
Creating Value Through Test

Erik Jan Marinissen1 Bart Vermeulen1 Robert Madge2 Michael Kessler3 Michael Müller3

1 Philips Research Laboratories
IC Design – Digital Design & Test

Prof. Holstlaan 4 – WAY-41
5656 AA Eindhoven

The Netherlands
erik.jan.marinissen@philips.com

bart.vermeulen@philips.com

2 LSI Logic Corp.
Product Engineering

23400 N.E. Glisan Street
Gresham, OR

United States of America
rmadge@lsil.com

3 IBM Deutschland Entwicklung GmbH
Hardware Development
Schönaicherstrasse 220

71032 Böblingen
Germany

mkessler@de.ibm.com
mulm@de.ibm.com

Abstract

Test is often seen as a necessary evil; it is a fact of life that ICs have manufacturing defects and those need to be filtered out by testing
before the ICs are shipped to the customer. In this paper, we show that techniques and tools used in the testing field can also be
(re-)used to create value to (1) designers, (2) manufacturers, and (3) customers alike. First, we show how the test infrastructure can
be used to detect, diagnose, and correct design errors in prototype silicon. Secondly, we discuss how test results are used to improve
the manufacturing process and hence production yield. Finally, we present test technologies that enable systems of high reliability
for safety-critical applications.

1 Value for IC Designers: Silicon Debug
Bart Vermeulen – Philips Research Laboratories

For today’s system chip designs, no designer can guarantee that all de-
sign errors are found before first tape-out, despite meticulous analysis
and verification [1, 2]. These errors can go undetected because the ver-
ification methods are only applied to an abstract model of the IC and
not to the actual silicon. When more detail is added to the IC model (to
better match it to the reality), most verification methods can no longer
be applied exhaustively because of the computational cost involved.
Given that design teams are under continued time-to-market pressure,
it is important to find design errors quickly. Apart from improving the
pre-silicon verification methods, it is worthwhile to improve existing
silicon debug methods and complement them with other approaches.

Debugging silicon is difficult because the engineer’s ability to observe
the chip’s internal processes (e.g., states and data flow) is limited. We
can identify two traditional approaches to diagnose faulty behavior of
a chip in the application. First there are diagnosis methods such as vi-
sual inspection (e.g., electron-beam probing) and direct physical con-
tact techniques (e.g., using probe needles). A drawback of these meth-
ods is that it is often difficult to pin-point the exact location of an error
in the chip without additional information. To examine the entire lay-
out of a design for a possible error cause using only visual inspection
is clearly not feasible. In addition, with decreasing feature sizes and
an increasing number of metal layers in modern process technologies,
the usage of these debugging techniques is becoming more difficult.
A second method involves manual and ad-hoc debug techniques, such
as trial-and-error programming of the chip. Although these techniques
can help to provide information on the type of design error and its loca-
tion, they are often unpredictable in both success rate and time required
to sufficiently localize a design error.

One other method is to provide electrical observability of on-chip sig-
nals through the device pins. The most popular application of this
method involves reusing the scan chains already inserted in the de-
sign for manufacturing test. These scan chains are used to provide

state dumps of flip flop and memory content while the chip is in the
application. This method is so popular because the scan chains allow
observability of the chip’s full state, while minimizing the amount of
additional hardware required to implement this functionality, provided
that design-for-test has already been implemented.

Below, a generic debug methodology is described that utilizes scan
chains for silicon debug [3]. This debug methodology consists of two
steps. First, certain Design-for-Debug (DfD) structures are added dur-
ing the design phase of a chip. Second, debugger software that executes
on a computer connected to the application board, is used to debug the
chip. The debugger software is used to control the chip and its debug
hardware in the application.

1.1 Scan-Based Silicon Debug
A scan-based silicon debug methodology is based on re-using scan
chains, inserted for manufacturing test, to analyze design errors. To
allow access to the scan chains in the application, certain modifica-
tions need to be made to the design. Figure 1 gives an overview of an
architecture that allows this access. Please note that only two cores are
shown for clarity. This architecture can be easily extended to cover any
number of cores.

All debug operations are controlled from the IEEE Std. 1149.1 Test
Acces Port (TAP) controller. The advantage of using this controller for
debug is that the TAP controller and its associated pins (1) have often
already been included in the design to allow for board-level manufac-
turing test, (2) are easy to access when the chip is put on its application
board, and (3) are themselves not used by the application.

