

Abstract:
A modern special-purpose processor (e.g., for image and
graphical applications) usually contains a set of instructions
supporting complex multiply-operations. These instructions
perform a variety of multiply-operations with various data bit-
widths and concurrent-execution requirements. For instance,
such an instruction set may include instructions to perform
signed/unsigned 32X32, signed/unsigned dual 16X16,
signed/unsigned 8X8 MAC, and etc. Typically, a co-processor
or a complex MAC (Multiplier-ACcumulator) unit is required
to execute those instructions.
 Developing such a complex MAC/co-processor
involves a series of design tasks including micro-architecture
design, component allocation/binding, interconnect binding,
pipeline insertion and control generation. This design process is
non-trivial, time-consuming and error-prone, which is usually
performed by experienced design engineers. In this paper, we
present a synthesis method for application-specific MAC/co-
processor generation.
 The MAC/co-processor synthesis problem is defined
as: Given a set of instructions and the number of execution
cycles for each instruction, generate a MAC/co-processor
design (including a data-path and a control unit) such that the
total area-cost is minimized subject to the given execution-
cycle constraints.
 The MAC/co-processor generation consists
of the following two steps. In the first step, we
determine a set of minimum-cost components
required to realize the given instruction set. In the
second step, we perform micro-architectural-level
synthesis tasks, including component mapping,
interconnect synthesis, pipeline insertion, and
control synthesis to generate the MAC/co-processor
design.
1. The Minimal-cost Component-set Determination

(MCD) Algorithm
We first present several properties that will be used as the
foundation of the MCD algorithm.
Observation 1: A type-n component with a bit-width of b
can realize (cover) any instruction of type-n operation with a
bit-width less than or equal to b.
Lemma 1. Let an M-bit multiplicand be decomposed into i sub-
operands of bit-width m1, m2,…mi and an N-bit multiplier be
decomposed into k sub-operands of bit-width n1, n2,…nk. We
need (i× k) multipliers m1×n1, m1×n2,…mi×nk, and (i× k -1)
adders to implement the NM × multiply-operation.

For Lemma 1, if we set i≤ 2 and the multiplier to k
sub-operands of the same bit-width, we will have the following
property.
Observation 2: Let an M-bit multiplicand be decomposed into
1 or 2 sub-operands and an N-bit multiplier be decomposed into
k sub-operands of equal bit-width. Then, there exist M possible
design alternatives (i.e., M decomposition forms with different
combinations of multipliers and adders) to implement the
multiply-operation.

Observation 3: Using a single NM × multiplier to implement
a single-cycle (ek=1) NM × multiply-operation is the cheapest
implementation in terms of the area cost, i.e., the total gate
count.

We formulate the MCD problem into a covering
problem. Alg. 1 shows the MCD algorithm. The inputs to the
algorithm include a set of instructions (Inst_Set) and the
number of execution-cycles for each instruction. The output is a
minimal-cost component-set (MC) that can realize the given
instruction set. We will use the example shown in Figure 1 as a
walkthrough example, which includes four instructions:
dualmult(16X16,1), dualmult(18X14,1), mult(24X24,1) and
mult(32X32,2), to explain the MCD algorithm.

First, the algorithm partitions the instructions into
three groups (Line3): dual (Idual), single-cycle (Isingle) and multi-
cycle (Imulti) instructions, follows by sorting the instructions in
an ascending order according to their bit-widths (Line 4). The
algorithm will perform the covering procedure on the
instructions by this order.

Next, the algorithm applies observations 1&3 on the
dual-instruction group (Line 5). Note that intuitively more
components will be allocated for dual-instructions, which will
provide more resource-sharing opportunities for the
implementation of single- and multi-cycle instructions. For
example, initially it allocates two 16X16 multipliers to realize
the dualmult(16X16,1) instruction, as illustrated in Figure 1(a).
Now consider the dualmult(18X14,1) instruction, by applying
observation s 1&3 it allocates two 18X16 multipliers that can
cover the two dual instructions.

1. Algorithm MCD(Inst_Set)
2. begin
3. {Idual, Isingle, Imulti}=PAR (Inst_Set).
4. Sort_BW(Idual, Isingle, Imulti);
5. MC=Obser1&3 (Idual);
6. for ∀ insti ∈ Isingle do
7. begin
8. MF = Obser2(Isingle);--(k is set to 1)
9. MCcurrent = Covering(MC, mf1) ;
10. for ∀ mfj ∈ MF do
11. MCtemp = Covering(MC, mfj);
12. If area_cost(MCcurrent) > area_cost(MCtemp)
13. MCcurrent = MCtemp;
14. end_for
15. MC= MCcurrent ;
16. end_for
17. for ∀ insti ∈ Imulti do
18. begin
19. MF = Obser2(Imulti);--(k is set to ek)
20. MCcurrent = Covering(MC, mf1) ;
21. for ∀ mfj ∈ MF do
22. MCtemp = Covering(MC, mfj) ;
23. If area_cost(MCcurrent) > area_cost(MCtemp)
24. MCcurrent = MCtemp;
25. end_for
26. MC= MCcurrent ;
27. end_for
28. return MC;
30.end

Alg. 1: The MCD algorithm.

