Compiler-Directed | LP Extraction for Clustered VLIW/EPIC machines:
Predication, Speculation and M odulo Scheduling *

Satish Pillai
Dept. of Electrica and Computer Engineering
The University of Texas at Austin
Austin, Texas 78705
satish@ece.utexas.edu

Abstract

Compiler-directed ILP extraction techniques are critical
to effectively exploiting the significant processing capacity
of contemporaneous VLIW/EPIC machines. In this paper
we propose a novel algorithm for ILP extraction target-
ing clustered EPIC machines that integrates three powerful
techniques: predication, speculation and modulo schedul-
ing. In addition, our framework schedules and binds op-
erations, generating actual VLIW code. To the best of our
knowledge, there is no other algorithm in the literature on
predicated code optimizations that jointly considers spec-
ulation and modulo scheduling in the context of clustered
EPIC machines. Our experimental results show that by
jointly considering different extraction techniques in a re-
source aware context, the proposed algorithm can take max-
imum advantage of the resources available on the clustered
machine, aggressively improving performance.

1 Introduction

Multimedia, communications and security applications
exhibit a significant amount of instruction level paral-
lelism(ILP). In order to meet the performance requirements
of these demanding applications, it is important to use com-
pilation techniques that expose/extract such ILP and proces-
sor datapaths with a large number of functional units, e.g.,
VLIWY/EPIC processors.

A basic VLIW datapath might be based on a single reg-
ister file shared by all of its functional units (FUs). Unfor-
tunately, this simple organization does not scale well with
the number of FUs [12]. Clustered VLIW datapaths ad-
dress this poor scaling by restricting the connectivity be-
tween FUs and registers, so that an FU on a cluster can only
read/write from/to the cluster’s register file, see e.g. [12].
Since data may need to be transferred among the machine’s
clusters, possibly resulting in increased latency, it is impor-
tant to develop performance enhancing techniques that take
such data transfers into consideration.

Most of the applications alluded to above have only a few
time critical kernels, i.e. a small fraction of the entire code
(sometimes as small as 3%) is executed most of the time, see

*This work is supported in part by an NSF ITR Grant ACI-0081791
and an NSF Grant CCR-9901255.

1530-1591/03 $17.00 & 2003 IEEE

Margarida F. Jacome
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78705
jacome@ece.utexas.edu

e.g. [16] for an analysis of the Mediabench[5] suite of pro-
grams. Moreover, most of the processing time is typically
spent executing the 2 innermost loops of such time critical
loop nests — in [16], for example, this percentage was found
to be about 95% for Mediabench programs. Yet another
critical observation made in [16] is that there exists con-
siderably high control complexity within these loops. This
strongly suggests that in order to be effective, ILP extraction
targeting such time critical inner loop bodies must handle
control/branching constructs.

The key contribution of this paper is a novel resource-
aware algorithm for compiler-directed ILP extraction tar-
geting clustered EPIC machines that integrates three pow-
erful ILP extraction techniques: predication, control specu-
lation and software pipelining/modulo scheduling. In addi-
tion to extracting ILP from time-critical loops, our frame-
work schedules and binds the resulting operations, generat-
ing actual VLIW code.

Background

The performance of a loop is defined by the average rate
at which new loop iterations can be started, denoted initi-
ation interval (11). Software pipelining is an ILP extraction
technique that retimes [20] loop body operations (i.e., over-
laps multiple loop iterations), so as to enable the generation
of more compact schedules [18][3]. Modulo scheduling al-
gorithms exploit such technique during scheduling, so as to
expose additional ILP to the datapath resources, and thus
decrease the initiation interval of a loop [23].

Predication allows one to concurrently schedule alterna-
tive paths of execution, with only the paths correspond-
ing to the realized flow of control being allowed to ac-
tually modify the state of the processor. The key idea
in predication is to eliminate branches through a process
called if-conversion [8]. If-conversion, transforms condi-
tional branches into (1) operations that define predicates,
and (2) operations guarded by predicates, corresponding to
alternative control paths.> A guarded operation is commit-
ted only if its predicate is true. In this sense, if-conversion is
said to convert control dependences into data dependences
(i.e., dependence on predicate values), generating what is

INote that operations that define predicates may also be guarded.

called a hyperblock [11].