The IEEE Std. 1149.1 TAP is essentially a serial port, with one serial
input (TDI) and one serial output (TDO). In Figure 1, all debug func-
tionality is therefore controlled from one or more serial debug control
blocks (DCB). These DCBs are under control of the test hardware, to

1530-1591/03 $17.00  2003 IEEE

allow them to be fully tested during manufacturing test and to control
them from the TAP controller.

BP-DCB

AC-DCB

TCB

BP-DCB

AC-DCB

TCB

TAP Controller

CC-DCB

clock generator

TDI TRSTn TMS TCK TDO

core 1 core 2

IC

Figure 1: Scan-based silicon debug architecture.

The architecture in Figure 1 implements the “ABC” of scan-based sil-
icon debug; Access to the scan chains, Breakpoints to detect one or
more internal events, and Clock control. These are explained below.

Access
The scan chains are controlled via dedicated TAP data registers. One
clock domain is scanned out at a time, as the TAP has only one serial
output. In debug mode, the scannable flip flops are concatenated into
debug scan probes, one in each clock domain. This concatenation is
performed at core-level using a debug shell, shown in gray in Figure 1.
The debug shell hides all core-specific details, such as number of scan
chains and clock domains inside the core, and provides a single, uni-
form hardware interface for debug at the integration level. Each core
provides one serial input and one serial output to its debug scan probes,
and a standardized debug interface to an Access Control Debug Con-
trol Block (AC-DCB), that controls the scan probe multiplexing. At
the integration level, all serial inputs and outputs are daisy-chained.

During a silicon debug session, the AC-DCB is used to select each
core-level scan probe in turn, while its input and output are connected
to the chip’sTDI andTDO pins. To the user this complexity in access-
ing the various scan probes is hidden. The debugger software takes
care of issuing the proper TAP commands to select each probe in turn,
and translating the bit-streams received on the chip’sTDO output to
individual flip flop, multi-bit register, and memory content.

Breakpoints
To examine the behavior of the chip in detail using state dumps, it is
required to first determine at which point during the chip’s execution a
state dump has to be made. An on-chip breakpoint mechanism is added
to the design to allow the chip to be stopped at regular intervals during
its execution. This regularity is important, as it allows the state dumps
to provide a clear insight in the data and control processing going on in-
side the chip over time. If the breakpoint mechanism does not provide
enough temporal resolution, the ‘blind spots’ in between state dumps,
where no information can be obtained, might seriously complicate and
lengthen the debug process.

During a silicon debug session, the breakpoint mechanism is pro-
grammed via a Breakpoint DCB to stop the chip at a certain point in
time. After stopping, a scan dump via the TAP is made and compared
to golden reference data. Based on this comparison, the end user can
use the debugger software to re-program the breakpoint mechanism to

stop the chip at a different point in time to obtain more debug infor-
mation. Ultimately this should help the user to diagnose the design
error. Figure 2 shows the debug flow in which state dumps are used to
analyze a design error.

Start

Program Breakpoint

End

Functional reset

Breakpoint hit?

Create state dump

Done?

Power-on Reset

N

Y

Y
N

Figure 2: Flow used for scan-based silicon debug.

Clock Control
The chip is stopped by gating the on-chip clocks. Stopping the clocks
effectively freezes the content of all flip flops and embedded memo-
ries. After the clocks have stopped, the circuit can be safely switched
to debug scan mode. In debug scan mode, each internal clock is se-
lected in turn to allow the content of the corresponding scan probe to
be scanned out. The stop and re-activation functions for the internal
clocks for scan chain shifting are added to the on-chip clock genera-
tion unit and controlled from a Clock Control DCB.

The scan-based silicon debug architecture presented above uses scal-
able modules to implement the required silicon debug functionality.
These modules are added to each of the submodules in the design, al-
lowing a core-based design, test, and debug methodology to be fol-
lowed. The advantage of this is that the debug architecture can be
completely tailored to suit a particular design. As an example, a de-
sign may contain cores with a different number of scan chains and/or
clock domains. The debug shell hides these test-details by providing
one core-level debug interface. Each of these cores has the same debug
interface, allowing a design-for-debug tool to automatically perform
the core interconnect at integration level. This reduces the time re-
quired for a designer to add design-for-debug hardware to a design. In
addition, because of the scalable nature of the debug architecture, an
estimation tool can be used to make an educated trade-off between for
example breakpoint granularity and hardware cost.

