
Time Budgeting in a Wireplanning Context

Jurjen Westra Dirk-Jan Jongeneel† Ralph H.J.M. Otten Chandu Visweswariah‡

Fac. of EE, Eindhoven University of Technology, The Netherlands
†Fac. ITS, Delft University of Technology, The Netherlands

‡IBM Thomas J. Watson Research Center; this work was performed while at Eindhoven University
jwestra@ics.ele.tue.nl

ABSTRACT

Wireplanning is an approach in which the timing of input-
output paths is planned before modules are specified, synthe-
sized or sized. If these global wires are optimally segmented
and buffered, their delay is linear in the path length and inde-
pendent of the position of the modules along these paths. From
timing requirements, the total budget left to modules after al-
locating the appropriate delay to the wires can be determined.
This paper describes how this budget can be optimally divided
amongst the modules. A novel, static timing-like, mathemat-
ical programming formulation is introduced such that the to-
tal module area is minimized. Instead of only the worst de-
lay, all pin-to-pin delays are implicitly taken into account. If
area-delay tradeoffs are convex, a reasonable approximation
in practice, the program can be solved efficiently. Further, ef-
ficiency of different formulations is discussed, and a low-cost
method of making the budget relatively immune to downstream
uncertainties and surprises is presented. The efficiency of the
formulation is clear from benchmarks with over 2000 nodes
and 5e19 paths.

1. Introduction

In the System-on-a-Chip (SoC) era, big chips consist of many
large modules. This partitioning is due to the use of IP,
and/or the part of a hierarchical design methodology. Inde-
pendent concurrent design of modules is a good way to boost
designer productivity, or to avoid tool capacity limitations.
The problem, however, is that top-level timing constraints
have to be translated to time budgets for modules.

Currently, time budgets are only assigned after (partial) phys-
ical design of modules. Problems are resolved by iterating be-
tween time budgeting and performance tweaking. This can
be a time-consuming and cumbersome process without any
guarantee on convergence, or even feasibility.

In DSM technology, focus has shifted from gate delay to in-
terconnect delay. Especially delay of long interconnect may
become increasingly dominant, and (arguably) worse, unpre-
dictable. This trend also poses problems for timing conver-
gence.

One of the proposed methodologies to tackle the described
problems is known as wireplanning (see [1, 2] and below). The

essence of this methodology is that the uncertainty regard-
ing wire delay, the very cause of the iterations, is removed.
In a wireplanning context, these delays, caused by so called
global wires, are planned. The question of how to distribute
a remaining time budget over the modules, however, has not
been solved yet, and is the subject of this paper.

First, we will introduce the concepts of wireplanning. Next,
we present a new mathematical programming formulation
that enables us to perform optimal time budgeting, taking
wire delay into account before positional information regard-
ing the modules is known. In section 4 we will show how
the formulation can be made even more efficient. Section 5
shows how to make the time budgets “robust” with respect
to downstream uncertainties. We will present some numerical
results, and will conclude with a discussion and conclusions.

2. Wireplanning

The problem of how to organize placement and routing in
chip design is a classical one. Obviously the two have signifi-
cant impact on each other. Traditionally placement precedes
routing, though some interleaving has been tried in the past.
With the dominating role of wiring in the performance of in-
tegrated systems, more and more tool developers started to
think of “wiring-first” approaches. The term wireplanning
was already coined in the eighties to reflect that idea in the
context of a data-path synthesizer. Nowadays wireplanning
stands for an approach introduced in [1] that first allocates
parts of the time budget to the wiring, before fixing, synthe-
sizing, sizing and placing the modules.

