
Data Space Oriented Scheduling in Embedded Systems

M. Kandemir, G. Chen, W. Zhang
CSE Department

Penn State University
University Park, PA, 16802

I. Kolcu
Computation Department

UMIST
Manchester M60 1QD, UK

Abstract

With the widespread use of embedded devices such
as PDAs, printers, game machines, cellular telephones,
achieving high performance demands an optimized oper-
ating system (OS) that can take full advantage of the un-
derlying hardware components. This paper presents a lo-
cality conscious process scheduling strategy for embedded
environments. The objective of our scheduling strategy is
to maximize reuse in the data cache. It achieves this by
restructuring the process codes based on data sharing pat-
terns between processes.

1. Introduction

As embedded designs become more complex, so does
the process of embedded software development. In particu-
lar, with the added sophistication of Operating System (OS)
based designs, developers require strong system support. A
variety of sophisticated techniques maybe required to ana-
lyze and optimize embedded applications. One of the most
striking differences between traditional process schedulers
used in general purpose operating systems and those used
in embedded operating systems is that it is possible to cus-
tomize the scheduler in the latter [9]. In other words, by
taking into account the specific characteristics of the appli-
cation(s), we can have a scheduler tailored to the needs of
the workload.

While previous research used compiler support (e.g.,
loop and data transformations for array-intensive applica-
tions) and OS optimizations (e.g., different process schedul-
ing strategies) in an isolated manner, in an embedded sys-
tem, we can achieve better results by considering the inter-
action between the OS and the compiler. For example, the
compiler can analyze the application code statically (i.e., at
compile time) and pass some useful information to the OS
scheduler so that it can achieve a better performance at run-
time. This paper is a step in this direction. We use compiler
to analyze the process codes and determine the portions of
each process that will be executed in each time quanta in
a pre-emptive scheduler. This can help the scheduler in
circumstances where the compiler can derive information
from that code that would not be easily obtained during ex-
ecution. While one might think of different types of infor-
mation that can be passed from the compiler to the OS, in

this work, we focus on information that helps improve data
cache performance. Specifically, we use the compiler to an-
alyze and restructure the process codes so that the data reuse
in the cache is maximized.

Such a strategy is expected to be viable in the embedded
environments where process codes are extracted from the
same application and have significant data reuse between
them. In many cases, it is more preferable to code an em-
bedded application as a set of co-operating processes (in-
stead of a large monolithic code). This is because in general
such a coding style leads to better modularity and main-
tainability. Such light-weight processes are often called
threads. In array-intensive embedded applications (e.g.,
such as those found in embedded image and video process-
ing domains), we can expect a large degree of data sharing
between processes extracted from the same application.

Previous work on process scheduling in the embedded
systems area include works targeting instruction and data
caches. A careful mapping of the process codes to mem-
ory can help reduce the conflict misses in instruction caches
significantly. We refer the reader to [10] and [5] for elegant
process mapping strategies that target instruction caches.
Li and Wolfe [6] present a model for estimating the per-
formance of multiple processes sharing a cache. More re-
cently, Kadayif et al [2] have presented a locality-conscious
process scheduling strategy where they first evaluate the po-
tential data reuse between processes, and then, using the
results of this evaluation, select an order for the process ex-
ecutions (i.e., a schedule). The approach in [2] is different
from ours and is restricted in the sense that each process can
contain only a single nest.

2. Our Approach

Our process scheduling algorithm takes a data space ori-
ented approach. The basic idea is to restructure the pro-
cess codes to improve data cache locality. Let us first focus
on a single array; that is, let us assume that each process
manipulates the same array. We will relax this constraint
shortly. We firstlogically divide the array in question into
tiles (these tiles are calleddata tiles). Then, these data tiles
are visited one-by-one (in some order), and we determine
for each process a set of iterations (callediteration tile) that
will be executed in each of its quanta. This approach will
obviously increase data reuse in the cache (as in their cor-
responding quanta the processes manipulate the same set

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/03 $17.00  2003 IEEE 



of array elements). The important questions here are how
to divide the array into data tiles, in which order the tiles
should be visited, and how to determine the iterations to
execute (for each process in each quanta). In the follow-
ing discussion, after presenting a simple example illustrat-
ing the overall idea, we explain our approach to these three
issues in detail.