Control speculation “breaks” the control dependence be-
tween an operation and the conditional statement it is de-
pendent on [6]. By eliminating such dependences, opera-
tions can be moved out of conditional branches, and can
be executed before their related conditionals are actually
evaluated. Compilers exploit control speculation to reduce
control dependence height, which enables the generation of
more compact, higher ILP static schedules.

Overview

The proposed algorithm iterates through three main
phases: speculation, cluster binding and modulo schedul-
ing (see Figure 3). At each iteration, relying on effective
load balancing heuristics, the algorithm incrementally ex-
tracts/exposes additional (“profitable”) ILP, i.e., speculates
loop body operations that are more likely to lead to a de-
crease in initiation interval during modulo scheduling. The
resulting loop operations are then assigned to the machine’s
clusters and, finally, the loop is modulo scheduled generat-
ing actual VLIW code. An additional critical phase (exe-
cuted right after binding) attempts to leverage required data
transfers across clusters to realize the speculative code, thus
minimizing their potential impact on performance(see de-
tails in Section 4).

To the best of our knowledge, there is no other algorithm
in the literature on compiler-directed predicated code op-
timizations that jointly considers control speculation and
modulo scheduling in the context of clustered EPIC ma-
chines. In the experiments section we will show that, by
jointly considering speculation and modulo scheduling in a
resource aware context, and by minimizing the impact in
performance of data transfers across clusters, the algorithm
proposed in this paper can dramatically reduce a loop’s ini-
tiation interval with upto 68.2% improvement with respect
to a baseline algorithm representative of the state of the art.

2 Optimizing Speculation

In this Section, we discuss the process of deciding which
loop operations to speculate so as to achieve a more ef-
fective utilization of datapath resources and improve per-
formance(initiation interval). The algorithm for optimizing
speculation, described in detail in Section 3, uses the con-
cept of load profiles to estimate the distribution of load over
the scheduling ranges of operations, as well as across the
clusters of the target VLIW/EPIC processor. Section 2.1
explains how these load profiles are calculated. Section 2.2
discusses how the process of speculation alters these pro-
files and introduces the key ideas exploited by our algo-
rithm.
2.1 Load Profile Calculation

The load profile is a measure of resource requirements
needed to execute a Control Data Flow Graph(CDFG) with
a desirable schedule latency. To illustrate how the load pro-
files used in the optimization process are calculated, con-
sider the CDFG in Figure 1. Note that, when predicated

code is considered, the branching constructs actually corre-
spond to the definition of a predicate(denoted PD), and the
associated control dependence corresponds to a data depen-
dence on the predicate values(denoted p and p!). The load
profile is calculated for a given target profile latency(greater
than the critical path of the CDFG).

First, As Soon As Possible(ASAP) and As Late As
Possible(ALAP) scheduling is performed to determine the
scheduling range of each operation. For the example, op-
eration a in Figure 1 has a scheduling range of 2 steps (i.e.
step 1 and step 2), while all other operations have a shedul-
ing range of a single step. The mobility of an operation is
defined as p(op) = alap(op) —asap(op) + 1 and equals 2
for operation a. Assuming that the probability of schedul-
ing an operation at any time step in its time frame is given
by a uniform distribution[22], the contribution to the load
of an operation op at time step t in its time frame is given
by u(gp)' In Figure 1, the contributions to the load of all the
addition operations (labelled a, c, d, f, g and h) is indicated
by the shaded region to the right of the operations. To ob-
tain the total load for type fu at a time step t, we sum the
contribution to the load of all operations that are executable
on resource type fu at time step t. In Figure 1, the resulting
total adder load profile is shown.

The thick vertical line in the load profile plot is an indi-
cator of the capacity of the machine’s datapath to execute
instructions at a particular time step. (In the example, we
assume a datapath that contains 2 adders.) Accordingly, in
step 1 of the load profile, the shaded region to the right of
the thick vertical line represents an over-subscription of the
adder datapath resource. This indicates that, in the actual
VLIW code/schedule, one of the addition operations (i.e.
either operation a, d or g) will need to be delayed to a later

time step.
g2 |

3 Steps

Target Profile Latency

1 2 3
LOAD (ADDER)

Figure 1. Adder Load Profile Calculation.