In this paper we consider the task of planning a functional
network1 inside a given footprint while constraining the de-
lays between inputs and outputs of the network. The foot-
print prescribes both the geometrical shape as well as the po-
sitions of the terminals along the boundary. Although manip-
ulating the network2 to ensure certain properties is arguably

1Functional networks are defined in [1] as acyclic directed
graphs whose nodes represent functions and whose arcs indi-
cate communications. This means that cycles are either local
to the function, closed outside the network or previously bro-
ken in a sensible way, such as at latch boundaries.
2These manipulations form a framework for decomposing, ab-
sorbing and duplicating functions to obtain equivalent net-
works. A complete algebra for performing this at the logic
synthesis level by monotonicity-preserving transformations
has been worked out in [12].

1530-1591/03 $17.00 2003 IEEE

part of the wireplanning task, we assume the functional net-
work here to be fixed. Further, this network is monotonic,
i.e. there exists a point placement that causes no detours in
input-output paths.

Wireplanning as in [1] rests on two observations:

1. If the size of the individual modules is small compared
to the total area, then every functional network has an
equivalent network with a (near-)monotonic placement.

2. If the wires between the modules are optimally seg-
mented and buffered, then they have a delay linear in
their length.

The former property is the consequence of the fact that any
network with a single node containing all functionality at the
site of a primary output has a monotonic placement. Of
course this is seldom a desirable realization, but the latter
property allows for extracting functionality and moving it
over wire segments without impacting delay.

2.1 Methodology

One of the ideas behind wireplanning is the concept of step-
wise refinement. Since it is not possible to formulate and
solve an optimization for the whole design cycle, it is split
up in separate steps with different optimizations. More and
more information about the (final) design is frozen, and since
wireplanning is non-iterative, more and more parts of the de-
sign space are decisively pruned off very early in the flow,
effectively limiting design space and design iterations. Once
a decision is taken, based on the available information at the
time, this decision is final. In our context, this means that
the time budgets we calculate are “golden.” Calculated areas
have the status of estimates.

For the implementation of (sub)modules, fixed delay synthesis
[9, 8] is employed. Gate sizes are assigned in a systematic way,
based on the observation that if gates are scaled with their
output capacitance, the delay stays the same. Loosely for-
mulated, the result is that any delay can be met at the price
of area, respecting some parasitic delay. Obviously, some-
times different architectures are more efficient for different
constraints, but the statement remains essentially the same.

To see how our time-budgeting technique may be used, we
sketch a wireplanning flow conformant to [1]. At the func-
tional level, we have no more than a network in terms of func-
tional nodes and interconnect. Wireplanning tools should aid
in analyses and proposals for duplication, absorption and de-
composition. Key is that monotonicity is maintained. The
choice of the footprint (area and pad positions) is of impor-
tance here, and should be incorporated. In this abstraction,
there is little awareness of area of nodes. This reflects the idea
of stepwise refinement, and is the way complexity is handled.

After this, our time budgeting approach may be employed.
As a side effect, we get area estimates, which may result in
a “no-go” decision if the footprint does not provide enough
area.

Now, floorplanning should result in relative positions of mod-
ules. After this stage, more or less classical logic/physical

synthesis and physical design can be employed. With the
now known areas, placement can be performed, based on the
floorplanning, followed by toplevel synthesis.

2.2 Assumptions

The time budgeting we perform in this paper relies on the
availability of speed-area trade-offs for each of the individual
modules. In section 3.2 we discuss how they may be obtained.
For now we will just assume they are available.

Our optimization is based on pin-to-pin timing constraints.
In the simplest case, they can be obtained by subtracting
timing assertions for output and input pins, but more general,
they can be specified as arbitrary pin-to-pin required delays.

3. Problem formulation

First, we will more formally introduce the problem we solve,
and formulate it in a way fit for mathematical program solvers.

Problem: Given tradeoffs between area and speed for each
module, a footprint for the chip as a whole, a functional net-
work, certain technology dependent parameters, and pin-to-
pin timing requirements, find the time budgets for each macro
such that the total macro area is minimized, and timing re-
quirements are met.

In a wireplanning flow, time budgeting is performed very
early. Timing should be closed, rather than optimized, mak-
ing area minimization a natural choice. This has the advan-
tage that footprint evaluation can be done very early in the
flow. Also, area usually correlates well with power. Further,
physical design is easier if more area is available for wiring.
Note that especially for ASICs, our formulation with timing
constraints rather than area constraints is natural.

