
Bookmark file

Formal Semantics of Synchronous SystemC

Ashraf Salem
Computer & Systems Eng. Dept.

Ain Shams University
Cairo, Egypt

Abstract
In this article, a denotational definition of synchronous
subset of SystemC is proposed. The subset treated
includes modules, processes, threads, wait statement,
ports and signals. We propose formal model for System C
delta delay. Also, we give a complete semantic definition
for the language’s two-phase scheduler. The proposed
semantic can constitute a base for validating the
equivalence of synchronous HDL subsets.

1. Introduction

SystemC is a set of C++ classes that allows modeling
hardware at different levels of abstraction from system
behavioral to register transfer level. The SystemC Class
library provides the constructs needed to model hardware
timing, concurrency and reactivity [1]. This Class library
supports Modules, ports, Signals, Processes, Hardware
data types, Clocks, Waiting and watching.
Synthesis and verification tools are using subsets of
hardware description languages [2][3], as these languages
are defined mainly for simulation [4][5]. The same
approach starts to be applied for SystemC by defining
synthesisable subsets and description styles for
synchronous designs [6]. The semantics of these subsets
are given usually in terms of equivalent synchronous
hardware elements; efforts are also done to define formal
semantics for these subsets. Tassel [7] defined the VHDL
simulation cycle in terms of higher order logic. Breuer et
al.[8] proposed a denotational semantics for Unit-Delay
VHDL. Olcoz et al. [9] used Petri-Nets to give operational
definitions for the complete VHDL language. A number
of different approaches for VHDL semantic definitions,
including temporal logic, Boyer-Moore logic and process
algebra have been reported in [10].
Mueller et al. [11] presented formal definition of the
simulation semantic of SystemC in terms of abstract state
machine; this semantic covered watching statements,
signal assignments and wait statements.

In this article, we propose a denotational semantic for a
synchronous subset of SystemC. The technique used
follows the approach proposed in [12] for the semantic
definition of a Synchronous VHDL subset. The originality
of our work lies in the definition of a formal model for
SystemC’s two-phase scheduler [13]. We formulate the
update and the evaluate phases using two function
domains which express delta delay semantics.
The subset covered by our semantic definition includes:
modules, method processes, thread process, clocked
thread process, wait, ports, signals assignment and
sensitive statement. For reason of space, we limit the data
type treated to sc_bit, and the operators to &, |, ^ and ~.
We leave out also the semantic definition of programming
language constructs such as case statement and loops;
such definition can be found in [14].
The rest of the paper is organized as follows. In section 2,
a brief introduction to the denotational semantics is given.
In section 3, formal model for delta delay is presented.
The semantics of SystemC module is given in section 4. In
section 5, the different types of SystemC processes are
formulated. The semantic of the language scheduler is
given in section 6, and finally our conclusions are
presented in section 7.

2. Denotational Semantics

The denotational semantics [15][16] of a language
consists of three parts: abstract syntax, semantic domains
and semantic functions that relate the syntactic domain to
the semantic domain. The abstract syntax is composed of
a set of syntactic domains and a set of syntactic rules
(BNF-like production rules). The syntactic domain is the
set of language sentences whose structure is described by
the production rules for a non-terminal.
For example, the syntactic domain ScModule represents
the non-terminal SC_MODULE of SystemC. Module is
composed of input/output ports declaration, signals
declaration and a constructor. M is a typical module

1530-1591/03 $17.00 2003 IEEE

belonging to ScModule domain. The structure of this
module is described by a syntactic rule.

M ∈ ScModule
M ::= SC_MODULE(I) {IO; D; C}

Semantic domains describe the sets of value spaces of a
language. For example the semantic domainSignal is a
union domain representing sc_in, sc_out, sc_signal and
sc_clock objects

sg∈ Signal = ScInput + ScOutput + ScSignal + ScClock

The test operator ?, decides if its first operand belongs to
the domain indicated by its second operand. The predicate
i? ScInput is true if i is sc_input port in a SystemC
module.
Semantic functions, one for each syntactic domain, define
the mapping between syntactic domain and semantic
domain. For example the syntactic domain ScBit
described by the rule: SC ::= ‘0’ | ‘1’ is mapped to
semantic domain Boolean by the semantic function SC:

SC: ScBit -> Bool
SC[‘0’] = false
SC[‘1’] = true

3. Formal Model of Delta Delay

SystemC uses two-dimension time model: physical time
and delta cycle [13]. Physical time is represented by 64
bit-unsigned integers. Delta delay is used to order the
execution within the simulation cycle. The simulation
cycles of SystemC consists of two phasesevaluateand
update. More than one delta cycle may occur at a
particular physical time. Delta delay is used to separate
theevaluate phaseand theupdate phase.
To express the semantics of the delta delay, two values of
each signal are needed in a specific physical time. One to
store the value calculated in the evaluate phase. The
second is used to hold the value of the signal after the
update phase. To represent these two values we propose
two function domains:

c ∈ Current = Signal -> Value
n ∈ New = Signal -> Value

Current domain contains the functions returning the
values in evaluate phase andNew domain contains
functions returns the values of the signals after the update
phase. Wherec(sg) is a function belonging to the domain
Current that returns the value of signalsg belongs to the
domainSignal.

To change the current or the new value of the signal, the
update [14] operator⇐ is used. It is a generic over
function domains. For a given function f1, an element x of
the domain f1, and an element y of its co-domain, f1[x⇐
y] produces a new function f2 identical to f1 except that
f2(x) = y.
For instance, the update operator on the domain Current is
identified as follows:

⇐ : Current X Signal X Value -> Current

Let sg be a signal, c[sg⇐ true] is the same function as c
but with c(sg)equal to true. To illustrate the usage of the
new and current domains in the definition of SystemC
semantics, consider the AND gate described by the
following SystemC module.

SC_MODULE(andgate) {
sc_in<bool> a1;
sc_in<bool> a2;
sc_out<bool> b;

void andfunc{b = a1 & a2;};

SC_CTOR (andgate){
SC_METHOD (andfunc);
Sensitive << a1 << a2;}

};

The moduleandgatehas two input ports and one output
port. The constructorandgate execute the SystemC
method andfunc to calculate the gate output, the
constructor is sensitive to the two inputs a1, a2. Each of the
three signals a1, a2 and b has two values separated by a
delta delay. During theevaluation phase, only the new
domain is changed, by assigning the value of the
expression c(a1) & c(a2) to n(b).

n[b ⇐ (c(a1) & c(a2))]

In the update phase,i.e. after a delta delay, the new value
of b becomes its current value.

c[b ⇐ n(b)]

4. SystemC Module Semantics

Module is the basic building block in SystemC. It is
composed of ports, signals, variables, constructor,
functions and processes. The module semantic can be
viewed as a set of functions, each function models one
output. The parameters of these functions are the module’s
inputs. These functions change the values of the current

simulation environment, i.e. signals and variables, as a
result of the execution of non-declarative statement of the
module, namely the module constructor.

Formally, The environment can be expressed using the
domain SigStore, which is a union of two domains: the
product domain(New x Current), which represents the
signal’s value pairs and the function domainStore.

ss∈ SigStore = New x Current + Store

Store is a domain of functions associating variables with
their values.

s ∈ Store = Variable -> Value

The following syntactic domain and syntactic rules
describe SC_MODULE syntax.

M ∈ ScModule
D ∈ Declaration
I ∈ Identifier
IO ∈ InputOutput
C ∈ ScCtor
P ∈ ProcessStatement
CST∈ Cstatement

M ::= SC_MODULE(I) {IO; D; C}
IO ::= sc_in<bool> I | IO1; IO2
D ::= sc_signal<bool> I | sc_clock <bool> I ;
C ::= SC_CTOR (I) {P; CST}

The semantic function M expresses the semantic of
SC_MODULE. The function modifies the value of the
pair (new, current) of the signals and the varaible values
(store) by evaluating the class constructor C. The
constructor C is composed of process statement P
followed by sensitive statement S. In the subset treated in
this paper only sc_in and sc_out represented by the
domain InputOutput are allowed.
The constructor semantic function C is calculated; by
composing theprocess functionP and theC statements
function CST against the SigStore ss using the function
compositions operatorο.