2.2 Load Balancing through Speculation

We argue that, in the context of VLIW/EPIC machines,
the goal of compiler transformations aimed at speculating
operations should be to “redistribute/balance” the load pro-
file of the original/input kernel so as to enable a more ef-
fective utilization of the resources available in the datap-
ath. More specifically, the goal should be to judiciously
modify the scheduling ranges of the kernel’s operations,
via speculation, such that overall resource contention is

decreased/minimized, and consequently, code performance
improved. We illustrate this key point using the exam-
ple CDFG in Figure 2(a), and assuming a datapath with
2 adders, 2 multipliers and 1 comparator. Figure 2(b)
shows the adder load profile for the original kernel and Fig-
ures 2(c) and (d) show the load profiles for the resulting
CDFG’s with one and three(all) operations speculated, re-
spectively.?[22] As can be seen, the load profile in Figure
2(c) has a smaller area above the line representing the dat-
apath’s resource capacity, i.e., implements a better redistri-
bution of load and, as a result, allowed for a better sched-
ule under resource constraints(only 3 steps) to be derived
for the CDFG.3 From the above discussion, we see that a

®
OO ©

(@) Predicated Control Data Flow Graph

12 3
LOAD (ADDER)

(c) Schedule with 1 Speculated Operation

LOAD (ADDER)

1 2 3
LOAD (ADDER)
‘ @ "

(b) Schedule with No Speculated Operations

(d) Schedule with 3 Speculated Operations

Figure 2. Performance vs Speculation: Re-
source Constrained Example.

technique to judiciously speculate operations is required, in
order to ensure that speculation provides consistent perfor-
mance gains on a given target machine. Accordingly, we
propose an optimization phase, called OPT-PH (described
in Section 3), which given an input hyperblock and a target
VLIW/EPIC processor, possibly clustered, decides which
operations should be speculated, so as to maximize the ex-
ecution performance of the resulting VLIW code.

3 OPT-PH - An Algorithm for Optimizing
Speculation

Our algorithm makes incremental decisions on specu-
lating individual operations, using a heuristic ordering of
nodes. The suitability of an operation for speculation is
evaluated based on two metrics, Total Excess Load(TEL)
and Speculative Mobility(Spec_p), to be discussed below.
Such metrics rely on a previously defined binding func-
tion(assigning operations to clusters), and on a target profile
latency(see Section 2.1).

2Those load profiles were generated assuming a minimum target profile
latency equal to the critical path of the kernel.

3The operations marked ¢ represent predicated reconciliation opera-
tions(see Section 4).

3.1 Total Excess Load(TEL)
In order to compute the first component of our rank-

ing function, i.e. Total Excess Load(TEL), we start by
calculating the load distribution profile for each cluster
¢ and resource type fu, at each time step t of the tar-
get profile latency alluded to above. This is denoted by
Clust_Load, c(t). To obtain the cluster load for type fu, we
sum the contribution to the load of all operations bound to
cluster c(denoted by nodes_to_clust(c)) that are executable
on resource type fu(denoted by nodes_on_typ(fu)) at time
step t. Formally: 1

Clust_Loadtyc(t) = z
VopeS S.1. tetf(op) U(Op)

where S = nodes_to_clust(c) ﬂ nodes_on_typ(fu)

Clust_Loadsyc(t) is represented by the shaded regions in
the load profiles in Figure 2.

Recall that our approach attempts to “flatten” out the
load distribution of operations by moving those operations
that contribute to greatest excess load to earlier time steps.
To characterize Excess Load(EL), we take the difference be-
tween the actual cluster load, given above, and an ideal load,
ie.,

Dl f fo,C(t) - Clust_l_oadfuc(t) - Ideal _Loadfu,c

The ideal load, denoted by Ideal_Loadty, is a measure of
the balance in load necessary to efficiently distribute opera-
tions both over their time frames as well as across different
clusters. It is given by,

Ideal_Loadty ¢ = max{Avg_Loadt,c,Clust_Capacitysy}

where Clust_Capacity, ¢ is the number of resources of type
fu in cluster c and Avg_Loads, ¢ is the average cluster load
over the target profile latency pr, i.e.,

1 X
AVg,Loadfu’c = atz\clust,l_oadfuc(t)

As shown above, if the resulting average load is smaller than
the actual cluster capacity, the ideal load value is upgraded
to the value of the cluster capacity. This is performed be-
cause load unbalancing per se is not necessarily a problem
unless it leads to over-subscription of cluster resources. The
average load and cluster capacity in the example of Figure
2 are equal and, hence, the ideal load is given by the thick
vertical line in the load profiles.