Figure 1 shows a simple case (for illustrative purposes)
where three processes access the same two-dimensional ar-
ray (shown in Figure 1(a)). The array is divided into four
data tiles. The first and the third processes have two nests
while the second process has only one nest. In Figure 1(b),
we show for each nest (of each process) how the array is ac-
cessed. Each outer square in Figure 1(b) corresponds to an
iteration space and the shadings in each region of an itera-
tion space indicate the array portion accessed by that region.
Each different shading corresponds to an iteration tile, i.e.,
the set of iterations that will be executed when the corre-
sponding data tile is being processed. That is, an iteration
tile access the data tile(s) with the same type of shading.
For example, we see that while the nest in process II ac-
cesses all portions of the array, the second nest in process
III accesses only half of the array. Our approach visits each
data tile in turn, and at each step executes (for each pro-
cess) the iterations that access that tile (each step here cor-
responds to three quanta). This is depicted in Figure 1(c).
On the other hand, a straightforward (pre-emptive) process
scheduling strategy that does not pay attention to data lo-
cality might obtain the schedule illustrated in Figure 1(d),
where at each time quanta each process executes the half
of the iteration space of a nest (assuming all nests have the
same number of iterations). Note that the iterations exe-
cuted in a given quanta in this schedule do not reuse the
data elements accessed by the iterations executed in the pre-
vious quanta. Consequently, we can expect that data refer-
ences would be very costly due to frequent off-chip mem-
ory accesses. When we compare the access patterns in Fig-
ures 1(c) and (d), we clearly see that the one in Figure 1(c)
is expected to result in a much better data locality. When
we have multiple arrays accessed by the processes in the
system, we need to be careful in choosing the array around
which the computation is restructured. In this section, we
present a possible array selection strategy as well.

2.1. Selecting Data Tile Shape/Size

The size of a data tile (combined with the amount of
computation that will be performed for each element of it)
determines the amount of work that will be performed in a
quanta. Therefore, selecting a small tile size tends to cause
frequent process switchings (and incur the corresponding
performance overhead), while working with large tile sizes
can incur many cache misses (if the cache does not capture
locality well). Consequently, our objective is to select the
largest tile size that does not overflow the cache. The tile
shape, on the other hand, is strongly dependent on two fac-
tors: data dependences and data reuse. Since we want to
execute all iterations that manipulate the data tile elements
in a single quanta, there should not be any circular depen-
dence between the two iteration tiles belonging to the same

����������
����������
����������

����������
����������
����������

������
������
������

������
������
������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

(c)

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
��������������������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������

������
������
������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������

������
������
������

(b)

Process III

Nest 1

Nest  2

Process IIProcess I

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

����������
����������
����������

����������
����������
����������

����������
����������
����������
����������

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

Step 2

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

������
������
������
������
������

������
������
������
������
������

������
������
������

������
������
������

Step 3

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
������
������
������

������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

Step 4

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Step 1

(d)

����������
����������
����������

����������
����������
����������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������

(a)

Array

Step 1

Step 2

Step 3

Step 4

Figure 1. (a) An array divided into four por-
tions (data tiles). (b) Access pattern exhib-
ited by three processes (iteration tiles). (c)
Scheduling steps for our approach. (d) Steps
of an alternative scheduling.



(a) (b)

Figure 2. (a) Legal iteration space tiling. (b)
Illegal tiling. Each node denotes an iteration
point and each group of nodes is an iteration
tile. The arrows between iteration points in-
dicate data dependences.

process. In other words, all dependences between two itera-
tion tiles should flow from one of them to the other. Figure 2
shows a legal (iteration space) tiling in (a) and an illegal
tiling in (b). The second factor that influences the selection
of a data tile shape is the degree of reuse between the el-
ements that map on the same tile. More specifically, if, in
manipulating the elements of a given data tile, we make fre-
quent accesses to array elements outside the said tile, this
means that we do not have good intra-tile locality. An ideal
data tile shape must be such that the iterations in the cor-
responding iteration tile should access only the elements in
the corresponding data tile.

Data tiles inm-dimensional data (array) space can be de-
fined bym families of parallel hyperplanes, each of which
is an (m-1) dimensional hyperplane. The tiles so defined
are parallelepipeds (except for the ones that reside on the
boundaries of data space). Note that each data tile is anm-
dimensional subset of the data space. LetM be anm-by-m
nonsingular matrix whose each row is a vector perpendicu-
lar to a tile boundary.M matrix is referred to as thedata
tile matrix. It is known from previous research on itera-
tion space tiling [1] thatM�1 is matrix, each column of
which gives the direction vector for a tile boundary (i.e., its
columns define the shape of the data tile).