M : ScModule -> SigStore -> SigStore
M[[SC_MODULE(I){IO; D; C}]] ss = C[[C]] ss

C : ScCtor -> SigStore -> SigStore
C[[SC_CTOR(I){PS; CST}]]ss = CST[[CST]]ssο P[[P]]ss

5. SystemC Process Semantics

Processes model the concurrent behavior of hardware in
SystemC. Three types of processes exist in the language:
SC_METHOD, SC_THREAD and SC_CTHREAD.
Processes are activated when signals stated in the sensitive
statement change. Threads can use wait statement to
identify events, which are able to activate them. The main
restriction in our synchronous subset is the nature of the
signals allowed on the sensitive statements and wait
statements.
We propose two types of processes:Combinational
Processand Synchronous Process. In a combinational
process, all input signals must be found on the sensitive
statement of SC_METHOD. In a synchronous process,
clock signal shall be found on the sensitive statement of
SC_METHOD, no other signals may be found in this
statement in this case.
In a SC_THREAD modeling synchronous process wait
statement shall exist as the last statement in the thread and
shall include a clock condition. SC_CTHREAD models
synchronous process by having it triggered on the edge of
the clock.
The Syntactic domains given in figure (1) and the
syntactic rules figure (2) define the abstract syntax of the
two types of the process. The combinational process PC
is composed of the method process MP followed by
combinational sensitive statement S. Synchronous Process
PS is composed of a method process followed by
sequential sensitive statement SS, thread process TP or a
clocked thread process CP. Method process MP, Clocked
thread process CP or Thread process TP are composed of
C++ function CF or TF. TF shall contain wait statement
modeling the rising edge of the clock.
For the sake of clarity, only C assignment statements AC
are allowed inside C functions.

P ∈ ProcessStatement
PC ∈ CombinationalProcess
PS∈ SynchronousProcess
MP ∈ MethodProcess
TP ∈ ThreadProcess
CP ∈ ClockedProcess
CF ∈ Cfunction
TF ∈ ThreadFunction
S∈ CombinationalSensitiveStatement
SS∈ SynchronousSensitiveStatement
SL∈ SensitivityList
CST∈ CStatement
TST∈ ThreadStatement
AC ∈ AssignmentStatement

Figure 1: Process Syntactic Domains

P ::= PC | PS
PC ::= MP; S
PS ::= MP ; sensitive_pos << I; | TP | CP
MP ::= SC_METHOD(CF)
TP ::= SC_THREAD(TF)
CP ::= SC_CTHERAD(CF,I.pos())
CF ::= I () {CST}
TF ::= I () {TST}
S ::= sensitive SL
SL ::= << I | SL1 SL2
SS ::= sensitive_pos << I
TST ::= CST; wait_until (I.event() &&

I.delayed() == true)
CST :: = AC | CST1; CST2
AC :: = I = E
E ::= ‘0’ | ‘1’ | E1 & E2 | E1 | E2 | ~ E1 |

E1 ^ E2 | I | (E1) |

Figure 2 : Process Syntactic Rules

The following SC_MODULE [1] models D Flip-flop
using the proposed subset. TheSynchronous Process dffis
sensitive to the signal clock of typesc_clkand the method
df contains only assignment statements.

SC_MODULE(dff)
{

sc_in<bool> din;
sc_in_clk clock;
sc_out<bool> dout;

void df(){dout = din;};

SC_CTOR(dff)
{

SC_METHOD(df);
sensistive_pos << clock;

}
}

The semantic definition of the two types of processes in
the proposed subset is given by two semantic functions:
PC & PS. PC describes the semantic of the combinational
process. It checks the signals on the sensitivity list SL and
compares it with the input port list. In case of identical
lists, the function MP is executed.

PC : CombinationalProcess -> SigStore -> SigStore
PC [[MP; S]] ss= S[[S]] → MP[[SC_METHOD(CF)]]ss , ⊥

S : CombinationalSensitiveStatement-> Bool
S[[sensitive SL]]= (∀ in ∈ Sc_Input, (in∈ SL))→ True, False

The function MP is executed by calling the semantic
function of the sequence of C statements.

MP : MethodProcess -> SigStore -> SigStore
MP[[SC_METHOD(CF)]]ss= CF[[CF]] ss

CF gives the semantic of C statements. For sake of clarity,
we limit our self here to assignment statement. Two types
of objects can be found on the LHS of the assignment,
signals and variables. The semantic function AC checks
the nature of the object and assigns the value of the
expression of the RHS to the new value of the object in
the case of output or internal signal, or to store in the case
of the variables.