1.2 Silicon Debug Successes
This debug methodology has been successfully applied to a number of
large digital system chips within Philips.

The debug facilities on the CPA chip [4] proved essential in verify-
ing its video-processing capabilities. The first silicon exhibited several
problems during initialization, causing the chip to malfunction after 50
to 75 video frames. The source of the problems was detected by exam-
ining scan dumps taken at each cycle during the initialization sequence.
Using the debug controllability, we replaced the faulty ROM-based ini-
tialization code by loading corrected code into an external SDRAM and
instructing the chip to fetch its code from that SDRAM. After this fix,
the designers could successfully verify all image processing functions
without further silicon spins.

For the PNX8525/Viper chip [5], and more recently for the
PNX7100/Chrysalis chip, the state dumping functionality allowed de-
signers to correctly diagnose the faulty behavior of subcomponents. In
one case, the flow shown in Figure 2 was repeatedly used to back-track
mismatches between simulation states and silicon states back to the
output of a single gate. Under specific circumstances, the output of
this gate was not able to drive an internal signal to the correct value in
time, which ultimately resulted in erroneous behavior. Once this was
discovered, the fix was easy to implement and verify.

As a result of these successes, a standardization activity is currently on-
going to make this debug methodology available to all digital designs

within Philips.

1.3 Conclusion
The presented debug methodology successfully relies on the existing
scan chain access to debug prototype silicon. With only little extra
hardware to create debug access, breakpoints, and clock control, it be-
comes possible to obtain state dumps while the chip is in its applica-
tion. These state dumps provide the debug engineer with essential in-
formation to locate design errors still left in the chip, and overall help
to reduce the number of silicon spins and time-to-market of the chip.

2 Value for Manufacturing: Understanding Defects and Improving Yield
Robert Madge – LSI Logic Corporation

The increasing complexity of fabrication processes and the prolifera-
tion of foundry fabs has resulted in significant challenges to achieve
competitive yield at the introduction of new technologies and for fast
ramp to volume manufacturing. Time-to-market and quality goals are
increasingly hard to meet due to the growing product complexity and
gate count. This section highlights the immense added value of test
data in attempts to overcome these challenges and meet the market and
profitability requirements.

2.1 Process Yield Improvement
Process and yield engineers have traditionally relied on the pass/fail
‘bin’ data from wafer sort and package testing to monitor the capabil-
ity of their process technology and to improve the defect density and
parametric performance. Bit fail signature data has long been a yield
improvement method for discrete and embedded memory manufactur-
ers [6, 7, 8], but for logic products, raw test data has recently become
a critical part of the yield engineer’s tool set. This has significantly
increased the added value of testing to the manufacturing world.

Figure 3: A bi-modal IDDQ distribution due to silicon ingot defects.

Figures 3 and 4 show examples of how raw ATE data is analyzed for
yield learning and process improvement. In Figure 3, IDDQ data is
shown to have a bi-model distribution, even though only a small per-
centage fail the test limit. The cause of the bi-modal behavior was gate
oxide defects due to incoming silicon stacking faults from one silicon
vendor causing 5–10% yield loss on logic ASICs and 50–60% yield

loss on ASICs with embedded memory, and was resolved by reducing
the oxygen content of the incoming silicon. This problem could not
have been identified without the raw IDDQ data. Figure 4 shows an
across-wafer variation of minimum working voltage for a 1.8 V func-
tional core. Even though the core is not failing at the test voltage of
1.8 V, the raw data identified a marginality caused by a process de-
fect. Early identification and fix of this defect was critical to the yield
learning for this product.

Figure 4: Intrinsic minimum voltage variation across the wafer.