Let F be a matrix that contains the vectors that define
the relations between array elements. More specifically, if,
during the same iteration, two array elements~a1 and ~a2 are
accessed together, then~a2 � ~a1 is a column inF (assum-
ing that ~a2 is lexicographically greater than~a1). It can be
proven (but not done so here due to lack of space) that the
non-zero elements inMF correspond to the tile-crossing
edges inF . So, a goodM should maximize the number of
zero elements inMF . The entire iteration space can also
be tiled in a similar way that the data space is tiled. An itera-
tion space tile shape can be expressed using a square matrix
H (called theiteration tile matrix), each row of which is
perpendicular to one plane of the (iteration) tile. As in the
data tile case, each column ofH�1 gives a direction vector
for a tile boundary. It is known from [1] that, in order for
an iteration tile to be legal (i.e., dependence-preserving),H
should be chosen such thatnoneof the entries inHD is neg-
ative, whereD is the dependence matrix.1 For clarity, we

1In this work, we consider three types of data dependences.
Consider two iteration points,~I1 and ~I2 in a given nest. A flow-
dependence exists from~I1 to ~I2 if a variable is computed during

write this constraint asHD � 0:
Based on the discussion above, our tile selection problem

can be formulated as follows. Given a loop nest, select an
M such that the correspondingH does not result in circular
data dependences and thatMF has the minimum number
of non-zero elements. More technically, assuming thatG is
the access (reference) matrix,2 we haveM = GH. Assum-
ing thatG is invertible (if not, pseudo-inverses can be used),
we can obtainH = G�1M. Therefore, the condition that
needs to be satisfied isG�1M � 0: That is, we need to se-
lect anM matrix such that the number of non-zero entries
inMF is minimum andG�1M� 0:

As an example, let us consider the nest in Figure 3(a).
Since there are three references to arrayA, we have three
columns inF (one between each pair of distinct refer-
ences). Obtaining the differences between the subscript ex-
pressions, we have

F =

�
1 1 2
0 1 1

�
:

Figure 5(a) shows the columns of thisF on a data space
fragment. Figure 5(b), on the other hand, illustrates these
vectors on the entire data space. Since there are no data
dependences in the code, we can select any data tile matrix
M that minimizes the number of non-zero entries inMF .
Assuming

M =

�
a b
c d

�
;

we have

MF =

�
a b
c d

��
1 1 2
0 1 1

�

=

�
a a+ b 2a+ b
c c+ d 2c+ d

�
:

Recall that our objective is to minimize the number of non-
zero entries inMF : One possible choice isa = 0, b = 1,
c = 1, andd = �1, which gives

M =

�
0 1
1 �1

�
:

execution of~I1 and subsequently used during execution of~I2. An
anti-dependence exists between~I1 and ~I2 if a variable is read by
~I1 and subsequently modified by~I2. An output-dependence oc-
curs when a variable is written by both~I1 and ~I2. Many depen-
dences that occur in practice have constant distance in each loop
level. If there is such a dependence between~I1 and ~I2, the vector
~d = ~I2 � ~I1 is called the distance vector. All dependence vectors
in a given nest can be written collectively as a dependence matrix
D = [ ~d1; ~d2; :::; ~ds]:

2A reference to an array can be represented byG~I+~g; whereG
is a linear transformation matrix called the array reference (access)
matrix,~g is the offset (constant) vector;~I is a column vector, called
iteration vector, whose elements written left to right represent the
loop indicesi1, i2, � � �, in, starting from the outermost loop to the
innermost in the loop nest.



for i = 3:::N
for j = 2:::N
B[i][j] = A[i � 2][j � 1] +A[i � 1][j � 1] +A[i][j]

(a)
for i = 3:::N
for j = 2:::N
A[i][j] = A[i� 2][j � 1] +A[i � 1][j � 1] +B[i][j]

(b)

Figure 3. Two example nests. Note that while
both the nests have similar data access pat-
terns as far as accesses to array A are con-
cerned, the second nest also exhibits data de-
pendences. Consequently, selecting a suit-
able data tile matrix/iteration tile matrix for
the second case is more difficult.