3.1 Timing constraints

The delay of a pin-to-pin path is the sum of alternating wire
and module delays. In a wireplanning flow we can estimate
the total wire delay of the path before floorplanning (see
Fig. 1).

I2 O2

I1

M2

M1

M3

M4
O1

I1

I2

O1 O2

M1

M3

M4

M2

Figure 1: A functional network, and a monotonic
wireplan for it. Path wiredelay is fixed regardless
of the chosen monotonic wire topology and positions
of modules along the wires.

We combine linearity and monotonicity: the wire delay Wj of
segment j equals its length Lj times some technology/layer
dependent constant c. If a layer assignment is not yet avail-
able, an average for the layers available for global wiring is
a reasonable approximation. Monotonicity assures that the

length of a path p, the sum of segment lengths, equals the
manhattan distance Lio between the primary pins i and o.
With this, the path wire delay becomes: Wp =

∑

j∈p
Wj =

∑

j∈p
c ·Lj = c

∑

j∈p
Lj = c ·Lio, and can be calculated from

the footprint; it becomes essentially a constant. Note that
the derivation does not hold for unbuffered wires with their
quadratic delays.

Now we can formulate the path delay for any path p from
I to O as the sum of module delays dmn

M (AM), functions of
the area AM of the module M , and some constant wire delay
W IO, and the timing requirement reads as:

Dp =
∑

M∈p

dmn
M (AM) + W IO ≤ T IO

req, (1)

where m and n are the pins of M the path goes through.

In practice, the derivation above means the position of mod-
ules along a path needs not to be fixed for our approach. In
fact, we do not even need a wire topology, as long as the
(subsequently) chosen topology respects monotonicity. This
is what makes it possible to conduct time budgeting this early
in the flow.

3.2 Tradeoff modeling

Mathematical optimizers need us to specify values and gra-
dients (approximations) for the relation between area and
pin-to-pin delays of a module. Usually, with experienced de-
signers, there is an awareness of this tradeoff, resulting in
points in the design space. Another source is Design Space
Exploration[11]. Further, quick runs of logic synthesis will
give an idea of the tradeoff. Finally, the relation between
area and delay with respect to gate/transistor sizing is well
understood.

If we now prune the design space for Pareto points, we can
fit a mathematical function to these points. We have cho-
sen a subclass of so-called posynomial functions, shown in
(2). The fitting results are good, and with a simple transfor-
mation, these functions become convex, and convex program-
ming techniques with their guarantee of global optimality can
be used.

f(t) =
∑

cj

∏

ti
aij with cj ≥ 0, aij ∈ R (2)

In an example below, it is shown that only low-order functions
and only a few data points are needed for accuarate modeling.
Simple bounds should be used to ensure the valid part of the
curve is used. Note that our formulation does not restrict us
to use these functions. In the general case, however, we have
to resort to nonlinear programming techniques with only a
guarantee of local optimality.

3.2.1 Example. We took an industrial example from [11]
of which the design space was extensively explored. The de-
sign is an embedded system with a VLIW core, cache and
a non-programmable systolic array. Parameters such as the
number of integer and floating point units and all kinds of
registers are varied. We took the results from Fig. 13 of
this report: Overall System Pareto (VLIW + memory). This
curve depicts the trade-off between area and performance.

We took a small number of points from this graph, and fitted
it to the formula y = a/(x + b) + c, which can be made
posynomial by the simple transformation x′ = x + b (note
that this only adds a constant to the object function, and
does not influence the optimization). The results are shown
in Fig. 2, and as can be seen, the fitting is very good.

100 110 120 130 140 150 160
0

50

100

150

200

250

Area in mm2

P
er

fo
rm

.a
nc

e
(1

07 c
yc

le
s) Fitting to y = a/(x+b) + c

a = 4.1⋅107

b=−86
c=−4.4⋅108

Figure 2: A fitting on an area-performance trade-off.
A simple transformation makes the formula posyno-
mial.