2.2 Quality and Reliability Improvement
Quality and reliability engineers are also utilizing raw test signatures,
particularly IDDQ (Figure 5) and Min-VDD (Figure 6), to understand
the latent defectivity of the silicon process and the potential for quality
and reliability improvements by screening die with abnormal signa-
tures (or statistical outliers) [9, 10]. The more recent trend is to utilize
the raw test results to predict the intrinsic (defect-free) behavior based
on neighborhood or deltas and reduce the variance such that defective
outliers can be clearly identified and eliminated for quality improve-
ment [11]. Statistical post-processing methods have been developed
which move the pass/fail decision making step from on-tester to off-
tester (see Figure 7). This allows much improved identification of the
outlier die and has been shown to result in 40–60% improvements in
Early Fail Rate (EFR) and customer-return Defects-Per-Million (DPM)
[12, 13].

Figure 5: IDDQ data from two silicon lots from the same process. Note
outlier die from both lots which cannot be efficiently screened with the
on-tester limit.

Figure 6: Min-VDD vs. device speed for two different lots, clearly
showing Min-VDD outliers and lot-to-lot intrinsic variation.

Figure 7: Statistical Post-Processing (SPP) data flow showing the use
of raw parametric ATE data in off-tester pass/fail decision making and
inkless re-binning.

2.3 Failure Analysis
Failure analysis continues to provide immense value to the yield ramp
and quality and reliability improvement. Test data is contributing
significantly to this continued success through mapping of defects
to structural test datalogs such as scan or IDDQ to in-line defects
[14, 15, 16]. Figure 8 shows how the ATE failure datalog is combined
with the design files to identify the failing nets and isolate the defect
causing the failure. The defect cause in this case was a metal bridge,
which would be almost impossible to identify using traditional failure
analysis techniques.

Figure 8: A bridging defect identified by the scan datalog diagnosis method.

2.4 Test Cost Reduction/Adaptive Testing
Test engineers have always utilized raw test data to isolate correlation
or repeatability issues in the test program or hardware. Recent trends,
however, have been towards collection and analysis of large volumes of
test data over longer periods of time. Test times can be reduced through
elimination of unnecessary or redundant tests or vectors and adaptive
test methods can be introduced where the results of certain tests can
determine the need for more extensive testing based on probability of
failure. More recent trends towards foundry wafer manufacturing has
led to the importance of adaptive testing due to the potentially variable
quality of silicon coming from the fabs. Test time improvements of
26% have been reported with adaptive test methods while also improv-
ing product quality [17].

2.5 Conclusion
ATE testing and the raw data results provide ever-increasing value in
the manufacturing of complex integrated circuits. No longer are the
raw data results ignored in favor of pass/fail ‘bin’ results, rather the
results are a critical part of the yield learning, quality and reliability
improvement and cost reduction process in all areas of manufacturing
and process or product development.

3 Value for End Customers: Highly Reliable Systems
Michael Kessler & Michael Müller – IBM Deutschland

The heart of a zSeries 900 system (S/390) consists of a Multi-Chip
Module (MCM) and a number of surrounding support chips and units.
The 2000 design generation MCM, operating at 1 GHz, contains 20
Central Processors (CP), 2 Cache Controllers (SCC), 8 Cache Chips
(SCD), 4 Memory Bus Adapters (MBA), and a Clock Chip (CLK) for

clock distribution. The test techniques were developed and improved
from generation to generation to fulfill the quality expectations of the
customers. Business customers with mission-critical applications are
highly dependent on the premium quality and reliability of the ma-
chine, 365 days a year, 24 hours a day.

The goal is to minimize all possibilities for malfunction and to im-
prove reliability by removing all early life problems by stressing the
components and the complete system. You also want to be cost effec-
tive overall (from wafer to system) by generating highest quality. This
is not a contradiction, but a necessary prerequisite.

Many components are necessary, to guarantee the reliability targets
for such a machine. First of all, perfection is needed during testing
and stressing before shipment. From the system view a consequent
system design for Reliability, Availability and Serviceability (RAS)
is necessary, which includes redundancy, no Single Point of Failure
(SPOF), fault-tolerance, recoverability, traceability, and diagnosability
after shipment.

3.1 Testing and Stressing
Design-for-Test
The base for test is a structural test approach of the silicon with highest
possible DC and AC fault coverage. Logic Built-In Self Test (LBIST)
and Array BIST (ABIST) are perfectly suitable for the following rea-
sons. The tester resource requirements are minimal. Only initializa-
tion and measurement of the pre-calculated signature are necessary.
The LBIST can be applied at-speed and beyond (for margin testing)
through on-chip clock generators. The LBIST is capable of applying
pseudo-random and programmable weighted pseudo-random patterns.
The design is made random testable for highest possible test coverage,
e.g., “99% AC test coverage using LBIST only” [18]. The test time is
kept low, by means of the STUMPS architecture [19] with many short
STUMPS channels.