Figure 5(b) also shows how thisM divides the array space
into (data) tiles (assuming that a data tile can accommodate
maximum nine array elements). Another alternative isa =
�1, b = 1, c = 0, andd = �1, which results in

M =

�
�1 1
0 �1

�
:

Note that in both the cases we zero out two entries inMF .
Now, let us consider the nested loop in Figure 3(b). As

far as arrayA is concerned, while the access pattern exhib-
ited by this nest is similar to the one above, this nest also
contains data dependences (as arrayA is both updated and
read). That is,

F =

�
1 1 2
0 1 1

�
and D =

�
0 1
1 1

�
;

whereD is the data dependence matrix. Consequently, we
need to select anM such that�

a b
c d

��
0 1
1 1

�
� 0:

In other words, we need to satisfyb � 0, d � 0, a+ b � 0,
andc+d � 0: Considering the two possible solutions given
above, we see that whilea = 0, b = 1, c = 1, andd = �1
satisfy these inequalitiesa = �1, b = 1, c = 0, andd = �1
do not satisfy them. That is, the data dependences restrict
our flexibility in choosing the entries of the data tile matrix
M.

Multiple references to the same array:If there are mul-
tiple references to a given array, we proceed as follows. We
first group the references such that if two references are uni-
formly references, they are placed into the same group. Two
referencesG1~I + ~g1 andG2~I + ~g2 are said to be uniformly
gererated if and only ifG1 = G2. For example,A[i+1][j�1]
andA[i][j] are uniformly generated, whereasA[i][j] and
A[j][i] are not. Then, we count the number of references in
each uniformly generated reference group, and the access
matrix of the group with the highest count is considered as

the representative reference of this array in the nest in ques-
tion. This is a viable approach because of the following
reason. In many array-intensive benchmarks, most of the
references (of a given array) in a given nest are uniformly
generated. This is particularly true for array-intensive im-
age and video applications where most computations are of
stencil type. Note that in our example nests in Figure 3,
each array has a single uniformly generated reference set.

Multiple arrays in a nest: If we have more than one ar-
ray in the code, the process of selecting suitable data tile
shapes becomes more complex. It should be noted that our
approach explained above is a data space centric one; that is,
we reorder the computation according to the data tile access
pattern. Consequently, if we have two arrays in the code,
we can end up with two different execution orders. Clearly,
one of these orders might be preferable over the other. Let
us assume, for the clarity of presentation, that we have two
arrays,A andB, in a given nest. Our objective is to deter-
mine two data tile matricesMA (for arrayA) andMB (for
arrayB) such that the total number of non-zero elements
in MAFA andMBFB is minimized. Obviously, data de-
pendences in the code need also be satisfied (i.e.,HD � 0,
whereH is the iteration tile matrix). We can approach this
problem in two ways. Let us first focus onMA. If we
select a suitableMA so that the number of non-zero ele-
ments inMAFA is minimized, we can determine aH for
the nest in question using thisMA and the access matrix
GA. More specifically,H = GA

�1MA (assuming thatGA
is invertible). After that, using thisH, we can find anMB

from MB = GBH. An alternative way would start with
MB , then determineH, and after that, determineMA. One
way of deciding which of these strategies is better than the
other is to look at the number of zero (or non-zero) entries
in the resultingMAFA andMBFB matrices. Obviously,
in both the cases, if there are data dependences, the condi-
tionHD � 0 needs also be satisfied. These two strategies
are depicted in Figures 4(a) and (b).

Multiple nests in a process code:Each nest can have
a different iteration tile shape for the same data tile, and a
legal iteration tile (for a given data tile) should be chosen
for each process separately. As an example, let us focus
on a process code that contains two nests (that access the
same array). Our approach proceeds as follows. If there are
no dependences, we first find aM such that the number of
non-zero entries inMF1 andMF2 is minimized. Here,F1

andF2 are the matrices that capture the relations between
array elements in the first nest and the second nest, respec-
tively. Then, using thisM, we can determineH1 andH2

fromH1 = G1
�1M andH2 = G2

�1M, respectively. In
these expressions,G1 andG2 are the access matrices in the
first and the second nest, respectively. It should be noted,
however, that the nests in a given process do not need to use
the same data tile matrixM matrix for the same array. In
other words, it is possible (and in some cases actually bene-
ficial) for each nest to select a differentM depending on its
F matrix. This is possible because our data space tiling is a
logical concept; that is, we do not physically divide a given
array into tiles or change the storage order of its elements in
memory. However, in our context, it is more meaningful to
work with a singleMmatrix for all nests in a process code.



