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Abstract

This paper presents and discusses the foundations on
which the analog and mixed-signal extensions of Sys-
temC, named SystemC-AMS, will be developed. First, re-
quirements from targeted application domains are
identified. These are then used to derive design objectives
and related rationales. Finally, some preliminary seed
work is presented and the outline of the analog and
mixed-signal extensions development work is given.

1. Introduction

System-on-chip design is a complex task as the tar-
geted systems are more and more heterogeneous. Hetero-
geneity occurs in the underlying models of computation
(MoCs) that are used to describe hardware and software
components of the system (e.g. discrete-event, dataflow,
FSMs, sequential, continuous-time). Heterogeneity also
occurs in the nature of the components of the system (e.g.
different disciplines such as electrical, mechanical, fluid-
ic). One way to cope with heterogeneity is to work in a
consistent design framework. SystemC is emerging as a
de-facto standard for system design but it still lacks sup-
port for continuous-time MoC and multi-nature systems
[10][15].

This paper presents the foundations on which the
mixed-signal extensions to SystemC, named SystemC-
AMS, will be developed. The overall intent here is to de-
fine the context in which these extensions are required, to
identify the objectives of such extensions, and to define a
development plan that will meet the objectives.

This paper is organized as follows. Section 2 discuss-
es the requirements that motivate the extension of the
SystemC environment to support analog and mixed-sig-
nal systems. Section 3 gives the design objectives that are
derived from the requirements. A rationale is given for
each of them. Section 4 presents a number of application
examples that already started to explore the SystemC ca-
pabilities to model and simulate analog and mixed-signal

systems. Section 5 draws some conclusions and outlines
the development plan of the extensions.

2. Motivations and requirements

In the last few years, system design has to deal with
increasingly complex and heterogeneous parts: electronic
hardware, software, and non-electronic parts such as sen-
sors and actuators. Furthermore, the systems are often
strongly coupled with the physical environment they are
working in, which has to be taken into account during the
system design phase. Existing languages and tools, such
as VHDL-AMS, Modelica, Matlab/Simulink and SPW
are certainly very useful to support the system-level de-
sign of mixed analog-digital systems, but they do not of-
fer a single, consistent framework in which complex
heterogeneous systems can be designed. They either are
not simulation efficient enough at high-level of abstrac-
tion, or does not provide enough support for discrete-time
models, or are application-specific. The growing impor-
tance of software in systems should be also stressed as it
increases the flexibility and the evolutivity of products.
Therefore, designing and validating such systems re-
quires new design methodologies and tools that can effi-
ciently address all aspects of the designed systems at
rather high levels of abstractions.

Three application domains are considered for the re-
quirements, namely signal processing dominated applica-
tions (telecommunications and multimedia), RF/wireless
communications, power electronics and automotive.

Signal processing dominated applications are essen-
tially executing operations such as (de)coding, compress-
ing, or filtering data streams with fixed sampling rates.
Data processing makes extensive use of arithmetic func-
tions. A static scheduling of operations may be usually
derived from the data dependencies to achieve regular
and compact system architectures. As modern signal pro-
cessing systems more and more include both programma-
ble and dedicated components, there is a need to use
design technologies that are capable of mapping applica-
tions to heterogeneous architectures [13].
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RF/wireless applications are essentially realized using
an RF front-end part and a baseband part. The design of a
RF transceiver at system level, i.e. taking into account both
the analog and the digital components and their interac-
tions, is usually done using dataflow models to improve
simulation efficiency while still achieving an acceptable
level of accuracy [17].

Both signal processing and RF/wireless applications re-
quire to model and to simulate both the time-domain and
the frequency-domain behavior of key components (ampli-
fiers, mixers, oscillators, etc.). In addition, many frequen-
cy-based simulation methods have been developed to
overcome limitations of time-domain methods when de-
signing RF circuits [12].

Power electronic and automotive applications share the
distinguished requirement to design multi-domain, or
multi-discipline, systems, i.e. systems including non elec-
tronic parts (mechanical, fluidic, thermal, etc.) [11]. Such
systems usually lead to stiff nonlinear models that exhibit
time constants whose values differ by several orders of
magnitude. This property imposes strong numerical con-
straints to simulation algorithms.

