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 This work describes the implementation of digital
reconfigurable systems (DRS) using commercial FPGA
devices. The main goal is to present a set of tools for
remote and partial reconfiguration developed for the
Virtex FPGA family. Even though the tools are targeted to
a specific device, their building principles may easily be
adapted to other FPGA families, if they have an internal
architecture enabling partial reconfiguration. The main
contribution of the paper is the tool-set proposed to
manipulate cores using partial reconfiguration in existing
FPGAs.

Currently, only two FPGA vendors support partial and
dynamic reconfiguration. One of them, Atmel, e.g.
produces the FPSLIC, a device including a GPP (general-
purpose processor), memory and programmable logic in
the same integrated circuit. FPSLIC supports partial and
dynamic reconfiguration through context switching [1].
The second vendor, Xilinx, offers e.g. the Virtex family,
which also supports partial and dynamic reconfiguration.
Reconfiguration is possible because internal configuration
elements of this device can be individually addressed [2].
The Virtex family was chosen due to its widespread
availability in the market.

Interest in reconfigurable computing has been growing
in the past two decades [3]. The evolution of DRS is
shown in Figure 1. The first generation comprises systems
aiming to increase performance over GPPs, using off-the-
shelf FPGAs. The second generation comprises
architectures aiming the bottleneck minimization between
GPP and FPGA, and reconfiguration techniques.
Examples of fine-grain SOCs are FIPSOC and
TRUMPET, and of coarse-grain SOCs are GARP and
RAW. Dynamic reconfiguration can be achieved by
context switching with DPGAs, or by partially
reconfigurable devices, like Virtex devices. The third
generation is characterized by architectures target to
dataflow-based algorithms used in multimedia
applications and hardware virtualization.
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Figure 1- Evolution of reconfigurable architectures.

Usually, a circuit has a set of parameters defining its
behavior, being loaded from an external ROM. The
function of the circuit customization tool is to simplify
the design, storing parameters directly into the bitstream,
without using ROMs or external microcontrollers.
Parameters are stored into FPGA memory blocks (e.g.
Xilinx LUTRAM blocks), being modified by local or
remote reconfiguration. This approach reduces the overall
system cost, since it eliminates the need of external
devices and/or the associated control logic to allow setting
parameters at running time.

A design constraint is that parameters that are to be
customized must be associated to a set of LUTRAMs or
BLOCKRAMs at fixed positions. Once the initial
bitstream is created, the tool helps the designer to create
an interface giving access to the parameters. The user
downloads his design into the FPGA. Using the interface
he may change the parameters at will. It should be noted
that partial reconfiguration is used, changing only the
FPGA columns containing the specified parameter
memory blocks.

There are three actors involved in this tool: the
software developer, the circuit designer, and the circuit
user.

The software developer implements a software layer
hiding FPGA architecture details. This software layer is
implemented as a Java applet. The applet communicates
with the server. The server uses Jbits classes to open/write
bitstreams and to access and modify the information
contained in the bitstream. This applet is the same for all
circuits being customized.

The circuit designer uses HTML tags to pass
commands and parameters to the applet to customize his
circuit. For each parameter the circuit designer specifies:
(i) signal name; (ii) format – e.g. binary, decimal,
hexadecimal; (iii) physical position of the parameters
inside the FPGA, defined by row, column, F/G LUT,
slice; (vi) starting and ending bits in the LUTRAM.

 Finally, the circuit user receives the bitstream and the
HTML description responsible to create the
reconfiguration page. In the reconfiguration page the
values of the signals can be modified, saved and partially
downloaded into the device. Therefore, the circuit user
can abstract all details concerning the FPGA architecture,
and carry out remote and partial reconfiguration.

An important comment is that this tool is addressed to
the same goal as the small bit manipulations proposed in
[5], but offering a much higher degree of abstraction to its
user.

The second tool developed is named core unifier. A
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fixed core, named controller, is initially downloaded into
the FPGA. The controller contains three cores: (i)
communication bus, connecting the slave cores; (ii)
arbiter, granting the data line to a given slave core; (iii)
master core, responsible for the communication with the
external world. Other cores, named slave cores, can be
downloaded at run time.

Each slave core communicates with the controller
through virtual pins. To have common routing wires the
controller is synthesized using “dummy cores”, which
include the buffers belonging to the slave cores. The same
procedure is applied to the slave cores, which are
synthesized with a “dummy controller”. “Dummy cores”
are also important to avoid floating signals in the
communication interface.

This tool creates partial bitstreams, working as
follows:
1. A complete master bitstream is opened. It contains

the controller and the dummy cores. The controller is
connected to the dummy cores by wires connecting
pre-placed (by floorplanning) tri-state buffers.

2. One or more complete bitstreams containing cores to
be inserted into the master bitstream are opened.
Each bitstream contains one core and a dummy
controller. The user selects the area corresponding to
one core, and all components inside this area (routing
and CLBs) are inserted into the master bitstream.

This procedure is illustrated in Figure 2.

Slave
Core

Controller

BITSTREAM 1 (master):
• Tri-state buffers
• Master core
• Arbiter
• Dummy cores

BITSTREAM n:
• Slave core and dummy ctrl
• Tri-state buffers
• Send and receive modules

Complete bitstreams merging

Final bitstream

Controller

Partial
Bitstream

Slave
Core

Figure 2 - Bitstream merging procedure.

Figure 3 presents the main window of the core unifier
tool. This window has a 48x32 grid, representing all CLBs
of a Virtex XCV300 device being different for other
devices. Light and dark gray squares represent CLBs not
used (default values). Red squares represent CLBs used
by the master bitstream. Squares with different colors
(e.g. yellow) represent inserted cores. The user can insert
new cores into the master bitstream, a feature that adds
flexibility to the tool, allowing dynamically inserting
and/or removing cores.

This tool permits to implement virtual hardware, in the

same manner as virtual memory. As a function of some
execution scheduling these may be partially downloaded
into the FPGA.

Figure 3 – Core unifier tool main window.

Three main problems exist in this approach, all related
to the current state of commercial FPGA devices and
associated CAD tools: (i) it is hard to constrain the core
logic to reside inside the core bounding box defined by
floorplanning; (ii) it is not possible to constrain routing
with the floorplanner;  (iii) it is not possible to define
exactly the same wiring between tristate buffers. To
obtain a synthesized core restricted to a fixed area, several
routing iterations are performed, requiring even manual
user intervention. This can be compared to the manual
manipulations proposed in [3] and in [5] to verify that
FPGA vendor tools must evolve to better support partial
and dynamic reconfiguration.

As suggestions for future work it is possible to
enumerate: (i) to extend the bus structure to more bit lines
and different bus arbitration schemes; (ii) to develop CAD
tools to automate the manual steps mentioned above; (iii)
to develop techniques for core relocation. Core relocation
is the possibility of loading the same core at different
places inside the FPGA.
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