MA M B

Loop Nest

Array A Array B

H

MA M B

(a) (b)

Loop Nest

Array A Array B

H

Figure 4. Two different strategies for deter-
mining the data tile matrices and the itera-
tion tile matrix for a given nest that accesses
two arrays. In either case, the objective is
to minimize the number of non-zero entries
in FAMA and FBMB ; however, the case in
(a) starts with array A whereas the case in
(b)starts with array B. Note that this can be
extended to the cases where we have more
than two arrays in the loop nest.

This is because when a data tile is visited (during schedul-
ing), we would like to executeall iteration tiles fromall
nests (that access the said tile). This can be achieved more
easily if we work with a single data tile shape (thus, single
M) for the array throughout the computation.

There is an important point that we need to clarify be-
fore proceeding further. As mentioned earlier, our approach
uses theF matrix to determine the data tile shape to use.
If we have only a single nest, we can build thisF matrix
considering each pair of data references to the array. If we
consider multiple nests simultaneously, on the other hand,
i.e., try to select a single data tile matrixM for the array
for the entire program, we need to have anF matrix that
reflects the combined affect of all data accesses. While it
might be possible to develop sophisticated heuristics to ob-
tain such a globalF matrix, in this work, we obtain this
matrix by simply combining the columns of individualF
matrices (coming from different nests). We believe that this
is a reasonable strategy given the fact that most data reuse
occurs within the nests rather than between the nests.

2.2. Tile Traversal Order

Data tiles should be visited in an order that is acceptable
from the perspective of data dependences [4]. Since in se-
lecting the iteration tiles (based on the data tiles selected)
above we eliminate the possibility of circular dependences
between iteration tiles, we know for sure that there exists at
least one way of traversing the data tiles that lead to legal
code. In finding such an order, we use a strategy similar to
classical list scheduling that is frequently used in compilers
from industry and academia. Specifically, given a set of data
tiles (and an ordering between them), we iteratively select
a data tile at each step. We start with a tile whose corre-
sponding iteration tile does not have any incoming data de-
pendence edges. After scheduling it, we look the remaining

(a)

Start

End

(b)

(c)

Figure 5. (a) Columns of F on a data space
fragment. (b) Entire data space with the re-
lations between array elements and tile se-
lection (i.e., how M divides data space into
tiles). (c) Tile traversal order. Note that this is
not the only order.

tiles and select a new one. Note that scheduling a data tile
might make some other data tiles scheduleable. This pro-
cess continues until all data tiles are visited. This is a viable
approach as in general the number of data tiles for a given
array is small (especially, when the tiles are large). Return-
ing to the example in Figure 5, one possible tile traversal
order is illustrated in Figure 5(c).

2.3. Restructuring Process Codes and Code Gener-
ation

It should be noted that the discusion in the last two sub-
sections is a bit simplified. The reason is that we assumed
that the array access matrices are invertible (i.e., nonsingu-
lar). In reality, most nests have different access matrices
and some access matrices are not invertible. Consequently,
we need to find a different mechanism for generation iter-
ation tiles from data tiles. To achieve this, we employ a
polyhedral tool called the Omega Library [3]. The Omega
library consists of a set of routines for manipulating linear
constraints over Omega sets which can include integer vari-
ables, Presburger formulas, and integer tuple relations and



sets. We can represent iteration spaces, data spaces, access
matrices, data tiles, and iteration tiles using Omega sets.

Let us consider the nest in Figure 3(b) again. We can
represent the iteration space of this nest as

IS = f(i; j) : 3 � i � N and2 � j � Ng:

The set of array elements accessed through referenceA[i�
2][j � 1] can be expressed as

DS = f(a; b) : a = i� 2 andb = j � 1 and(i; j) 2 ISg:

Similarly, a data tile of arrayA starting with coordinates
(t1; t2) is written as

DTt1;t2 = f(a; b) : 9c19c2 s.t.a = t1 + c1 andb = t2 + c2 and
0 � c1 < C1 and0 � c2 < C2 and(a; b) 2 DSg:

Here,C1 andC2 are the extents of the tile andC1C2 is the
tile size (i.e., the total number of elements in the tile). Given
this data tile, we can easily identify the set of iterations (it-
eration tile) that access the elements in the data tile. That
is,

ITt1;t2 = f(i; j) : 9a9b s.t.a = i� 2 andb = j � 1

and(a; b) 2 DTt1;t2 and(i; j) 2 ISg:

Another important feature of the Omega Library is its ca-
pability of generating for-loops that enumerate the elements
that satisfy an Omega set. For example, onceITt1;t2 above
is built, we can ask the library to generate for-loops that
enumerate iterations(i; j) that belong to this set.

