
System Level Specification in Lava

Satnam Singh
Xilinx Inc.

2100 Logic Drive, San Jose, CA95124, USA.
Satnam.Singh@xilinx.com

Abstract

The Lava system provides novel techniques for represent-
ing system level specifications which are supported by a de-
sign flow that maps Lava descriptions onto System-on-Chip
platforms implemented on very large FPGAs. The key con-
tribution of this paper is a type class based approach for
specifying bus-based system configurations. This provides
a very flexible and parameterised flow for combining pre-
designed IP blocks into a complete FPGA-based system.

1 Introduction

System level specification is currently performed using a
variety of languages and ad hoc notations. Often these rep-
resentations were not designed for the task of specification.
For example, the C and C++ languages have many desira-
ble features for generating efficient machine code but they
are not amongst the most powerful and expressive lan-
guages for high level abstract descriptions. We examine
how system level specifications can be improved by start-
ing off with a language with more expressive and powerful
constructs. For platform level descriptions we draw inspira-
tion for techniques like Coral from IBM [1]. We try and
achieve similar results within the framework of a language
by exploiting type classes to capture system composition
and interconnection at a suitably abstract level.

We concentrate on high level system descriptions
which have the properties of (i) easy substitution of sub-
blocks to perform design space exploration; (ii) abstraction
of communication to allow experimentation with many dif-
ferent kinds of communication protocols; (iii) a link (not
necessarily automatic) to a design flow that supports
System-on-a-Chip style applications which are realised on
platform FPGAs. We can also export our platform descrip-
tions to external formal verification tools to help statically
analyse properties about a particular system composition.

We place a great deal of emphasis on system level
specification and configuration. Some system level specifi-
cat ion techniques are geared towards automatic
implementation of the specification via a technique like
synthesis. This can often compromise the clarity of the
original specification as one tries to cast one’s thoughts in
a way that can be sensibly synthesised by a particular ven-
dor’s tools. For the specification technique we present here

we make no attempt to produce completely implementable
specifications. However, we do provide support for taking
high level partitioning information from our technique and
exporting it to external system level tools to help with the
task of platform tailoring e.g. how many processors and
buses are required, how many arbiters, what kind of bus
interface logic is required etc. The task of module level
implementation is in the next part of the design flow. For
modules that are to be implemented in the structural subset
of Lava [2] there is a convenient link between the specifi-
cation level interfaces and the implementation level
interfaces.

2 Background

Many digital design projects start off with an informal nat-
ural language specification which is then used to write a C
language model which acts as an executable specification.
For specific application domains e.g. digital signal process-
ing designers often use tools like MATLAB which are used
to explore design alternatives. These domain specific repre-
sentations have become so important that some vendors
have started to offer design flows that start off with
MATLAB/Simulink and automatically transform this high
level specification all the way to a full digital hardware
implementation.

SystemC [21] is quickly establishing itself as a execut-
able system level specification notation which also has a
path to implementation and like CONLAN [18] contains
mechanisms for user extensibility. Similar approaches are
exemplified by SpecC [23] and OpenJ [24] which draws on
work by Odersky and Wadler [15] which combines object-
oriented and functional descriptions.

3 Functional Descriptions

Many researchers have found functional notations and rep-
resentations useful for describing system behaviour while
abstracting system structure e.g. [4][6][7][9]. These obser-
vations are based on modelling real-world data-flow natu-
rally using functional composition. In this paper we argue
that functional notations have more to offer than that “data-
flow plumbing” for system description but can also capture
aspects of system architecture by exploiting of the rich lan-

1530-1591/03 $17.00 2003 IEEE

guage features available to the user of a modern functional
language or notation e.g. type classes [22].

Keuzer et. al. [12] argue that the separation of commu-
nication from computation is essential for containing the
complexity of system descriptions. We present a technique
which adheres to this advice by representing system com-
putation using higher order functions over infinite streams
and system communication through a powerful type class
system which encodes parameterised information about
communication in the types of circuits.