G-MAC: An Application-Specific MAC/Co-Processor Synthesizer
Alex C.-Y. Chang, Wu-An Kuo, Allen C.-H. Wu and TingTing Hwang

Computer Science Department, Tsing Hua University
Hsin-Chu, Taiwan 30043

This research was supported by grants of NSC 91-2215-
E-007-040 and NSC90-2218-E-007-043.

1530-1591/03 $17.00  2003 IEEE

Then, the algorithm first invokes the decomposition-
form generation procedure to generate all decomposition-forms
for one single-cycle instruction (Lines 6-16). It then applies the
covering procedure on all decomposition-forms of each
instruction. The covering solution with the minimum area cost
will be selected as the final covering result. This covering
procedure repeats for all single-cycle instructions. For example,
now consider the single-cycle instruction mult(24X24,1). By
applying observation 2, we can obtain 24 decomposition-forms.
Figure 1(b) shows two covering solutions on two out of 24
decomposition-forms of mult(24X24,1). The first one (on the
left) uses two 24X12 multiply-operations to implement the
instruction, and the final covering result requires two
multipliers and one adder. The second one (on the right) uses a
24X24 multiply-operation to implement the instruction, which
requires two multipliers. By computing the overall area costs
for all possible covering solutions, the last one has the lowest
area cost that will be selected as the covering result.

 Next, the algorithm invokes the decomposition-form
generation procedure to generate all the decomposition-forms
for one multi-cycle instruction (Lines 17-27). Note that k is set
to the number of execution cycles of the instruction; i.e., ek=k.
It then applies the covering procedure on all decomposition-
forms of each instruction. This covering procedure repeats for
all multi-cycle instructions. For the multi-cycle instructions, the
covering procedure needs to take into the cycle constraint (ek)
into consideration for resource sharing. Consider the two-cycle
instruction mult(32X32,2). By applying property 2, we can
obtain 32 decomposition-forms. We can use two 32X16
multiply-operations to implement this instruction. Since the
cycle constraint ek=2, we need only one 32X16 multiplier to
realize it. Hence, the covering result is shown in Figure 1(c) (on
the left). We can also use four 16X16 multiply-operations to
implement the same instruction, which can be realized by using
two 16X16 multipliers. The covering result is shown in Figure
1(c) (on the right). The algorithm computes the overall area
costs for all possible covering solutions, the one with the lowest
area cost will be selected as the covering result. Finally, the
algorithm returns the component-set (MC).

2. Experimental Results
We have implemented the MCD algorithm and the MAC/co-
processor synthesizer G-MAC. The inputs to the generator
include an instruction set, cycle constraints and the pipeline

stages. The outputs include a Verilog RTL description and its
synthesis script file. For all experiments, we used Synopsys’s
Design Compiler to synthesize the RTL design into a gate-level
design with the maximum-speed option. Then, we used
AVANTI’s Apollo to perform the place & route design tasks. In
the experiments, we used the TSMC 0.35um library.

Table 1
(0C, 3.6V) (25C, 3.3V) (100C, 2.7V)# of

pipeline
stage

Timing
(ns) Area Timing

(ns) Area Timing
(ns) Area

1 5.98 16401 7.22 16559 10.28 16583
2 4.10 12159 5.26 12967 9.52 13207
3 3.42 13247 5 13504 6.62 14546

Instructions: mult(32,32,2), mult(32,16,1), dualmult(16,16,1)
Table 2

(0C, 3.6V) (25C, 3.3V) (100C, 2.7V)# of
pipeline

stage
Timing

(ns) Area Timing
(ns) Area Timing

(ns) Area

1 6.15 19026 8.16 20214 12.52 21847
2 5.06 17115 6.24 18851 9.64 19014
3 4.72 17606 5.78 17976 7.02 18658

Instructions:
mult(32,32,2), mult(28,28,2), mac(24,24,2), mult(32,16,1),
mac(16,16,1), mac(12,12,1), dualmac(14,8,1), dualmac(8,8,1),
dualmult(16,16,1), dualmult(8,8,1)

We have generated two MAC units to realize two

instruction sets. The first instruction set includes three
instructions and the second set includes 10 instructions, as
depicted in Tables 1 and 2. The run-times for the MAC
generation were less than one second on a Sun Blade 1000
workstation. Tables 1 and 2 show the experimental results. The
results show that under the normal condition (25C, 3.3V) the
two designs achieved speeds of 170-200MHz with three
pipelined-stages. Figure 2 illustrates the final layout of the first
MAC design.

3. Conclusions
In this paper, we have presented a novel technique to determine
a minimal-cost component-set for realizing a set of complex
multiply-operations. We have also presented a synthesis system
G-MAC that can automatically generate a complex MAC/co-
processor from a given set of instructions and constraints. The
experimental results have demonstrated that our proposed
method and system can produce high-performance complex
MAC/co-processors on the fly.

Figure 2: The final layout of the first MAC.

Figure 1: An MCD example.

{dualmult(16X16,1),
dualmult(18X14,1)}

*
16 16

*
16 16

18 1418 14

(a)

(b)

24 24
* *

18 16{dualmult(16X16,1),
dualmult(18X14,1),

mult(24,24,1)}

(c)

*
+

*
24

+

16

64
48

24 32
*

+
*

24

+

16

64
48

24 18

*
18 16

*
18 16

* *
+

24 1624 16

48

{dualmult(16X16,1),
dualmult(18X14,1),

mult(24,24,1)
mult(32X32,2)}

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