2.4. Overall Algorithm

Based on the discussion in the previous subsections, we
present the sketch of our overall algorithm in Figure 6. In
this algorithm, in the for-loop between lines 2 and 14, we
determine the array around which we need to restructure
the process codes. Informally, we need to select an array
such that the number of non-zero entries inMsFs should
be minimum, where1 � s � L, L being the total number
of arrays in the application. To achieve this, we try each ar-
ray in turn. Note that this portion of our algorithm works on
the entire application code. Next, in line 15, we determine
a schedule order for the processes. In this work, we do not
propose a specific algorithm to achieve this; however, sev-
eral heuristics can be used. In line 16, we restructure the
process codes (i.e., tile them).

The functionality of the for-loop between the lines 17
and 20 is rather subtle, and deserves some discussion. Note
that, up to this point, we have structured a given code con-
sidering only a single array. The remaining arrays are af-
fected from this restructuring as well; but, this is indirectly.
However, there might be some portions of the code where
the array in question (Ak) is not used at all. Consequently,
the restructuring performed so far cannot touch those por-
tions. In order to optimize these portions too, we need to
select another array (different fromAk) and repeat the pro-
cess performed so far. This should continue until all itera-
tions are restructured.

1. max-count 0
2. for each arrayAi in the application do
3. determineFi
4. determineMi

5. determineH for each nest
6. for each arrayAj wherej 6= i do
7. determineMj

8. count the number of non-zero elements

in
P

L

l
MlFl

9. if count> max-count do
10.k i
11. max-count = count

12. endif
13. endfor

14. endfor
15. determine a schedule order for the processes
16. restructure (tile) each process code consideringMk

(using the Omega Library)
17. if there are leftover iterations do
18. select another arrayAk0 such thatk0 6= k
19. dropAk from consideration and repeat the process

20. endif

Figure 6. Overall scheduling algorithm.

3. Concluding Remarks

Process scheduling is a key issue in any multi-
programmed system. In this paper, we present a locality
conscious scheduling strategy whose aim is to exploit data
cache locality as much as possible. It achieves this by re-
structuring the process codes based on data sharing between
processes.

References

[1] F. Irigoin and R. Triolet. Supernode partitioning. InProc. 15th
POPL,pages 319–328, San Diego, CA, January 1988.

[2] I. Kadayif, M. Kandemir, I. Kolcu, and G. Chen. Locality-conscious
process scheduling in embedded systems. InProc. the Tenth In-
ternational Symposium on Hardware/Software Codesign,Colorado,
USA May 6-8, 2002.

[3] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and David
Wonnacott. The Omega Library interface guide.Technical Report
CS–TR–3445, CS Dept., University of Maryland, College Park,
MD, March 1995.

[4] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level
blocking. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 1997.

[5] C-G. Lee et al. Analysis of cache related preemption delay in fixed-
priority preemptive scheduling.IEEE Transactions on Computers,
47(6), June 1998.

[6] Y. Li and W. Wolfe. A task-level hierarchical memory model for
system synthesis of multiprocessors.IEEE Transactions on CAD,
18(10), October 1999, pp. 1405–1417.

[7] G. Rivera and C.-W. Tseng. Data transformations for eliminat-
ing conflict misses. InProc. the 1998 ACM SIGPLAN Conference
on Programming Language Design and Implementation, Montreal,
Canada, June 1998.

[8] WARTS: Wisconsin Architectural Research Tool Set.
http://www.cs.wisc.edu/�larus/warts.html

[9] W. Wolfe. Computers as Components: Principles of Embedded
Computing System Design,Morgan Kaufmann Publishers, 2001.

[10] A. Wolfe. Software-based cache partitioning for real-time appli-
cations. InProc. the Third International Workshop on Responsive
Computer Systems,September 1993.


	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index