One of the key features we use in Haskell for the
system level Lava descriptions is called type classes. This
feature provides a systematic way to define and resolve
overloaded functions compared to the ad hoc overloading
techniques used in languages like C++.

This paper focuses on the system representation of bus-
based architectures expressed in the type class system of
Lava. Since Lava is embedded in Haskell the examples
given here are also valid Haskell programs. Although it is
not possible to give a comprehensive description of pro-
gramming in Haskell here we briefly outline some of the
key concepts of type classes which is the main feature we
use in this paper. The main use of the class system is to
model system architecture rather than refine it to an
implementation.

The type class descriptions given below are case sensi-
tive and to some extent are very similar to the class
concepts in languages like C++ and Java. A class is given a
name and one or more type parameters and then identifies
a list of overloaded functions which can use the type param-
eters to provide systematic overloading. The parameterised
types in type classes is what makes the class system in
Haskell distinctive and this is the key feature we exploit to
help model aspects of bus-based system architecture.

A class is used by creating an instance by providing
concrete values for the parameterised types. A class can be
extended be using it as the base class for another class. This
corresponds more closely to notions of type extension
rather than inheritance although for the single inheritance
case it appears very similar.

Here is an example of one of the type classes that are
used extensively in the Lava system:

class Bitify a where
 toBit :: a -> [Bit]
 fromBit :: [Bit] -> a

This class defines two overloaded functions which, for a
given type a can represent it as a list of bits, or take a list of
bits and return the corresponding value with the type a. This
class allows us to use arbitrarily sophisticated types in
system level specifications with the knowledge that during
later function or communication specification there is a
way obtain a bit-level representation for the high level type.

For a user defined type an instance of the Bitify class is
easily defined:

data Pixel = Intensity Int
 -- Asssumne a pixel has value 0..255

instance Bitify Pixel where
 toBit (Intensity value) = uint2bitvec value
 fromBit bits = Intensity (bitvec2uint bits)

The symbol “=” always means “is defined as” in Lava
descriptions. This code fragment shows the declaration of a
user-defined type for representing pixel intensities. The
keyword data introduces a new type declaration. The Lava
library functions uint2bitvec and bitvec2uint help to convert
between bit-vectors and unsigned integers. We can define
Bitify for other types and any particular use of toBit or from-
Bit is dispatched depending on the type of the argument.
This is very similar to overloading in object-oriented lan-
guages.

4 JPEG 2000 Encoder Example

We now illustrate how system level specification and
design space exploration is has been carried out for the
modelling of a JPEG 2000 encoder application. The objec-
tive is to experiment with different configurations of a
JPEG 2000 encoder using one or more soft processors, ded-
icated hardware accelerators for operations like the discrete
wavelet transform, multiple SRAM interface controllers
and varying amount of external memory, one or more
system buses and various peripherals e.g. interfaces to
video analogue to digital convertors, UART interfaces and
Ethernet PHY interfaces. The target platform for the system
is a VirtexTM-II FPGA and the basic bus shall use is the On-
Chip Peripheral Bus which is one of the buses which make
up IBM’s CoreConnectTM [8] bus standard. The bus is
implemented in soft logic on the FPGA so we may create
multiple instances of buses and connect them with bridges.
The 32-bit soft processor is also realised in the regular
FPGA fabric and we may also create as many instances of
it as we require. The processing stages performed for JPEG
2000 encoding are shown in Figure 1. We would like to be
able to describe such a data-flow in a high level representa-
tion which has the implementation of the discrete wavelet
transform (DWT) suitably parameterised to allow easy
design space exploration. In particular we want to explore
hardware, software and mixed hardware/software imple-
mentation of the DWT function.

Fig. 1: Data Flow for the JPEG 2000 Encoder

The actual implementation of the JPEG 2000 system
do not directly follow this data flow. The components com-
municate either by procedure calls and shared variables or
using bus-based communication.