3.3 Mathematical programming formulation

The simplest formulation would be to enumerate all paths
in the circuit, constrain each to be smaller than its respec-
tive timing constraint, and minimize for area. For circuits
of practical size however, the number of paths explodes, and
the problem becomes infeasible; therefore we introduce a new,
more efficient formulation.

As in [3], we construct a timing graph. Nets of the func-
tional network become nodes, and directed arcs from nodes
m to n depict delay variables dmn

M (AM); generally non-linear
functions of the area AM of the associated module M (our
tradeoff). As illustrated by Figs. 3 and 4, at each node n
in the timing graph, we introduce variables AT I

n representing
the late-mode arrival time at n considering only paths which
originate at primary input I.

M1

M2 M3 M4

I1

I2

O1

O2
n1

n2

n3

n4

dI1O1

M1

dI1n3

M1
dn1O1

M1

dn1n3

M1

dI2n2

M2

dI2n1

M2

dn2n4

M3

dn3O2

M4

dn4O2

M4

Figure 3: The timing graph for Fig. 1 with the de-
lay variables on the arcs. Modules are drawn with
dashed line.

Our approach resembles the well-known static timing ap-
proach of for instance [10, 3]. The difference is that in these
works only one arrival time variable is maintained at each
node3, while we maintain such a variable for each primary
input in the nodes input cone (see Fig. 4). The reason we do
this is that this way, we can address different wire delays for
different input-output paths. We can take all input-output

3Technically, there is one each for rising and falling signals,
which we can also accomodate depending on the sophistica-
tion of the timing models.

delays into account, instead of the worst only. Note that our
approach does not increase the complexity of the problem as
compared to static timing: at each node at most |PI| (the
number of primary inputs) variables are introduced. In prac-
tice this number is far lower.

I1

I2
AT I2

AT I1

AT I1

AT I2

I1

I1

I2

AT I1

AT I2

AT I2

AT I3

Figure 4: AT variables for a primary input exist at
a node if the node is in the fanout cone of the input
(left), or equivalently, if the input is in the fanin cone
of the node (right).

Now we can formulate a mathematical program:

minimize
∑

M∈Modules
AM

subject to

AT I
n ≥ AT I

m + dmn
M (AM) ∀I ∈ PIC(m), e(m, n) ∈ E

AT I
O ≤ T IO

req − W IO ∀I ∈ PI, O ∈ PO,
(3)

where E, PI, PO and PIC(m) are the sets containing all
edges, primary inputs, primary outputs and the intersection
of PI and the input cone of m, respectively, and e(m, n) is
an arc from m to n. We can add simple bounds on the area
of individual modules:

Amin,M ≤ AM ≤ Amax,M . (4)

These kind of bounds can result in slack separation that may
be used later on (see section 5). The formulation above can be
fed to a mathematical program solver. The shape of the area-
delay tradeoff dmn

M decides what kind of solver can be used.
If the trade-offs have convex shapes, or can be made convex
through a transformation, convex program solvers with their
guarantee of global optimality and efficient implementation
may be used.

4. Enhancing efficiency

The formulation of the previous section is already orders of
magnitude better than a straightforward formulation that
enumerates all paths. In this section, we will introduce tech-
niques to reduce runtime and increase feasible problem size
further.

4.1 Forward vs backward formulation

Untill now, we have have traversed the timing graphs from
input to output, stating that the AT at a node should ex-
ceed the AT at its predecessor by the module delay. We can
however also work with Required Arrival Times (RAT s). The
constraints will look similar, except that AT s refer back; they
have a superscript denoting a primary input, while RAT s are
with respect to primary outputs: they have a primary out-
put as superscript. AT s ripple forward through the network
from the inputs; RAT s ripple backward from the outputs,
hence the names forward, and backward formulation. If one

reverses all directed edges in the network, its forward formula-
tion equals the backward formulation of the original network.
Both formulations have the exact same solution, but their
efficiencies may differ.