The design of automotive systems increasingly requires
to develop virtual prototypes including software-in-the-
loop and hardware-in-the-loop components [5]. The latter
kind of prototype also implies real-time modeling and sim-
ulation capabilities, meaning that models must execute in
time steps that are bounded by some maximum execution
time or response time. It should be noted that real-time ca-
pabilities may also be required in signal processing applica-
tions.

A signal processing dominated application example is
now provided to illustrate the context in which SystemC-
AMS models will be typically useful. Figure 1 shows a sim-
plified block diagram of a subscriber line interface and co-
dec filter used in ADSL networks [18].

The system includes a high-voltage line driver, analog
filters, A/D and D/A converters, digital filters, a DSP block,
a software-driven digital controler and interface. The sys-
tem environment is represented by the subscriber and the
subscriber line.

During system design, the system environment would
be modelled as linear electrical networks, the high-voltage
driver, the analog filters and the converters would be mod-
elled as signal-flow blocks, the digital filters and the DSP
block would be modelled as dataflow blocks, the control
software would be embedded in an event-driven digital
model using a bus functional model, and the digital inter-
faces would be modelled as RTL components. Some parts
would also have a frequency-domain behaviour in order to
estimate important system performances such as signal-to-
noise ratio.

3. Design objectives

Design objectives for the SystemC-AMS extensions are
inferred from the requirements discussed in Section 2. It is
apparent from that discussion that the domain covered by
the AMS extensions is pretty large. It will be therefore nec-
essary to proceed by levels or phases when developing the
extensions. This issue will be addressed in Section 5.

Design objectives define the context in which the exten-
sions will be designed as well as the goals and the con-
straints it will have to meet. A rationale is given for a design
objective where some more information not explicitly
linked to the requirements discussed in Section 2 is re-
quired. The given rationales are not intended to bind the ob-
jectives to particular implementations. If it seems to be the
case, the implementation aspects should be considered as il-
lustrative only.

Figure 1. Simplified block diagram of a subscriber line interface and
codec filter.
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SystemC-AMS must be suitable for the description 
and the simulation of heterogeneous systems.

SystemC-AMS is primarily intended to support the de-
velopment of executable specifications. Support for synthe-
sis, i.e. the process of deriving an implementation from an
abstract description, is out of the scope as automated syn-
thesis of analog, mixed-signal, and mixed-technology sys-
tems are not yet mature enough.

SystemC-AMS is also primarily targeted towards sys-
tem design. This means that it has to be effective at manag-
ing complexity, both in terms of descriptive capabilities and
simulation performances.

The development of system-level executable specifica-
tions of continuous-time parts include the modeling of sig-
nal processing functions, abstract behaviors (equations),
hierarchical structures, and the environment in which the
system is intended to work.

SystemC-AMS must be an extension of the 
SystemC language.

SystemC provides a consistent definition of how both
structure and behavior of discrete-time systems can be de-
scribed and simulated. The SystemC simulation semantics
is defined by a scheduler and an execution model that sup-
port both hardware-oriented and software-oriented model-
ing [10].

The so-called SystemC core language provides a gener-
al-purpose framework that supports a variety of models of
computation (MoCs), abstraction levels, and design meth-
odologies used in system design. Roughly speaking, a mod-
el of computation is a set of (semantic) rules that define the
interactions between components of the model. The kind of
model components and rules depend on the level of abstrac-
tion considered. For example, the discrete event (DE) MoC
views a system as a set of concurrent processes interacting
through signals. Processes are activated when signals
whose values are read in the processes experience a value
change, a.k.a. events. The rules define how signals get and
hold their values and how processes are activated. DE mod-
els are typically suitable for RTL hardware modeling.

As another example of MoC, the dataflow (DF) MoC
views a system as a directed graph where the vertices rep-
resent computations and the edges represent totally ordered
sequences (or streams) of tokens. In the particular case of
static or synchronous dataflow (SDF), the scheduling of the
operations is static and one cycle of the scheduling consists
in traversing the graph until all required nodes have been
visited and their corresponding computations executed. DF
models are typically suitable for signal processing applica-
tions.