The excess load associated with operation op, EL(op),
can now be computed, as the difference between the actual
cluster load and the ideal load over the time frame of the
operation, with negative excess loads being set to zero, i.e.,

alap(op)

max {0, Dif fiypop).clust(op) () }
t=asap(op)

EL(op) =

where operation op is bound to cluster clust(op) and ex-
ecutes on resource type typ(op). In the load profiles of
Figure 2, excess load is represented by the shaded area to
the right of the thick vertical line. Clearly, operations with
high excess loads are good candidates for speculation, since
such speculation would reduce resource contention at their
current time frames, and may thus lead to performance im-
provements. Thus, EL is a good indicator of the relative
suitability of an operation for speculation.

However, speculation may be also beneficial when there
iS no resource over-subscription, since it may reduce the
CDFG?’s critical path. By itself, EL would overlook such
opportunities. To account for such instances, we define a
second suitability measure, which “looks ahead” for empty
scheduling time slots that could be occupied by speculated
operations. Accordingly, we define Reverse Excess Load
to characterize availability of free resources at earlier time
steps to execute speculated operations:

asap(op)—1
REL(Op) = Z min{O, Dif ftyp(op),clust(op) (t)}
t=

This is shown by the unshaded regions to the left of the thick
vertical line in the load profiles of Figure 2.

We sum both these quantities and divide by the operation
mobility to obtain Total Excess Load per scheduling time
step.

EL(op) +REL(op)

H(op)

3.2 Speculative Mobility(Spec_u)

The second component of our ranking function, denoted
Spec_p(op), is an indicator of the number of additional time
steps made available to the operation through speculation.
It is given by the difference between the maximum ALAP
value over all predecessors of the operation, denoted by
pred(op), before and after speculation. Formally:

Spec-u(op) = maXVnepred(op)alap(n)

_maXVnepred(op) s.t. ncond. Opalap(n)

TEL(op) =

3.3 Ranking Function

The composite ordering of operations by suitability for
speculation, called Suit(op), is given by:

Suit(op) = TEL(op) + Spec_p(op)

Suit(op) is computed for each operation that is a candidate
for speculation, and speculation is attempted on the opera-
tion with the highest value, as discussed in the sequel.
4 Optimization Framework

Figure 3 shows the complete iterative optimization flow
of OPT-PH. During the initialization phase, if-conversion
is applied to the original CDFG - control dependences are
converted to data dependences by defining the appropriate

predicate define operations and data dependence edges* and
an initial binding is performed.

After the initialization phase is performed, the algorithm
enters an iterative phase. First it decides on the next best
candidate for speculation. The ranking function used dur-
ing this phase has already been described in detail in Section
3. The simplest form of speculating the selected operation
is by deleting the edge from its predecessor predicate de-
fine operation(denoted predicate promotion [6]). In certain
cases, the ability to speculate requires renaming and creat-
ing a new successor predicated move operation for recon-
ciliation(denoted SSA-PS [9]).

After speculation is done, binding is performed using a
modified version of the binding algorithm proposed in [15],
that accounts for our framework’s ability to leverage data
transfers across clusters. The next optimization phase ap-
plies the critical transformation of collapsing binding re-
lated move operations with reconciliation related predicated
moves, see [9]. Finally a modulo scheduler schedules the
resulting Data Flow Graph(DFG). A two level priority func-
tion that ranks operations first by lower alap and next by
lower mobility is used by the modulo scheduler.

CDFG MACHINE DESC

'

INITIALIZATION PHASE|
¥
SELECT OPERATION TO
SPECULATE
BINDINGS
COLLAPSING DATA
TRANSFER MOVES
MODULO SCHEDULING

SAVE NEW
SCHEDULE

NO

TERMINATE 7> NO
YES|

Figure 3. Overview of optimization flow.

If execution latency is improved with respect to the
previous best result, then the corresponding schedule is
saved. Each new iteration produces a different binding
function that considers the modified scheduling ranges re-
sulting from the operation speculated in the previous itera-
tion. The process continues iteratively, greedily speculating
operations, until the termination condition is satisfied. Cur-
rently this condition is simply a threshold on the number of
successfully speculated operations, yet more sophisticated
termination conditions can very easily be included.

