
Mapping Applications to an FPFA Tile
Michèl A.J. Rosien, Yuanqing Guo, Gerard J.M. Smit, Thijs Krol

Department of Computer Science,
University of Twente, Enschede, the Netherlands

email: {rosien, yguo, smit, krol}@cs.utwente.nl

Abstract— This paper introduces a transformational de-
sign method which can be used to map code written in a
high level source language, like C, to a coarse grain reconfig-
urable architecture. The source code is first translated into a
Control Dataflow graph (CDFG), which is minimized using
a set of behaviour preserving transformations such as de-
pendency analysis, common subexpression elimination, etc.
After applying graph clustering, scheduling and allocation
transformations on this minimized graph, it can be mapped
onto the target architecture.

I. Introduction

In the CHAMELEON/GECKO project we are designing
a heterogeneous reconfigurable System-On-a-Chip (SOC).
This SOC contains a general-purpose processor (ARM
core), a bit-level reconfigurable part (FPGA) and several
word-level reconfigurable parts Field Programmable Func-
tion Array (FPFA) tiles; (see Section II). The objective
of this paper is to show that a transformational design
method can be used to map processes, written in a high
level language (C/C++), to an FPFA tile.

II. The target architecture: FPFA

Each word-level reconfigurable part of our architecture,
the FPFA processor tile (see [3]), consists of five identical
Processing Parts (PPs), which share a control unit (see Fig.
1). An individual PP contains an arithmetic and logic unit

Tile

Control

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

MB

GB

LB

Fig. 1. Processor tile

(ALU), four input register banks named Ra, Rb, Rc, Rd
and two memories called MEM1 and MEM2. Each regis-
ter bank consists of four registers. Each memory has 512
entries. A crossbar-switch makes flexible routing between
the ALUs, registers and memories possible. The crossbar
enables an ALU to write back their result to any register
or memory within a tile.

III. Definition of a CDFG

In our toolset the input language is first translated into
a Control Data Flow Graph(CDFG). A CDFG is a graph
that represents the operations (for example C operators
and function calls) and the dataflow between those opera-
tions. This data includes operands of mathematical opera-
tions, the statespace (see section IV) and control informa-
tion which is used, for example, to control MUXes which

in turn control the iteration and selection statements. Ex-
amples of such statements are: the if statement and the
while statement.

IV. Representation of C memory model

To be able to map a C program to a CDFG it is necessary
to map the linear, random access memory model of C to
the hypergraph model. A mathematical abstraction of this
memory model, called the statespace, is introduced in [1].
The statespace is a set of tuples: {(ad, da), (ad, da), ...}. A
tuple consists of an ad field, which represents the address,
and a da field which represents the data at that address.
This data can be anything, including a tuple of this type
again. Interaction with the statespace is done using three
primitive hypergraphs. These primitive hypergraphs allow
writing data to the statespace and reading or deleting data
from the statespace.

ss_in(1)

ST

ad(1) da(1) ss_in(2)

FE

ad(2) ss_in(3)

DEL

ad(3)

ss_out(1) da(2) ss_out(3)

Fig. 2. Primitive operations on the statespace.

Fig. 2 shows the three primitive operations on the states-
pace.

• ST: ”Store”, Stores a tuple on the statespace.
• FE: ”fetch”, Reads a tuple from the statespace.
• DEL: ”Delete”, Deletes a tuple from the statespace.

V. Example of a generated CDFG

This section will show a CDFG generated from a piece
of FIR filter code. The source code is shown below. The
code consists mainly of a simple while loop which adds and
multiplies values from two arrays.

void main() {
sum = 0; i = 0;

while (i < 5) {
sum = sum + a[i] * c[i]; i = i + 1;

}
}

VI. Mapping and Scheduling of Directed

Acyclic Graphs on An FPFA Tile

We use a three phase decomposition algorithm based on
the two-phased decomposition of multiprocessor scheduling
introduced by Sarkar [4]: (1) Task clustering and ALU
data-path mapping; (2) Scheduling the clusters on the 5
physical ALUs of an FPFA tile; (3) Resource allocation.

1530-1591/03 $17.00  2003 IEEE

ss_in

FE FE FEFEFE FE

ST

FE FE

ss_out

ST

+

*

+

*

+

* *

i

a##0 c##0 a##1c##1a##2 c##2 a##3 c##3

4

sum

Fig. 3. Translation of the FIR filter code. After complete loop
unrolling and full simplification.

A. Clustering and data-path mapping

In the clustering phase the task graph is partitioned and
mapped to an unbounded number of fully connected ALUs,
which can perform inter-ALU communication simultane-
ously. This clustering and mapping scheme is based on the
ALU data-path of our FPFA.