One distinguished aspect of a MoC is how time is ab-
stracted. Time can be handled as clock ticks, as an integer
multiple of a base time (a.k.a. the minimum resolvable
time), or as a real value. Model components may also inter-
act in a timeless way through causality rules in so-called
untimed functional models.

What is currently missing in the SystemC design frame-
work is the capability to model and simulate continuous-
time systems. Analog and mixed-signal extensions for Sys-
temC are currently scheduled for the release 4.0 whose de-
livering date is not yet defined (the current release of
SystemC is 2.0).

SystemC-AMS must support continuous-time 
models of computation.

Continuous-time (CT) MoCs are based on the theory of
differential and algebraic equations (DAEs) that have the
following form:

(1)
where F is a vector of expressions, x is a vector of dif-

ferential variables (unknowns), y is a vector of algebraic
variables (unknowns),  is a vector of derivatives of the x
unknowns with respect to time, t is the time (independent
variable).

Several tools for continuous system simulation have
been developed using languages derived from the Continu-
ous System Simulation Language (CSSL) specification [1].
Most of them support the description of the behavior of a
dynamic system as first-order ordinary differential equa-
tions (ODEs) of the form:

(2)
where u denotes the input vector of the system. The  are
discretized using an explicit numerical integration formula
and the equations are sorted to get a sequence of assign-
ments that will be used repeatedly to compute the values of
the unknowns over time for any set of input values. In case
of algebraic loops  in the system of equations, meaning that
there is a cyclic dependency between unknowns such that it
is impossible to define a sequence of assignments, iterative
numerical methods have to be used [4].

For a lot of applications in system design, modeling the
continuous-time behavior as linear ODEs is sufficient. Typ-
ical formulations that produce linear ODEs are transfer
functions, state-space equations, or equation formulation of
linear electrical networks. In addition, the resulting system
of equations can be solved without iterations [6].

Continuous-time MoCs actually include several kinds
of analyses. Static analyses include the computation of the
DC operating point, or quiescent state, transfer functions of
the system, and small-signal linear frequency-domain anal-

F x· x y t, , ,( ) 0=
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ysis (including noise analysis). Dynamic analyses include
the time-domain (transient) and large-signal nonlinear fre-
quency-domain analyses.

SystemC-AMS will naturally support time-domain
analysis, first as it is one of the most used kind of analysis
for continuous-time systems, and second as it may synchro-
nize well with discrete-time MoCs (this is discussed be-
low). SystemC-AMS will also have to support at least
small-signal linear frequency-domain analysis, as the fre-
quency-domain characteristics of a system is also impor-
tant, particularly for signal processing applications. This
should not require additional language element as the fre-
quency-domain model can be derived from the time-do-
main description (1) or (2).

SystemC-AMS must support the description and 
the simulation of continuous-time systems as 

signal-flow models.

Signal-flow models define the behavior of continuous-
time systems as mathematical relations between quantities
that represent real-value functions of an independent vari-
able, usually the time. The underlying principle of signal-
flow modeling is a directed graph. Each edge represents a
quantity and each vertex represents a relation (usually an
assignment). Signal-flow models have long been used in
many areas of engineering, from the theory of linear net-
works to automatic control, signal processing, and data
communication. As it provides an appropriate level of ab-
straction for system design with regard to modeling power
and simulation efficiency, signal-flow modeling is the best
candidate to be supported by SystemC-AMS. As we'll see
later, it also provides a natural interface to the world of dis-
crete-time MoCs.

SystemC-AMS must support the description and 
the simulation of continuous-time systems as 

conservative-law models.

Supporting conservative-law modeling is required as
well to support multi-domain systems. Conservative-law
models interface themselves less directly with discrete-time
models as signal-flow models. This is however still feasi-
ble, for example either by embedding conservative-law
models into signal-flow models [14], or by providing the
appropriate interface models (mixed-signal or mixed-do-
main interfaces).