5 Previous Work
We discuss below work that has been performed in the

area of modulo scheduling and speculation. The method
presented in [19] uses control speculation to decrease the
initiation interval of modulo scheduled of loops in control-
intensive non-numeric programs. However, since this

4The process of selecting the set of time-critical inner loop bodies to be
optimized for any given application is beyond the scope of this paper — a
good set of criteria can be found in [11].

method is not geared towards clustered architectures, it does
not consider load balancing and data transfers across clus-
ters. A modulo scheduling scheme is proposed in [24]
for a specialized clustered VLIW micro-architecture with
distributed cache memory. This method minimizes inter-
cluster memory communications and is thus geared towards
the particular specialized memory architecture proposed. It
also does not explicitly consider conditionals within loops.
The software pipelining algorithm proposed in [26] gener-
ates a near-optimal modulo schedule for all iteration paths
along with efficient code to transition between paths. The
time complexity of this method is, however, exponential in
the number of conditionals in the loop. It may also lead to
code explosion.

A state of the art static, compiler-directed ILP extraction
technique that is particularly relevant to the work presented
in this paper is standard (if-conversion based) predication
with speculation in the form of predicate promotion[6](see
Section 4), and will be directly contrasted to our work.

A number of techniques have been proposed in the area
of high level synthesis for performing speculation. How-
ever, some of the fundamental assumptions underlying such
techniques do not apply to the code generation problem ad-
dressed in this paper, for the following reasons. First, the
cost functions used for hardware synthesis(e.g. [10, 13]),
aiming at minimizing control, multiplexing and intercon-
nect costs, are significantly different from those used by
a software compiler, where schedule length is usually the
most important cost function to optimize. Second, most
papers (e.g. [14, 21, 4, 28, 27]) in the high level syn-
thesis area exploit conditional resource sharing. Unfortu-
nately, this cannot be exploited/accommodated in the ac-
tual VLIW/EPIC code generation process, because predi-
cate values are unknown at the time of instruction issue.
In other words, two micro-instructions cannot be statically
bound to the same functional unit at the same time step,
even if their predicates are known to be mutually exclusive,
since the actual predicate values become available only after
the execute stage of the predicate defining instruction, and
the result (i.e. the predicate value) is usually forwarded to
the write back stage for squashing, if necessary. Speculative
execution is incorporated in the framework of a list sched-
uler by [7]. Although the longest path speculation heuristic
proposed is effective, it does not consider load balancing,
which is important for clustered architectures. A high-level
synthesis technique that increases the density of optimal
scheduling solutions in the search space and reduces sched-
ule length is proposed in [25]. Speculation performed here,
however, does not involve renaming of variable names and
so code motion is comparatively restricted. Also there is no
merging of control paths performed, as done by predication.

Certain special purpose architectures, like transport trig-
gered architectures, as proposed in [1], are primarily pro-
grammed by scheduling data transports, rather than the

CDFG’s operations themselves. Code generation for such
architectures is fundamentally different, and harder than
code generation for the standard VLIW/EPIC processors as-
sumed in this paper, see [2].

6 Experimental Results

Compiler algorithms reported in the literature either
jointly address speculation and modulo scheduling but
do not consider clustered machines, or consider modulo
scheduling on clustered machines but cannot handle con-
ditionals i.e., can only address straight code, with no notion
of control speculation (see Section 5). Thus, the novelty of
our approach makes it difficult to experimentally validate
our results in comparison to previous work.

We have however devised an experiment that allowed
us to assess two of the key contributions of this paper,
namely, the proposed load-balancing-driven incremental
control speculation and the phasing for the complete op-
timization problem. Specifically, we compared the code
generated by our algorithm to code generated by a base-
line algorithm that binds state of the art predicated code
(with predicate promotion only)[6] to a clustered machine
and then modulo schedules the code. In order to ensure
fairness, the baseline algorithm uses the same binding and
modulo scheduling algorithms implemented in our frame-
work.