Consider a node n. If it is connected to far more primary
inputs than to primary outputs, it is (locally) advantageous
to use the RAT formulation since there will be far less RAT
than AT variables.

It is easy to find the total number of constraints with dab
M (AM)

variables: it equals the total number of arcs. The number of
variables at a node n is the number of primary inputs in its
fanin cone (|PIC(n)|). Now we find the number of constraints
with n on the lefthand side N(n):

N(n) =
∑

m∈pred(n)

#edges(m, n) · |PIC(m)| (5)

where pred(n) denotes the set of direct predecessors of n.
We can obtain the total number of constraints by simply
summing over all nodes, and adding the number of timing
constraints (

∑

o∈PO
|PIC(o)|).

If we do the same for the backward formulation, we can com-
pare the numbers of both formulations, and pick the best one.
As a rule of thumb, it is best to pick the backward formula-
tion if there are fewer primary outputs than inputs. Note that
in the static timing formulations of [10, 3] both formulations
are the exact same, and there is nothing to be gained.

4.2 Pruning

In [4] a technique called pruning to reduce problem size, de-
generacy and redundancy without sacrificing accuracy was
introduced. As illustrated by Fig. 5, the basic pruning op-
eration is a graph transformation that replaces a node with
touching arcs, and replaces it with other arcs. The variables
on the arcs are such that the associated optimization problem
is equivalent to the original one.

a

b

x

y

z

a

b

c

x

y

zc

m

AT I
m ≥ AT I

a + dam

AT I
y ≥ AT I

m + dmy

}

⇒ AT I
y ≥ AT I

a + dam + dmy

Figure 5: The basic pruning operation with con-
straints for the bold path.

Generally, solver performance depends on the number of con-
straints, the number of variables, and the total number of
terms in the constraints. Pruning impacts these numbers. It
is possible to assign to each node a gain, a measure of the
benefit in case this node would be pruned, taking these ef-
fects into account. If for example two constraints with four
variables may be replaced by one constraint with six vari-
ables, this may or may not be beneficial, depending on the
used solver. This is reflected by a positive or negative gain.

Nodes are greedily pruned until no nodes with positive gains
exist anymore.

In [4], only the numbers of variables and constraints are taken
into account, and given equal weights. We also considered the
number of terms, and tailored the associated weights to the
solver we used.

In the original formulation in [4] only one AT variable resides
at each node, while in our approach one for each primary in-
put may exist. Therefore, we have adjusted the pruning pro-
cedure to calculate gains for and prune AT variables rather
than nodes. This way, an AT at node n may be pruned for
primary input i1, but not for primary input i2. Another way
of looking at this is that for each primary input, we construct
a timing graph consisting of the input and its fanout cone,
and apply the original pruning procedure. Then, the resulting
optimization program is simply the sum of object functions
and the concatenation of the associated constraints.

In our case, the pruning procedure requires only one graph
traversal, and results not only in a dramatically more com-
pact formulation, but also one that is numerically better-
conditioned.

5. Introducing robustness

The time budgets we assign are calculated based on assump-
tions on path lengths, monotonicity and tradeoffs. In real life,
however, some of these assumptions may be hard to meet
later on: one may for instance sometimes need to deviate
from monotonicity. Another uncertainty is the accuracy of
the tradeoff models. More generally, one can say that in a
non-iterative designflow, one needs a certain amount of “slack
separation”4 in order to obtain “robustness” with respect to
uncertainties later on. Here we will show how slack on the
majority of paths is introduced at very low cost.