Test
The LBIST/ABIST are applied through several packaging levels from
wafer, to single chip, to MCM, to the various system configurations
and during power-on at the customer site. It is also used for BurnIn
and RunIn at chip-level and system-level. The wafer test is applied
through a Reduced-Pin-Count tester interface and consists of paramet-
ric tests, Flush/Scan, LBIST/ABIST, and supplemental stored patterns.
The single-chip test uses the same tests again plus the external I/O tests.
MCM test reuses the LBIST/ABISTs and at-speed interconnect tests.

Above tests are applied to guarantee functionality at all voltage, tem-
perature, pattern, and cycle time corners. LBIST/ABISTs are used as
sorting criteria together with other speed indicators.

Due to the nature of semiconductor chips, the difference between worst
case (slow) and best case (fast) is fairly high. During wafer and single-
chip test, the Flush-Delay through a Shift-Register-Latch (SRL) chain
is used as speed indicator. A Performance-Screening-Ring-Oscilator
(PSRO) could be used as well. A given chip must not only fulfill its
raw flat cycle time limit (e.g., 1 GHz), but must perform according to its
predicted cycle time calculated from its own Flush-Delay [20]. Chips
that perform outside of a narrow performance distribution arenot put
into a slower sort bucket, but get discarded. Anyoutliers get removed,
they are suspect to fail in the future. Tests are applied at very low and
at very high voltages (outside of the functional window) to accelerate
and detect certain fault behaviors.

BurnIn, RunIn
LBIST/ABIST is used to operate the chips at elevated temperatures and
voltages to accelerate any early-life failures that do not cause failures
initially, but later (possibly in the customer’s application) so-called ‘re-
liability failures’. RunIn is used to stress the chips at and beyond the
target cycle time, again to improve the reliability. Later, after assembly
of the machine, extended stress tests use again LBIST/ABISTs.

3.2 Usage of Built-in Test Equipment in the Field

The zSeries z900 is an example of a system which uses instantaneous
error detection on each CPU and on each I/O operation while the sys-
tem is executing the customer’s workload. Instantaneous detection is
the detection of an error in the ongoing operation prior to committing
the result to any other functional unit [21]. All arrays (L1-I-Cache,
L1-D-Cache, TLB, BHT, L2-Cache, L3-Memory) and all buses use
error-correcting codes to detect and correct errors. The state machines
are implemented with redundancy in the state encoding, invalid state-
detection, and sequence checking. The checking in the PU chips for
example is implemented by duplicating the Execution Units (Instruc-
tion Unit, Floating-Point Unit, Fixed-Point Unit) and performing a re-
sult compare before committing the result to the self-checked Recovery
Unit (R-Unit) [22].

Usage of LBIST/ABIST for Maintenance
At system power-on or whenever new hardware, either for upgrade or
repair, is added to the system, the LBIST and ABIST are executed to
ensure the new hardware including the instantaneous error detection
circuitry is working before the component joins the configuration. The
server executes ABIST to find failures in the large arrays and repairs
the failure using an extension to the fuse-programmable array-line-
relocate method used in manufacturing to increase the yield. In the
rare case of larger damage, when the failure cannot be self-healed, sin-
gle array lines, quadrants of the large arrays, and up to complete chips
can be de-configured to allow for an emergency operation in degraded
mode, until the scheduled repair can be performed at the customer’s
convenience.

Error Reporting, Containment, Recovery
There are two major error-reporting-methods in the z900 system. For
‘clock-running’ errors, used for less severe errors where the unit con-
tinues to function through the error, the reporting is done in-band. For
‘clock-stop’ errors, used for severe errors, where the unit is no longer
functioning, the reporting is done out-of-band to the service subsystem
by scanning out the SRL chain. In both cases the error information is
collected to determine the amount of damage, to trigger the appropriate
recovery, and to perform fault isolation. The error information together
with the result of the recovery is stored as First-Failure-Data-Capture
(FFDC). The information collected from the detection circuitry identi-
fies the offending unit and the scope of the error.