Kernel Benchmark Main Inner Loop from Function
Lsgsolve Rasta/Lsqgsolve eliminate()

Csc Mpeg csc()

Shortterm Gsm Fast_Short_term_synthesis_filtering()
Store Mpeg2dec conv422tod44()

Ford Rasta FORD1()

Jquant2 Jpeg find_nearby_colors()

Huffman Epic encode._stream()

Add Gsm gsm.div()

Pixell Mesa glwrite_zoomed._index_span()
Pixel2 Mesa gl_write_zoomed_stencil _span()
Intra Mpeg2enc iquantl._intra()

Nonintra Mpeg2enc iquantl_non_intra()

Vdthresh8 Tl suite

Collision Tl suite

Viterbi Tl suite

Table 1. Kernel Characteristics

We present experimental results for a representative set
of critical loop kernels extracted from the MediaBench[5]
suite of programs and from TI’s benchmark suite[17](see
Table 1). The frequency of execution of the selected ker-
nels for typical input data sets was determined to be sig-
nificant. For example, the kernel Lsgsolve from the least
squares solver in the rasta distribution, one of the kernels
where OPT-PH performs well, takes more than 48% of to-
tal time taken by the solver. Similarly, Jquant, the func-
tion find_nearby_colors() from the Jpeg program, yet an-
other kernel where OPT-PH performs well, takes more than
12% of total program execution time.

The test kernels were manually compiled to a 3-address
like intermediate representation that captured all depen-
dences between instructions. This intermediate representa-
tion together with a parametrized description of a clustered
VLIW datapath was input to our automated optimization
tool(see Figure 3). Four different clustered VLIW datap-
ath configurations were used for the experiments. All the
configurations were chosen to have relatively small clusters

since these datapath configurations are more challenging to
compile to, as more data transfers may need to be sched-
uled. The FU’s in each cluster include Adders, Multipliers,
Comparators, Load/Store Units and Move Ports. The dat-
apaths are specified by the number of clusters followed by
the number of FU’s of each type, respecting the order given
above. So a configuration denoted 3C : |1|1|1|1|1| speci-
fies a datapath with three clusters, each cluster with 1 FU
of each type. All operations are assumed to take 1 cycle
except Read/Write, which take 2 cycles. A move operation
over the bus takes 1 cycle. There are 2 intercluster buses
available for data transfers.

Kernel 3C: lanm 3C: 11111

Std. OPT- % Tmp Std. OPT- % Tmp

Pred.- PH- Pred.- PH-

MOD MOD MOD MOD
Lsgsolve 4 3 25 3 3 0
Csc 12 12 0 12 12 0
Shortterm 5 4 20 4 4 0
Store 22 9 59.1 22 7 68.2
Ford 4 4 0 4 4 0
Jquant 31 28 9.7 31 26 16.1
Huffman 4 4 0 4 4 0
Add 2 2 0 2 2 0
Pixell 5 4 20 5 4 20
Pixel2 4 3 25 4 3 25
Intra 8 6 25 8 6 25
Nonintra 9 7 222 6 6 0
Vdthresh8 4 4 0 4 4 0
Collision 7 7 0 7 7 0
Viterbi 24 10 58.3 8 8 0
Kernel 4C: 11111 AC: 22211111

Std. OPT- % Imp Std. OPT- % Imp

Pred.- PH- Pred.- PH-

MOD MOD MOD MOD
Lsqsolve 4 4 0 4 4 0
Csc 11 11 0 11 11 0
Shortterm 5 5 0 5 4 20
Store 8 7 125 7 7 0
Ford 12 9 25 12 9 25
Jquant 31 28 9.7 29 28 35
Huffman 4 4 0 4 4 0
Add 3 3 0 2 2 0
Pixell 4 4 0 4 4 0
Pixel2 3 3 0 3 3 0
Intra 6 6 0 6 6 0
Nonintra 9 7 222 7 7 0
Vdthresh8 4 4 0 4 4 0
Collision 6 6 0 6 6 0
Viterbi 9 8 11.1 9 8 111

Table 2. Initiation Interval

Detailed results of our experiments (15 kernels compiled
for 4 different datapath configurations) are given in Table 2.
For every kernel and datapath configuration, we present the
performance of modulo scheduled standard predicated code
with predicate promotion(denoted Std. Pred-MOD) com-
pared to that of code produced by our approach(denoted
OPT-PH-MOD). As can be seen, our technique consis-
tently produces shorter initiation intervals and gives large
increases in performance, upto a maximum of 68.2%. This
empirically demonstrates the effectiveness of the specula-
tion criteria and load balancing scheme developed in the
earlier Sections. The breaking of control dependences and
efficient redistribution of operation load both over their
time frames as well as across clusters, permits dramatic de-
creases in initiation interval.