CF : Cfunction -> SigStore -> SigStore
CF[[CST]] ss= CST[[CST]]ss

CST : Cstatement -> SigStore -> SigStore
CST[[CST]]ss= AC[[AC]] ss

AC : AssignmentStatement -> SigStore -> SigStore

AC[[I = E]] ss= i? (ScOutput + ScSignal)and e?Bool
→ n[i ⇐ e],

i?Variable and e?Bool
→ s[i ⇐ e],⊥ where e = E[[E]] ss

The following function E defines the semantics of the
identifier and ‘&’ operator, as an example of the semantic
definition of the expressions.

E: Expression -> SigStore -> Bool
E[[I]] ss= i?Signal→ c(i), i?Variable→ s(i), ⊥
E[[E1 & E2]] ss = e1? Bool and e2?Bool→ e1 and e2 , ⊥

The semantics of the three types of the synchronous
process are given by the semantic function PS. The subset
treats only single clock design with positive edge
activation. The semantic functionPScalculates the signals
value pairs and the variables values when the current
value of the clock signal is equal to true. Also the function
checks the nature of signal on the sensitive statement in
the method process and on the clocked thread parameter.
The init variable is used to differentiate between the
initialization phase and the simulation phase. It is set to 1
when the SystemC scheduler enters the initialization phase
to stop the execution of the clocked threads and
assignments.

PS : SynchronousProcess -> SigStore ->SigStore

PS[[MP ; sensitive_pos << I]] =
i∈ ScClock→ ((c(i) and (init=0)) →

MP[[SC_METHOD(CF)]]ss ,n), ⊥

The semantic function CP defines the clocked thread
process; it checks the value of and the type of the signal I
and then execute the C function CF, if the clock signal
value is equal to 1 else it returns the new domain n.

CP[[SC_CTHERAD (F,I.pos)]]ss=
i∈ ScClock→ ((c(i) and (init=0)) → CF[[CF]] ss , n), ⊥

The function TF gives the semantic of the thread process,
it checks the nature of the object of the wait_until
statement and then evaluates the thread statements of the
current value of the clock signal is true and the init
variable is equal to zero.

TF : ThreadFunction -> SigStore -> SigStore
TF[[I() {TST}]] ss= TST[[TST]]ss

TST: ThreadStatement -> SigStore -> SigStore
TST[[CST; wait_until (I.event() && I.delayed() == true)]]ss=

i∈ ScClock→ ((c(i) and (init=0)) → CST[[CST]]ss, n), ⊥

6. SystemC Scheduler Semantics

SystemC uses an evaluate-update scheduler.Notify
method causes the event to be notified in the evaluate
phase of the next delta cycle.Request_Updatecauses
Update method to be called on the update phase of the
current delta cycle. Notify is used for both timed and
immediate notifications. Initialization phase is performed
before the main simulation loop. All processes except the
clocked thread are executed in this phase. Physical time is
advanced only if there are timed notifications. Simulation
ends when no more timed notifications exist [13].
We formulate theevaluate phaseby calculating the
module function M.

Evaluate: Module -> SigStore -> SigStore
Evaluate (ss) = M[[SC_MODULE(I) {IO; D; C}]]ss

Update phaseassigns the signals’current andnewvalues
to their new values calculated in theevaluate phase.

Update: SigStore -> SigStore
Update (ss) =∀ sg∈ Signal, sg⇐ (n(sg), n(sg))

Scheduler initialization phase is modeled by function
similar to update. The difference is assigning the variable
init ‘1’ to disable the execution of the Clocked threads
during this phase and then turning it to ‘0’.

Initialize: Module -> SigStore -> SigStore
Initialize (ss) = init← 1; M[[SC_MODULE(I) {IO; D; C}]] ss;

init ← 0

Figure (3) gives the semantic definition the scheduler. The
function Initialize is called first to execute all process
except processes calculating the memory elements. Then,
Evaluate function is called to execute all processes
including the clocked ones. This will change the new
component in each signal. The update of the current
component will take place on theUpdate function; the
delta_count will be incremented by one after the update
phase. If the SystemC module contains a clock signal, the
scheduler will then set the current value of the clock to
true; then it calls the function evaluate to compute the
module, then it resets the clock to false, and it increments
the time by one clock period. The multiple delta cycle in
the same physical time instant is modeled by new
simulation cycle if the signal’s current value is not equal
to the signals’ new value. This is expressed by:

while not (∀ sg∈ Signal, n(sg) = c(sg)))
The simulation ends when the sc_now reaches the
simulation_end_time.

