve a good compression ratio while performance does
not deteriorate substantially. For example, for Markov V2F
code compression, the performance penalty is only 6% (the
execution cycles to finish the program is increased by 6%)
while for static V2F coding, the performance penalty is less
than 1%. If we compress all instructions, by setting the

5

threshold to 0, compression ratio is only improved about
2% for both cases, but performance is greatly affected: The
Markov V2F code compression causes the CPU to take al-
most 8 times longer to finish execution while the static V2F
code compression needs twice clock cycles to get the job
done.

From our experiments, we conclude that by using
profile-driven selective code compression, we can achieve
good code compression while still keep the performance al-
most the same as the case where there is no code compres-
sion applied. Another conclusion we can draw is that, by
using selective code compression, we can use more compli-
cated compression to achieve good compression ratio, since
the decompression overhead is not as significant as is the
case when all instructions have to be decompressed.

7 Conclusion

In this paper, we propose a profile-driven code compres-
sion methodology. Program execution profile information
can be used to selectively compress infrequently fetched in-
structions such that the performance of the processor is not
compromised too much due to the decompression overhead.

8 Acknowledgments

This work was supported by Semiconductor Research
Corporation (SRC).

References

[1] L. Benini, A. Macii, E. Macii, and M. Poncino.Se-
lective Instruction Compression for Memory Energy
Reduction in Embedded Systems. IEEE/ACM Proc. of
International Symposium on Low Power Electronics
and Design (ISLPED’99), pages 206–211, 1999.

[2] V. Cuppu. Cycle Accurate Simulator for
TMS320C62x, 8 way VLIW DSP Proces-
sor. http://www.glue.umd.edu/ ramvinod/c6xsim-
1.0.tar.gz.

[3] S. Debray and W. Evans. Profile-guided code com-
pression.Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, pages 95–105, June 2002.

[4] J. Hennessy and D. Patterson.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publish-
ers Inc., Palo Alto, CA, 1990.

[5] T. Kemp, R. Montoye, J. Harper, J. Palmer, and
D. Auerbach. A Decompression Core for Pow-
erPC. IBM Journal of Research and Development,
Vol. 42(6):807–812, November 1998.

[6] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems.Proceedings
of the 30th International Symposium on Microarchi-
tectures, pages 330–335, 1997.

[7] H. Lekatsas. Code Compression for Embedded Sys-
tems.Ph.D. dissertation, Princeton University, 2000.

[8] H. Lekatsas, J. Henkel, and V. Jakkula. Design of an
one-cycle decompression hardware for performance
increase in embedded systems.Proceedings of the De-
sign Automation Conference, pages 34–39, June 2002.

[9] A. Wolfe and A. Chanin. Executing Compressed Pro-
grams on an Embedded RISC Architecture.Proceed-
ings of the International Symposium on Microarchi-
tecture, pages 81–91, December 1992.

[10] Y. Xie, W. Wolf, and H. Lekatsas. A Code Decom-
pression Architecture for VLIW processors.Proceed-
ings of the 34th Annual International Symposium on
Microarchitecture, pages 66–75, December 2001.

[11] Y. Xie, W. Wolf, and H. Lekatsas. Code Compression
for VLIW Processors using Variable-to-fixed Coding.
Proceedings of International Symposium on System
Synthesis, October 2002.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

