
A Fully Self-Timed Bit-Serial Pipeline Architecture

for Embedded Systems
Achim Rettberg, Mauro Zanella, Christophe Bobda, Thomas Lehmann

University of Paderborn, Paderborn / Germany
Email: achim@c-lab.de, zanella@mlap.de, bobda@upb.de, Thomas.Lehmann@torkin.de

1 General Overview
Area minimization, low power and high performance

are objectives to be reached in chip design. Bit-serial
architecture offers a great advantage in comparison with
bit-parallel architectures as regards area minimization.
One field of application of such an architecture is e.g.
signal processing in terms of digital filters or digital
controllers. These algorithms may be realized in hardware
by means of the proposed architecture; this requires only
small chip area and an equally small number of input and
outputs pins, thus reducing the size and the complexity of
the printed circuit. The speed of the bit-serial processing
is high enough for the application domain in question.
E.g., in an electrical motor-current control there are the
delays of input/output converters (e.g., A/Ds and D/As)
and those resulting from the inertia of the motor.

In synchronous design, the performance of these
architectures is affected by the long lines which are used
to control the operators and the gated clocks. The
architecture described in this contribution avoid a long
control lines by a local distribution of the control circuitry
on the operator level. To our knowledge, this is the second
paper detailing the implementation of a fully interlocked
synchronous architecture after that described in [1].

2 Self-Timed Bit-Serial
As a rule, mapping huge dataflow graphs to the target

architecture requires a central control unit. This unit
provides synchronization between the operators and
controls data distribution and storage within the realized
circuit. Usually, the control unit is realized by a finite-
state machine. In combination with an increase in chip
area it may not be possible to implement a central control
unit. Therefore, the aim is to realize all the control signals
locally. In the architecture presented, the central control
unit is replaced by local control elements. These are
synchronized and interlinked by handshake wires.
Therefore the required control wires are local. As
mentioned before, the handshake mechanism used in the
architecture is similar to the one that is used in bit-serial
asynchronous architectures (cf. [3]).

The central control unit may be conceived as a
simplified counter that, at a given time, triggers defined
actions in given time slots. This reflects the paradigm of
synchronous design. Taking into account a so-called one-

hot implementation, it is possible to map the counter to a
defined shift register with a special marker that is
"pushed" through the register. When the marker reaches a
defined position within the shift register it initiates actions
in the circuit. The main idea of this architecture is to map
the counter (control unit) to a shift register in the data
path. The modified operators in the data path recognize
the marker of the counter. Therefore, the marker can pass
through the operations unhindered and unmodified. It is
attached to the data and controls the data processing in the
data path. A data package contains the control marker and
the processed data. Additionally, a gap may be included
between the control marker and the data. Such a gap can
be regarded as a separator. A valid data package is shown
in Figure 1.

The bit order of the data requires LSB1 first. To
recognize the control marker in the data path, so-called
scanners are needed (see Figure 1). These scanners
identify the marker and activate the component control.
The time factor is mapped to a position within the
implemented data path; thus we know exactly the length
of the control marker, the gap and the data and can
therefore detect where the data are processed when a
marker signal reaches a certain position in the data path.
The distance between the control information (the marker)
and the operations is predefined with the operations to be
affected only by the control marker of the actually
processed data. Consequently, the distance between
control wires and the controlled elements is known
(Figure 1).
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Figure 1. Two scanners with automaton
                                                          
1 LSB = least significant bit
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To avoid problems with identical bit patterns, we use
two scanners (see Figure 1) that realize an insensitive
automaton against those patterns. The first scanner
activates the automaton and the second ends the activation
phase. The automaton goes into idling state (wait). An
edge detection allows retaining the original scanner
signal. Both edges can be used as a control signal
depending on the required functionality.

It is necessary that their exist a minimum distance
between the scanners, as well as between the data
packages, to avoid data conflicts. All control signals of an
operation with valid data are activated by a control marker
of the corresponding data package, resulting in a
independently data movement along the data path.

For this purpose, the fastest path in the dataflow graph
is blocked by a so-called stall wire until all other
necessary data packages have arrived at a specific
synchronization point. This functionality is realized by a
component named synchronizer (see section Figure 2).
Due to the defined length of the data packages the length
of the stall wire is locally limited.
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Figure 2. Synchronizer realization
The synchronizer is responsible to block the inputs

that arrived earlier until all inputs are ready. The stall wire
in Figure 2 realizes the blocking of the corresponding
inputs. The valid data at the inputs are recognized by the
control marker that is stored before the gap and the data in
a data package. Here, the control marker can be
interpreted as a synchronization marker.

Furthermore, we have introduced a stall-block signal
in the architecture. "Stall-block" means that a complete
block with scanners on the input and output sides of an
operator is blocked. The counterpart of the stall-block is

the Free-Previous-Section signal. In the case of the latter,
the block can be used. Additionally, realization of the
synchronizer requires the inputs to be synchronous and
the block to be free (Free-Previous-Section is true). In
this case the synchronizer reads the data packages and sets
the stall-block signal. This leads to a communication and
evaluation of scanner signals between the different
synchronizers (see Figure 2).

3 Realized Example: PI controller
For test purposes we have realized a PI (Proportional

and Integral) controller [2] on an FPGA. For this purpose
it was necessary to transform the continuous integrator (s)
into a discrete-time integrator (z). Applying the
trapezoidal integration method for a given sampling
period T, the PI compensator in a discrete form is given
by:

))(
2

( 11 −− +++= tttIPtt uuTyKKuy

For this implementation we have used the target
platform is the FPGA module of the RABBIT system [4].
The PI controller occupies 7 % of the total amount of
FPGA slices. The sampling time of the controller is
approximately 500 kHz. This may be slower than a
parallel implementation, but much faster than required by
such a system.

4 Conclusion and Outlook
The presented architecture has the peculiar feature of

being self-timed and comprising a fully interlocked
pipelining structure which aims at controlling the different
computational paths of a system design.

One example is the automotive industry where
performance, space, cost, size, and weight are of vital
importance, the main feature of this architecture.
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