Finally, although the results of our algorithm cannot be
compared to results produced by high level synthesis ap-
proaches(as discussed in Section 5), we implemented a
modified version of the list scheduling algorithm proposed
in [7], that performed speculation “on the fly”, and com-
pared it to our technique. Again, our algorithm provided
consistently faster schedules with performance gains upto

57.58%. Detailed results are omitted due to space con-
straints.
7 _Conclusions _
The paper proposed a novel resource-aware algorithm
for compiler-directed ILP extraction targeting clustered
EPIC machines. In addition to extracting ILP from time-
critical loops, our framework schedules and binds the re-
sulting operations, generating actual VLIW code. Key con-
tributions of our algorithm include: (1) an effective phase
ordering for this complex optimization problem; (2) effi-
cient load balancing heuristics to guide the optimization
process; and (3) a technique that allows for maximum flex-
ibility in speculating individual operations on a segment of
predicated code.

References

[1] H. Corporaal. TTAs: Missing the ILP complexity wall. Journal of
stems Architecture, 1999. .

[2] H. Corporaal and J. Hoogerbrugge. Code generation for Transport
Triggered Architectures, 1995. . o

[3] K. Ebcioglu. A compilation technique for software pipelining of
I00jas with conditional jumps. In ISCA, 1987. .

[4] C.J. Tsenget.al. Bridge: A Versatile Behavioral Synthesis System.
InDAC, 1988. . .

[5] C. Lee et. al. MediaBench: A tool for evaluating and synthesizing
multimedia and communications systems. In MICRO, 1997. =

[6] D. August et. al. Integrated predicated and speculative execution in
the IMPACT EPIC architecture. In ISCA, 1998. .

[7] Ganesh Lakshminarayana et. al. Incorporating speculative execu-
tion into scheduling of control-flow intensive behavioral descrip-
tions. In DAC, 1998. .

[8] J. R. Allen et. al. Conversion of control dependence to data depen-
dence. In POPL, 1983. . . .

[9]1 M. Jacome et. al. Clustered VLIW architectures with predicated
switching. In DAC, 2001.,) . .

[10] S. Gupta'et. al. Speculation techniques for high level synthesis of
control intensive designs. In DAC, 2001. .

[11] S. Mahlke et. al. Effective Complier Support for Predicated Execu-
tion Using the Hyperblock. In MICRO, 1992. .

[12] S. Rixner et. al.” Register Organization for Media Processing. In
HPCA, 1999. » . .

[13] Sumit Gupta et. al. Conditional Speculation and its Effects on Per-
formance and Area for Hilgh-LeveI Synthesis. In ISSS 2001.

[14] T. Kim et. al. A Scheduling Algorithm for Conditional Resource
Sharing. In ICCAD, 1991. . . o

[15] V. Lapinskii et. al. High-quality operation binding for clustered
VLIW datapaths. In DAC, 2001, . .

[16] J. Fritts. Architecture and Compiler Design Issues in Programmable
Media Processors, Ph.D. Thesis, 2000.

17] http://www.ti.com. . o) .
18] Monica Lam. A systolic array optimizing compiler. PhD thesis,
Carnegie Mellon University, 1987. .

[19] Daniel M. Lavery and Wen mei W. Hwu. Modulo scheduling of

IooEs in control-intensive non-numeric programs. In ISCA, 1996.

[20] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. In

Algorithmica, 1991.

[21] N."Park and A. C. Parker. SEHWA: A Software Package for Syn-
thesis of Pipelines for Synthesis of Pipelines from Behavioral Spec-
ifications. In IEEE Trans, on CAD, 1988. o

[22] P. G. Paulin and J. P. Knight. Force-Directed Scheduling in Auto-
matic Data Path Synthesis. In DAC, 1987.) .

[23] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In ISCA, 1994. .

[24] J. Sanchez and A. Gonzalez. Modulo scheduling for a fully-
distributed clustered VLIW architecture. In ISCA, 2000.

[25] L. Dos Santos and J. Jess. A reordering technique for efficient code
motion. In DAC, 1999. o .

[26] M. G. Stoodley and C. G. Lee. Software pipelining loops with con-
ditional branches. In ISCA, 1996. .

[27] K. Wakabayashi and H. Tanaka. Global Scheduling Independent of
Control Dependencies Based on Condition Vectors. In DAC, 1992.

[28] P.F. Yeungand D.J. Rees. Resources Restricted Global Scheduling.
In VLS 1991, 1991.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