It should be also noted that the needs to support conser-
vative-law models in system design is ususally limited to
specific blocks in the system. Although it might seem con-
tradictory, conservative systems may be modeled at sys-
tem-level as linear network macromodels based on simple

electrical R, L, C, and controled source primitives. Such
networks can be simulated using efficient dedicated algo-
rithms [8].

SystemC-AMS must provide a, possibly generic, 
way to handle interactions between MoCs.

SystemC 2.0 provides a very flexible way to model the
communication of systems by specifying a model for com-
munication and synchronization in a channel and providing
an interface for the channel, which can be used indepen-
dently from a specific realization of that channel. This is ge-
neric enough to describe systems using both discrete-time
and continuous-time MoCs.

Following the layered approach advocated in SystemC,
SystemC-AMS will eventually support several specialized
continuous-time MoCs and their associated solvers, e.g. a
solver for linear DAE/ODE systems, a solver for static DC/
AC/noise analysis, a solver for nonlinear DAE systems, a
solver optimized for modeling and simulating electrical
power systems or mechanical systems.

In all generality, SystemC-AMS has to address the in-
teractions both between continuous-time MoCs and be-
tween continuous-time and discrete-time MoCs. On the one
hand, interactions between continuous-time MoCs, such as
the coupling between a static DC/AC/noise solver and a dy-
namic linear DAE solver, may be non existent as each con-
tinuous-time solver may implement all required numerical
methods. An example is a linear DAE solver that can com-
pute the DC operating point of the system of equations.

On the other hand, interactions between continuous-
time and discrete-time MoCs has to be formally defined.
Here comes the concept of a dedicated manager, let us call
it the synchronization layer, in the SystemC-AMS frame-
work. An example of a formal definition of the synchroni-
zation between an event-driven solver and a continuous-
time solver is given in the definition of the VHDL-AMS
hardware description language [19]. Another example of
more general mixed discrete-time/continuous-time syn-
chronization is implemented in the Ptolemy II environment
[16].

The synchronization between the synchronous dataflow
(SDF) MoC and the continuous-time MoC implemented as
a linear ODE solver for signal-flow models is the most nat-
ural and easy way. SDF models are dataflow models in
which each vertex consumes and produces a fixed number
of tokens per activation. They have the nice property that a
finite static scheduling can always be found. Linear ODE
systems of equations can be solved using a fixed integration
time step that can be synchronized with the rate at which
samples are handled by the SDF model.



Using constant time steps is appropriate for signal pro-
cessing systems, most of which being oversampled sys-
tems. The simulation of control systems, however, usually
requires solving stiff nonlinear systems of equations. This
will require to also support nonlinear DAE solvers and vari-
able integration time steps in SystemC-AMS. Ultimately,
the synchronization layer will have to be formally defined
to allow supporting more mixed discrete-time/continuous-
time synchronization schemes whenever possible or mak-
ing sense.

It is important to note that the synchronization also re-
quires the formal definition of a consistent initial (quies-
cent) state for the whole mixed-signal system, otherwise the
simulation of the continuous part of the model may either
fail or be inaccurate at best.

SystemC-AMS must provide appropriate views (or 
description layers) for the description of 

continuous-time models.

The interface layer provides the solver with the system
of equations to solve. This system of equations can be, for
example, generated from a network using the Modified
Nodal Analysis method or from a behavioral representation
like a transfer function or state-space description. The same
interface can be useful for different solvers (e.g. linear /
nonlinear DAEs). The realization must however take into
account that the mapping to each solver layer is different.
At least the following interfaces should supported: a netlist
interface that should be common to all underlying continu-
ous-time MoCs, and an equation interface that should allow
a user to formulate behavioral models or functional specifi-
cations in a more natural way as a set of DAEs.

SystemC-AMS must support the coupling with 
existing continuous-time simulators.

SystemC-AMS will be essentially, as any other Sys-
temC extension over the core language, a library of C++
classes and methods that allow designers to develop sys-
tem-level executable specifications of mixed-signal (ana-
log-digital) and mixed-domains (e.g. electro-mechanical)
designs. It will be by no means designed to replace existing
circuit-level or system-level continuous-time simulators/
solvers. Rather, it will provide an open architecture in
which existing, mature, simulators or solvers may be
plugged in and coupled with discrete-time MoCs.