Recovery is attempted and will be successful in case of a transient fault.
If the error is caused by a frequently occurring intermittent fault and
thus exceeds a certain threshold, it is considered permanent [23]. For
a permanent fault recovery will activate an alternate path, a spare el-
ement, or, if none available, inform the operating system about the
exact point of interruption and the precise amount of damage to the
interrupted operation. This allows the operating system to associate
the failure with the impacted application and preserve the unaffected
applications.

Fault Isolation and Repair
The captured failure data allow effective automatic isolation down to
the Field Replaceable Unit (FRU). The server generates a call-home
to the maintenance provider that includes the failed FRU, the current
system status, FFDC, and the scope of the repair action, such that the
service personnel can schedule the repair at a convenient point in time
with the customer. The service personnel does not need to run any di-
agnostics to reproduce the failure, but has the spare part right at hand to
replace the defective part in a concurrent repair on-line. This reduces

the repair time dramatically.

DRAM Sparing and Cache Line Relocate
Accumulation of soft-errors in seldom accessed storage can be avoided
by continuously scrubbing the complete storage to correct single bit
errors. Scrubbing uses the error syndrome to count the errors in each
DRAM module. When the count of errors exceeds a specified thresh-
old, a spare DRAM module is activated. The content of the faulty
module is copied into the spare module. Any store operation stores the
data in both modules. When copying is completed, the faulty module
is replaced by the spare module. The self-repair using a spare DRAM
avoids downtime for memory card replacement [21]. Similar moni-
toring is applied to the large caches. When a cache line exceeds a
certain threshold for single-bit error-correction-events, the cache line
is marked unusable and scheduled for relocation to a spare cache line
at the next power-on [24].

CPU Instruction Recovery and Sparing
The failing current instruction is retried when the R-Unit detects a mis-
match, using the correct committed results of the previous instructions
contained in the R-Unit. The PU chip is fenced and its clocks are
stopped in case retry was not successful. The clock-stop event trig-
gers the Service Subsystem of the z900 server to scan out the R-Unit
SRL chain. This last valid checkpoint is sent to the remaining host PUs
which determine the target spare. The R-Unit contents is passed to the

designated spare, which begins a “self-initiated brain transplant”. The
spare has then the identity of the clock-stopped PU and resumes ex-
ecution where the failed PU left off by retrying the same instruction
[21]. Dynamic CPU sparing permits the system to be restored to full
capacity in less than a second as opposed to hours.

3.3 Conclusion
Built-in test equipment identifies defect chips. In combination with
BurnIn, RunIn, and stress tests with higher guard-band conditions, it
sorts out even potentially defect chips. Removing these chips as early
as possible in the production cycle minimizes overall costs from pro-
duction to warranty and service and furthermore protects the customer
from outages. Since the BISTs clearly separate technology and man-
ufacturing failures from logic design flaws it speeds up bring-up, ties
less capital to bring-up hardware and improves time-to-market. Check-
ing logic protects integrity of customer data, identifies the fault of a unit
and is thus the base for error containment, transparent recovery, activa-
tion of alternate paths and spare parts to maximize system availability,
to completely avoid repair or at least defer to scheduled repair. The
data collected at the first occurance of a failure lay the foundation for
automatic fault isolation down to the field replaceable unit, instead of
relying on failure reproduction through diagnostics, and to call-home
for the correct spare part in order to reduce the repair time and cost.

References
[1] E.J. Aas et al. Quantifying Design Quality Through Design Experiments.

IEEE Design & Test of Computers, Vol. 11(No. 1):27–38, 1994.

[2] K. Holdbrook, S. Joshi, S. Mitra, J. Petolino, R. Raman, and M. Wong.
microSPARC: A case-study of scan based debug. InProceedings IEEE
International Test Conference (ITC), pages 70–75, 1994.

[3] B. Vermeulen, T. Waayers, and S.K. Goel. Core-Based Scan Architecture
for Silicon Debug. InProceedings IEEE International Test Conference
(ITC), pages 638–647, October 2002.

[4] B. Vermeulen and G.J. Rootselaar. Silicon Debug of a Co-Processor Ar-
ray for Video Application. InDigest of IEEE Intnl. High-Level Design
Verification and Test Workshop (HLDVT), pages 47–52, November 2000.