B. Scheduling of clusters

In the scheduling phase, the graph obtained from the
clustering phase is scheduled according to the maximum
number of ALUs (in our case 5). This means that at most
5 clusters can be on the same level. In a clustered graph,
the longest path is referred to as critical path. All nodes on
the critical path have an incremental level number. The
clusters that do not belong to any critical path can be
moved up and down within the range where the dependence
relations among the tasks are satisfied (see Fig. 4). Here
we adopt a heuristic procedure in which the clusters are
scheduled level by level. The complexity is thus linear to
the number of clusters.

Clu1
 Clu2
 Clu3
 Clu4
 Clu5
 Clu6

Clu8
 Clu9

Clu10

Clu0

Clu7

Level0

Level1

Level2

Level3

(a) Before scheduling

Clu1
 Clu2
 Clu3
 Clu4
 Clu5

Clu6

Clu8
 Clu9

Clu10

Clu0

Clu7

Level0

Level1

Level2

Level3

Level4

(b) After scheduling

Fig. 4. Insert a new level when necessary

C. Resource allocation

In the allocation phase, the scheduled graph is mapped
to the resources where locality of reference is exploited,
which is important for performance and energy reasons.
The main challenge in this phase is the limitation of the
size of register banks and memories, the number of buses of
the crossbar and the number of reading and writing ports of
memories and register banks. We adopt a heuristic resource

allocation method, whose pseudocode is listed in Fig. 5.
Please check [5] for details.

//Input: Scheduled Clustered Graph G

//Output: The job of an FPFA tile for each clock cycle

function
 ResourseAllocation(G) {

 for
each level in G
do
 Allocate(level);

}

function
 Allocate(currentLevel) {

 Allocate ALUs of the current clock cycle

 for
 each output
 do
 store it to a memory;

 for
 each input
 of current level

 do
 try to move it to proper register at the clock cycle which is four steps

 before; If failed, do it three steps before; then two steps before; one

 step before.

 if
 some inputs are not moved successfully

 then
 insert one or more clock cycles before the current one to load inputs

 }

Fig. 5. Pseudocode of the heuristic allocation algorithm

The clusters in the scheduled graph are allocated level
by level. The computational complexity of this allocation
method is also linear to the number of clusters.

VII. Conclusion and Future Work

In this paper we presented a transformational method to
map a process written in a high level language, such as C, to
one FPFA tile. The mapping procedure is divided into four
steps: translating the source code to a CDFG, clustering,
scheduling and resource allocation. High performance and
low power consumption are achieved by exploiting maxi-
mum parallelism and locality of reference respectively. In
conclusion, using this mapping scheme, the potential ad-
vantages of FPFA are exploited. Several issues need to
be addressed in the future: Existing graph transforma-
tions need to be optimized and more transformations will
be added; The clustering algorithm will be investigated;
Loops and branches should be included in the clustering,
scheduling and resource allocation phase.

Acknowledgements

This research is conducted within the CHAMELEON
project (TES.5004) and GECKO project (612.064.103)
supported by the PROGram for Research on Embedded
Systems & Software (PROGRESS) of the Dutch organiza-
tion for Scientific Research NWO, the Dutch Ministry of
Economic Affairs and the technology foundation STW.

References

[1] Thijs Krol and Bert-Steffen Visser: “High-level Synthesis based
on Transformational Design”, Internal report, University of
Twente, Enschede, The Netherlands.

[2] Paul M. Heysters, Henri Bouma, Jaap Smit, Gerard J.M. Smit,
Paul J.M. Havinga: “A Reconfigurable function array architec-
ture for 3G and 4G wireless terminals” In press: 2002 Interna-
tional Conference On Third Generation Wireless and Beyond,
May 2002.

[3] G.J.M. Smit, P.J.M. Havinga, L.T. Smit, P.M. Heysters, M.A.J.
Rosien, “Dynamic Reconfiguration in Mobile Systems”, Proceed-
ing FPL2002 Montpellier France, pp 171-181, September 2002.

[4] Vivek Sarkar. Clustering and Scheduling Parallel Programs for
Multiprocessors. Research Monographs in Parallel and Dis-
tributed Computing. MIT Press, Cambridge, Massachusetts,
1989.

[5] Yuanqing Guo, Gerard Smit, “Mapping and Scheduling of
Directed Acyclic Graphs on An FPFA Tile”, Proceedings
PROGRESS 2002 workshop, Utrecht, the Netherlands, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