4. Seed work

A number of research works already took advantage of
the programming capabilities offered by SystemC to devel-

op own analog extensions and to get a mixed-signal simu-
lation framework “for free”. All the works presented here
have developed their own specialized C++ classes and
methods as well as their own libraries of modules.

In [2], Bonnerud et al. present such a mixed-signal sim-
ulation framework with an application to the design of pipe-
lined A/D converters. The approach proves to be useful to
model a circuit-level technique, the digital noise cancella-
tion technique, to allow an efficient exploration of pipe-
lined architectures at a more abstract level, while achieving
comparable accuracy to MATLAB. The module library in-
cludes functional models of relatively complex mixed-sig-
nal elements (e.g. flash ADC, switched capacitor DAC, or
operational amplifier). Another interesting issue addressed
in the paper is the scheduling of analog and mixed-signal
blocks by a virtual clock in order to avoid needless execu-
tions of these blocks due to the SystemC simulation kernel.

In [6], Einwich et al. discuss the synchronization be-
tween synchronous dataflow and linear continuous-time
MoCs using a fixed time step. The module library includes
primitive electrical elements (R, L, C, sources) and transfer
functions. The framework also allows the simulation of
mixed-signal system in the frequency domain, provided
frequency-domain models are added to the discrete-time
components in the system.

In [8], Grimm et al. present a framework for simulating
power electronic components. This is an example of a ded-
icated framework as it provides for an efficient simulation
of a specific family of power circuits, namely power drivers
with capacitive or inductive loads. The coupling with the
discrete-time world remains simple and efficient thanks to
the limited number of supported power circuit architec-
tures. The module library includes primitive electrical ele-
ments (R, L, C, sources, transistors).

In [9], Grimm et al. go a step further and present a top-
down modeling and simulation methodology based on a re-
finement process. The issue here is not the module library
per se, but the synchronization mechanism between syn-
chronous dataflow and continuous-time models at different
levels of abstraction, from high-level mathematical models
to more physical, pin-accurate, models. The refinement
process takes advantage of existing object-oriented features
of SystemC.

Last, but certainly not least, the work on the Ptolemy II
framework [16], although not supporting SystemC, de-
serves a special attention. The way discrete-time and con-
tinuous-time MoCs and their relative synchronization
mechanisms are implemented in this environment can pro-
vide useful insights on how developing AMS extensions to
SystemC.



5. Conclusions and future work

This paper described the context in which the analog
and mixed-signal extensions to SystemC, called SystemC-
AMS, will be developed. A number of design objectives
have been defined from requirements related to different
application domains.

As the application domains of AMS extensions are pret-
ty diverse in their requirements, it is contemplated that the
development will go over three phases, each phase adding
new capabilities:
1. Support of signal processing dominated applications.

This includes:
• Linear dynamic continuous-time model of computation

(MoC), including transient, small-signal AC and noise
simulation. Time-domain simulation with a fixed
timestep.

• Predefined linear operators (Laplace transfer function,
zero-pole transfer function, state-space equations).

• Linear network elements (electrical element library: R, L,
C, sources).

• Continuous behaviour encapsulated in static dataflow
modules.

• Synchronisation between discrete event and continuous
time MoCs using static dataflow semantics.

2. Support of RF/wireless applications. This includes:
• The support of non linear DAEs and their simulation us-

ing variable time steps.
• The formulation of implicit equations, e.g. true simulta-

neous statements.
• Frequency-domain simulation.
• An enriched mixed-signal library with more complex

functional (signal-flow) models, e.g. amplifiers, convert-
ers.

3. Support of automotive applications. This includes:
• Specialized continuous-time MoCs, e.g. for power elec-

tronics or mechanical systems.
• Support of conservative-law models.
• Enrichment of the mixed-signal library with conserva-

tive-law mixed-domain models.
• Definition of a generic synchronization mechanism be-

tween discrete-time and continuous-time MoCs, includ-
ing software MoCs.

To achieve these goals, a proposal [7] to form an OSCI
Working Group to develop SystemC-AMS has been sub-
mitted recently (July 2002) to the OSCI Board of Directors.
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