[5] B. Vermeulen, S. Oostdijk, and F. Bouwman. Test and Debug Strategy of
the PNX8525 Nexperia Digital Video Platform System Chip. InProceed-
ings IEEE International Test Conference (ITC), pages 121–130, 2001.

[6] W. Maly. Yield Diagnostics Through Interpretation of Test Data. InPro-
ceedings IEEE International Test Conference (ITC), pages 10–20, October
1987.

[7] M.A. Merino. SmartBit : Bitmap to Defect Correlation Software for
Yield Improvement. InProceedings IEEE/SEMI Advanced Semiconduc-
tor Manufacturing Conference, pages 194–198, 2000.

[8] C. Gloor. Embedded Memory Analysis for Standard Cell ASIC Yield
Enhancement. InProceedings International Symposium for Testing and
Failure Analysis (ISTFA), pages 69–76, 2000.

[9] A. Gattiker and W. Maly. Current Signatures. InProceedings IEEE VLSI
Test Symposium (VTS), pages 112–117, April 1996.

[10] T.J. Powell, J. Pair, M. St.John, and D. Counce. Delta IDDQ for Test-
ing Reliability. In Proceedings IEEE VLSI Test Symposium (VTS), pages
439–443, April 2000.

[11] W.R. Daasch, R. Madge, K. Cota, and J. McNames. Neighbor Selection
for Variance Reduction in IDDQ and Other Parametric Data. InProceed-
ings IEEE International Test Conference (ITC), pages 92–100, October
2001.

[12] R. Madge, M. Rehani, K. Cota, and W.R. Daasch. Statistical Post-
Processing at Wafersort – An Alternative to Burn-in and a Manufacturable
Solution to Test Limit Setting for Sub-micron Technologies. InProceed-
ings IEEE VLSI Test Symposium (VTS), pages 69–74, April 2002.

[13] R. Madge et al. Screening Min-VDD Outliers using Feed-Forward Volt-
age Testing. InProceedings IEEE International Test Conference (ITC),
pages 673–682, October 2002.

[14] A. Kinra, H. Balachandran, R. Thomas, and J. Carulli. Logic Mapping
on a Microprocessor. InProceedings IEEE International Test Conference
(ITC), pages 701–710, September 2000.

[15] C. Hora, R. Segers, S. Eichenberger, and M. Lousberg. An Effective Di-
agnosis Method to Support Yield Improvement. InProceedings IEEE
International Test Conference (ITC), pages 260–269, October 2002.

[16] B. Benware. Logic Mapping on ASIC Products. InProceedings Interna-
tional Symposium for Testing and Failure Analysis (ISTFA), pages 579–
586, 2002.

[17] S. Benner and O. Boroffice. Optimal Production Test Times Through
Adaptive Test Programming. InProceedings IEEE International Test
Conference (ITC), pages 908–915, October 2001.

[18] M. Kusko, B. Robbins, T. Koprowski, and W. Huott. 99%- AC Test Cov-
erage Using only LBIST on the 1-GHz IBM S/390 zseries 900 Micropro-
cessor. InProceedings IEEE International Test Conference (ITC), pages
586–592, October 2001.

[19] H. Bardell, W.H. McAnney, and J. Savir.Built-In Test for VLSI: Pseudo-
random Techniques. John Wiley & Sons, Chichester, 1987.

[20] R.F. Rizzolo et al. System performance management for the S/390 Parallel
Enterprise Server G5 1999.IBM Journal of Research and Development,
Vol. 43(No. 5/6):651–660, 1999.

[21] M. Müller et al. RAS Strategy for IBM S/390 G5 and G6.IBM Journal
of Research and Development, Vol. 43(No. 5/6):875–888, 1999.

[22] B.W. Curran et al. IBM eServer z900 High Frequency Microprocessor
Technology, Circuits, and Design Methodology.IBM Journal of Research
and Development, Vol. 46(No. 4/5):631–644, 2002.

[23] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise Server G5
Fault Tolerance: A Historical Perspective.IBM Journal of Research and
Development, Vol. 43(No. 5/6):863–873, 1999.

[24] L.C. Alves et al. RAS Design for the IBM eServer z900.IBM Journal of
Research and Development, Vol. 46(No. 4/5):503–521, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