The formulation itself ensures a certain amount of slack: wire
delay is calculated as the path length times some constant.
When the modules are realized, however, they will occupy
space, effectively reducing wire length, and thus delay. Sec-
ondly, our formulation ensures that all input-output pairs will
have a critical path: a path whose delay equals the constraint.
This implies that every module is on a critical path. It does
however, not imply that every wire segment is. This offers the
possiblity of detouring these wires. Thirdly, if simple bounds
on area are used, this may also result in slack. Finally, wire
delay is calculated for ideally buffered wires. If logic is pulled
out of the module, and spread over the wires, buffers may be
replaced by “useful” gates. Therefore, our wire delay estima-
tion is conservative.

5.1 Formulation with penalty function

The slack that is inherent in our formulation may not be
enough, therefore we introduce a way to provide slack at little
area cost. This also has the advantage that truly critical

4Negative slack means constraints are violated, (positive)
slack means there is room to tighten a constraint, and slack
separation is the difference between the most critical and
other paths.

paths, paths that limit circuit performance most, are revealed.
It becomes clear where the main thrust of the design effort
should focus.

The numerical optimizer will slow paths down to gain very
little area. In our context, this is undesirable. In [5] obser-
vations similar to ours were made in the context of circuit
optimization. Although [5] aims at speed optimization, we
can follow its line of thought. The idea is that for each input-
output pair, we add a penalty function to the object function,
putting downward pressure on its AT s:

min
∑

m∈modules

Am + k
∑

O∈PO

∑

I∈PIC(O)

P (T IO
req, AT I

O). (6)

The penalty function P (Treq, AT) should decay to zero quickly
when there is sufficient separation. For the numerical opti-
mizer it should be continuous and smooth, and comply with
(2). The latter requirement forces us to use a different func-
tion than the exponential choice in [5]. We use the function

P (Treq, AT) =

(

AT

Treq

)q

. (7)

q determines how fast the penalty decays with separation,
and hence how much separation is “enough”, and k controls
the importance of slack as compared to area. Note that (if
feasible) our formulation still guarantees timing closure.

6. Results

We used the well-known MCNC benchmarks that come with
SIS[6]. These circuits are mapped, and have a higher average
fanout than may be expected at the macro level, making the
problem harder. We used the tradeoff model of section 3.2.1,
and formulated the programs with handcrafted timing con-
straints, and solved it with the commercial solver MOSEK[7].
This is a solver that exploits the convexness of our tradeoff
modeling, and guarantees to find the optimum.

The results can be found in table 1. The first column contains
the benchmark, the second and third contain information
about the size of the problem, while the last three columns
contain the runtimes for different formulations: forward, for-
ward and pruned, and finally, backward and pruned. The
best results are in bold. The experiments were conducted
on a 1GHz, 512MB RAM PC running Linux. As expected,
the results for the different formulations were identical, and
runtimes were low considering the size of the problem.

Table 1: Results for different formulations.
Chip #nodes #paths runtime

fw fw pruned bw pruned

C432 147 291e3 14s 17s 5.3s

C499 287 100e3 28s 26s 30s

C880 225 8442 13s 19s 5.2s

C1355 510 417e4 90s 44s 74s

C1908 349 196e3 47s 45s 36s

C3540 740 225e5 126s 114s 76s

C5315 1081 395e3 69s 66s 76s

C7552 1682 428e3 188s 130s 69s

C6288 2371 538e17 1493s 528s 1414s

In order to show how pruning influences the formulation of

the program, we give average reductions in number of: vari-
ables: 47.8% (forward formulation), 35% (bw), constraints:
35.1% (fw), 20.2% (bw), and terms: 0.9% (fw) 10.2% (bw).

We also implemented the formulation for “robustness.” In
Fig. 6 we see an example slack histogram: at the price of
only three percent area increase, the number of critical paths5

reduces from 521 to 89.

−5 0 5 10 15 20
0

200

400

600

800

slack

si
gn

al

original form.
robust form.

Figure 6: Three percent area increase reduces the
number of critical paths dramatically.

7. Discussion

As can be seen from table 1, we can solve designs with up
to 2371 modules within 528 seconds. As expected, there is
always gain possible as compared to the unpruned forward
formulation. Depending on the circuit structure either the
forward pruned formulation or the backward pruned formu-
lation is best.

