
Parallel Processing Architectures for Reconfigurable Systems

Kees A. Vissers
CTO, Chameleon Systems Inc,
Research Fellow, UC Berkeley

kees@cmln.com, vissers@eecs.berkeley.edu

Abstract

Novel reconfigurable computing architectures exploit
the inherent parallelism available in many signal-
processing problems. These architectures often consist of
networks of compute elements that have an ALU-like
structure with corresponding instructions. This opens
opportunities for rapid dynamic reconfiguration and
instruction multiplexing. The field of computer
architectures has significantly contributed to the
systematic and quantified exploration of architectures.
Novel reconfigurable architecture exploration should
learn from this approach.
Future System-on-a-Chip platforms will consist of a
combination of processor architectures, on-chip
memories, and reconfigurable architectures. The real
challenge is to design those architectures that can be
programmed efficiently. This requires that first a
programming environment and benchmarks be created
and then that the reconfigurable architectures be
systematically explored.

1. Reconfigurable Systems

The rapid progress of silicon technology provides new
implementation options for system designers. System
implementation was historically seen as a combination of
a program on a programmable processor or DSP and a
number of dedicated IP blocks. The field of hardware
software co-design addressed the quantification of the
design trade-offs. The flexibility of programs running on a
processor is in general preferred over the fixed hardware
implementation in a dedicated IP block. However, the
implementation of a high-performance processing task,
e.g. pixel processing in TV systems, is expensive on a
processor system, which may be a general-purpose
processor, a DSP, or a dedicated media processor. The
total silicon area and power consumption is 10–50 times
higher than that of a dedicated fixed implementation in the
form of an IP block in a System on Chip.

Bit-oriented FPGAs have shown a dramatic increase in
number of usuable gates over the last few years. This
progress with FPGAs is an excellent illustration of the
very rapid advancement of the silicon technology. The
FPGAs have made drastic changes possible to the method

of system prototyping. The flexibility of configuring or
programming the system is an enormous advantage and
provides a unique time to market. However, the 20–40
times higher cost compared to dedicated implementations
in IP blocks has limited the usage to low-volume
applications and has prevented the penetration of high-
volume, cost-sensitive consumer electronics.

Furthermore, the traditional implementation of a
function on an FPGA using logic synthesis based on
VHDL or Verilog has provided a radically different
programming environment than a conventional C, C++ or
JAVA programming language, which is the standard
practice for general purpose processors, DSPs or media
processors.

Recently reconfigurable computing systems have been
proposed that consist of a large number of ALUs. Often
these ALUs with corresponding register files are
hierarchically interconnected. These reconfigurable
computing systems limit the cost of the implementation,
while maintaining the flexibility of programmable or
reconfigurable systems.

2. Exploiting Parallelism

The only interesting hardware in reconfigurable
computing is the hardware that has a high level of
abstraction as a programmer’s view. The challenge is to
exploit the inherent parallelism that is often present in
large signal processing applications. Compilers for
conventional programming languages like C, C++ and
Java have difficulty extracting the parallelism that was
present in the original problem. The major difficulties are
in index expression analysis and loop analysis.
Conventional compilers have shown reasonable success
extracting an instruction-level parallelism in the range of
4—10 for VLIW architectures and superscalar
architectures.

Signal processing systems can conveniently be
expressed in a graphical block diagram fashion.
Illustrations of these systems are the Mathworks’
Simulink, Cadence’s SPW, Synopsys’ System Studio and
UC Berkeley’s Ptolemy. Recently FPGA vendors have
started to support dedicated libraries for the Simulink
tools. Application programmers can express their signal
processing functions in a convenient manner. Dedicated

1530-1591/03 $17.00  2003 IEEE

implementations of multipliers and adders in the FPGA
fabric can be exploited. The Simulink environment often
uses logic synthesis as ‘a back-end’ tool for the FPGA
synthesis.

Currently there are several approaches to augment C-
like programming languages to support the extraction of
fine-grain parallelism. This is sometimes used as the entry
for new ALU-based reconfigurable computing systems.

3. Reconfigurable Architectures in Terms of
Computer Architectures

The field of building multi-processor systems is not
new. Numerous computer architectures have been
proposed for multi-processing systems, including vector-
processing machines, message passing machines, and
cache-coherent shared-memory machines. The specific
focus of signal-processing systems for reconfigurable
computing creates new opportunities. In computer
architecture terms, these networks of interconnected
ALUs are “distributed register file architectures”, often
without any cache architectures or memory hierarchy. The
result is that the programmer has to manipulate the
transport of data and programs, called “configuration” in
FPGA terms. In terms of computer architecture, this is a
back to the times of overlay programming, first made
popular for FORTRAN.

Most bit-oriented FPGAs have a very large number of
bits for a single configuration. This stems from the history
of logic–synthesis-driven general, bit-oriented flexibility.
Any processor-based system uses instructions for ALU-
like architectures. The systematic design of instruction
sets for processors can also be used for configurable
systems. Code size can be traded against special
flexibility. The introduction of a systematic quantification
and exploration of computer architectures has led to the
design of RISC and VLIW processors. The field of
reconfigurable computing can and should apply many
lessons from the computer architecture research to the
quantification and systematic design of systems. Building
a suite of benchmarks and a retargetable compiler or
mapping system are essential for this systematic approach.

4. Reconfiguration During Run-time

The programmer of conventional computer

architectures is completely abstracted from the memory
hierarchy. Explicit understanding and manipulation of the
location of the program code is irrelevant. The latter is not
true for reconfigurable systems.

Dynamic reconfiguration in bit-oriented FPGAs has
often been limited by the speed of the internal bus
architectures and by the very large number of bits required

for a configuration. The emergence of new, ALU-based
reconfigurable computing architectures opens the
possibility of rapid dynamic reconfiguration, since the
instruction-based design is effectively a compression of
the configuration bits.

Conventional computer architectures time multiplex
the complete calculation over one processor. In FPGAs
often the complete opposite is done: a spatial unrolling of
the complete calculation is done with just one large
configuration. An ALU-based reconfigurable computing
structure can easily support dynamic configuration and
limited-time multiplexing of several instructions. This will
remove the limitation of ”maximum number of usable
gates” in conventional FPGAs. The systematic analysis
and exploitation of dynamic reconfiguration will be a
major step forward for reconfigurable computing
platforms. This will allow a trade-off in space and time,
without the need to recode or rewrite the algorithm.
Furthermore, the contents of the next configuration can
depend on the result of the current calculation. This is
similar to the branch instruction in conventional
architectures.

5. Future Systems on a Chip

Complete systems must often perform several tasks,
such as searching an electronic TV program database,
processing audio pixel processing for high-performance
video, and system functions like allocating memory and
keeping the administration of the streaming of real-time
data. Silicon technology today already allows the
integration of several processors and dedicated IP
functions. Future systems will shift towards more
programmable and reconfigurable integrated Systems on a
Chip (SoCs). These will include embedded memories and
several processors, including a general-purpose processor
that will run an operating system. More and more
dedicated IP blocks will be replaced by reconfigurable
solutions. Understanding the unique costs, benefits, and
application domains of all of the various implementations
will lead to novel, highly effective, very flexible Systems
on a Chip. The increasing cost of masks and the
increasing risks of building a ”first time right” Silicon
implementation will drive the industry to platforms that
contain forms of reconfigurable logic and reconfigurable
compute structures. The great challenge is the integration
of the various programming views of the subsystems.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