1. Scheduler: Module -> SigStore -> SigStore
2.
3. // Intialization Phase
4. ss = Initialize(ss);
5. do
6. {
7. // Evaluate Phase
8. ss = Evaluate(ss);
9.
10. // Update Phase
11. ss = Update(ss);
12.
13. // Next delta Cycle
14. delta_count++;
15. do
16. {
17. if (∃ k ∈ Signal and k? Clock)
18. {
19. // Delayed events (clocked assignment)
20. ss[k⇐ (true, false)];
21. ss = Evaluate(ss);
22. ss[k⇐ (false, false)];
23.
24. // Simulation time advances
25. sc_now = sc_now + clock_period;
26. }
27. }
28. // New Simulation Cycle
29. while not (∀ sg∈ Signal, n(sg) = c(sg));
30. }
31.
32. // If no more timed notifications, simulation
33. // is finished
34.
35. while (sc_now < simulation_end_time);

Figure 3: Scheduler Semantic Definition

7. Conclusions

In this paper, formal semantic of a synchronous subset of
SystemC is proposed. Thedelta cyclehas been formulated
usingcurrent andnew function domains. Physical time is
modeled on the clock period level. A description style
based on defining two types of processes:Synchronous
and Combinational is proposed. The semantics of the
SystemC methods and threads limited to this description
style are defined. Theevaluate and update phases of
SystemC scheduler have been formulated for both timed
and immediate notifications. We believe that our
formalism can establish a common foundation for
expressing the semantics of basic primitives of
Synchronous HDL, mainly signal assignment, clock,
process, delta cycle and the distinction between signals
and variables.

8. References

[1] Open SystemC Initiative, SystemC Version 2.0, User’s
Guide, www.systemc.org,2001.

[2] IEEE, IEEE standard for VHDL Register Transfer Level
(RTL) synthesis, IEEE Std. 1076.6, 2000.

[3] D. Borrione, L. Pierre, A. Salem, “Formal verification of
VHDL Descriptions in the PREVAIL environment”, IEEE
Design and Test of Computers, June 1992.

[4] IEEE, IEEE Standard VHDL Language Reference Manual,
IEEE Press, 1993.

[5] P. Moorby, D. Thomas, “The Verilog Hardware
Description language”, Kluwer Academic Publishers, 2002.

[6] Synopsys, “Describing Synthesisable RTL in SystemC”,
Version 1.1, Synopsys, January 2002.

[7] J. Van Tassel, “A Formalization of VHDL Simulation
Cycle”, Technical Report 249, University of Cambridge,
March 1992.

[8] P. Breuer, L. Fernandez & C. Delgado Kloos, “ A simple
denotational semantics, Proof theory and a validation
condition generator for unit-delay VHDL”, Formal
Methods in System Design, Volume 7, August 96.

[9] S. Olcoz, J.M. Colon,” Towards a formal semantics of
IEEE Std. VHDL 1076”, Proceedings EuroDac’93 with
EuroVHDL’93, Hamburg, September 1993.

[10] C. Delgado Kloos, P.T. Breuer. Formal Semantics for
VHDL, Kluwer, 1995.

[11] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf,
W. Rosenstiehl, “The Simulation Semantics of SystemC”,
DATE 2001, Munich, 2001.

[12] D. Borrione, A. Salem, "Denotational Semantics of a
Synchronous VHDL subset", Formal Methods in System
Design, Volume 7, August 96.

[13] Open SystemC Initiative, Functional Specification of
SystemC, Version 2.0, www.systemc.org,2001.

[14] R. Tennent, Principles of Programming Languages,
Prentice-Hall, Englewood Cliffs, 1981.

[15] D. Schmidt, Denotational Semantics, W. Brown
Publishers, Dubuque, 1988.

[16] M. Gordon, The Denotational Descriptions of
Programming Languages, Springer-Verlag, 1979.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