Within a wireplanning flow, with its emphasis on stepwise
refinement, the time budgets are golden. Through the trade-
off curves, they may be translated into areas, that have the
status of estimates. These estimates may be used to guide
top level floorplanning, or to evaluate the choice of footprint.

Since we do not give area budgets, and fixed delay synthesis
is used, the calculated time budgets can always be met (at
possibly high area price). With our robust formulation, slack
may be used to alleviate the task of the synthesizer.

Contrary to classical static timing formulations, we maintain
more than one or two variables at each node in the network.
This is to account for all wire delay, and satisfy all timing
constraints. As a side-effect, it is possible to extract sensi-
tivities (Lagrange multipliers) from the solver for all critical
pin-to-pin delays, instead of for the worst only, showing where
timing is most likely hard to close, hence where most design
effort should be focused.

As has been shown, depending on the network, there is a dif-
ference in efficiency for forward and backward formulations.
For some parts of the network, forward formulation may be
best, and for other parts the backward formulation. The parts
can be “glued together” by timing constraints. For practical
cases, the number of glue constraints outweighs the benefits
from a “mixed formulation.” Graphs with small cutsets in
the middle, however, may be candidates where a mixed for-
mulation is best.

5Here, a path is called critical if it has less than 2 time units
positive slack.

8. Conclusions

For the first time, we have shown how to carry out time bud-
geting very early in a wireplanning flow. Early and accurate
time budgeting has advantages such as the removal of itera-
tions between time budgeting and tweaking, and the enabling
of fully independent design of modules. We use a new static
timing-like formulation that implicitly takes all (possibly bil-
lions of) pin-to-pin paths into account, and tradeoffs that can
be obtained through a curve fitting technique. Total module
area is minimized, wire delay is taken into account for all
paths, and timing constraints are met. We also showed how
make time budgets that are more “robust” to uncertainties
downstream in the flow. As illustrated by our results, possi-
bly billions of paths may exist in a given design. Our efficient
formulation guarantees that design size is not a problem.

9. REFERENCES

[1] R.H.J.M. Otten and R.K. Brayton, Planning for
performance, Proc. Design Automation Conference,
p.122, June 1998

[2] R.H.J.M. Otten and R.K. Brayton, Performance
planning, Integration the VLSI journal, vol 29, p.1

[3] A.R. Conn et al., Gradient-Based Optimization of
Custom Circuits Using a Static-Timing Formulation,
Proc. Design Automation Conference, p.452, June 1999

[4] C. Visweswariah and A.R. Conn, Formulation of Static
Circuit Optimization with Reduced Size, Degeneracy
and Redundancy by Timing Graph Manipulation, Proc.
International Conference on Computer-Aided Design,
p.244, 1999

[5] X. Bai et al., Uncertainty-Aware Circuit Optimization,
Proc. Design Automation Conference, p.58, June 2002

[6] E. Sentovich et al., SIS: A System for Sequential
Circuit Synthesis, Technical Report UCB/ERL
M92/41, Univ. of CA, Berkeley, May 1992

[7] http://www.mosek.com

[8] J. Grodstein et al., A delay model for logic synthesis of
continuously-sized networks, Proc. International
Conference on Computer-Aided Design, p.458, 1995

[9] I. Sutherland et al., Logical Effort: Designing Fast
CMOS Circuits, Morgan Kaufmann publishers,
November 1996

[10] R.B. Hitchcock et al., Timing analysis of computer
hardware, IBM Journal of Research and Development,
p.100, 1982

[11] S.G. Abraham et al., Fast Design Space Exploration
Through Validity and Quality Filtering of Subsystem
Designs, obtained through
http://www.hpl.hp.com/techreports/

2000/HPL-2000-98.html

[12] W. Gosti, et al., Wireplanning in Logic Synthesis, Proc.
International Conference on Computer-Aided Design,
p.26, 1998

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