System level Lava helps with the description of plat-
form and design space exploration through the use of type
classes, higher order functions and polymorphism. We can
even automatically extract a platform level description
from our Lava specification and export it to vendor tools for
elaboration and implementation onto an FPGA (assuming
that implementations of all hardware blocks are available).
This can give accurate information about the maximum
speed of the system bus (or buses).

One of the main design space explorations we wish to
make with the JPEG 2000 encoder is to decide what com-
ponents should go into hardware and what components
should go into software. To allow us to easily experiment
with multiple implementations (hardware or software) we
define type classes for each “module” that we are interested
in analysing. For example, the discrete wavelet transform is
one of the main sub-components of the JPEG 2000 system
that we would like to analyse and it has a type class defini-
tion similar to:

class Bitify pixel => DWT m pixel where
 dwt :: m pixel -> m pixel

Here we use a special feature of type classes which allows
us to use multi-parameter type classes. This affords us a
very high level of abstraction. Here we can abstract two
kinds of things:
1. The particular data representation denoted by the type

variable pixels: all we require is that for whatever type
is supplied we should know how to convert it into bits.

2. The communication mechanism for the input and out-
put is also parameterised by the type t.
We can now refine many different kinds of implemen-

tations for the discrete wavelet transform which use
different data representations and communication mecha-
nisms. In one case we may still want to keep the exact pixel
representation abstract but we may want to specify the com-
munication mechanism as being infinite streams of values
represented by lists. This is achieved by the following
instance declaration:

instance Bitify pixel => DWT [] pixel

This instance declaration means that there is now a DWT
function with the type:

dwt :: Bitify pixel => [pixel] -> [pixel]

which we are free to define. We can also fully specify the
parameters to get a specific version of the DWT that oper-
ates on a concrete pixel type:

data Pixel = Intensity Int deriving (Eq, Show)

instance DWT [] Pixel

which now allows us to define a DWT operation over
streams of pixel values:

dwt :: [Pixel] -> [Pixel]

By using suitable types for m in the instance declarations
we can provide multiple definitions for the DWT operation
at different levels of abstraction. We can mix levels of
abstraction in a single expression and we can use different
implementations for the communication channel.

Assuming we have available the Lava FIFO communi-
cation type. We can instantiate yet another DWT that
communicates along unbounded FIFOs with the inputs and
outputs appearing like infinite streams of values.

instance Bitify pixel => DWT FIFO pixel

The type of the DWT operation described above is:

dwt :: Bitify pixel => FIFO pixel -> FIFO pixel

We do not supply any special read or write operations to
FIFOs. For many kinds of communication we assume a
standard interface which allows us to substitute many dif-
ferent kinds of communication models. The model is
simply taking infinite lists of value as inputs and returning
infinite lists of results. This provides a simple but powerful
way of abstracting from a particular communication chan-
nel realisation and is motivated by the higher order func-
tions over finite streams view of hardware. Using the
unbounded FIFOs shown above for the interfaces of all the
components of the JPEG 2000 system we can implement a
Kahn networks [11]. Variants of FIFO allow us to define
static data-flow networks. By using monadic implementa-
tion for the type m we can represent state and accumulate
statistics about the operation of a FIFO. Another use of a
monad might be to write out values for debugging. We can
easily define a dummy version of DWT that simply writes
out the input intensity by instantiating it with the IO monad
that is used to perform IO operations in Haskell.

2-D
DWT

Bit
Modele

r

Inpu
t
data

Compressed
data“MQ”

Arithmet
ic Coder

Header/
Stream
Creatio

n

Tier-2
CodingTier-1 Coding

Quantiz
er

instance DWT IO Pixel where
 dwt pixel = do p <- pixel
 putStrLn ("Pixel = " ++ show p)
 return p

v :: IO Pixel
v = dwt (return (Intensity 23))

If we now evaluate the v function in a Lava/Haskell inter-
preter we get the expected result:

Lava> v
Pixel = Intensity 23

Many different kinds of implementation for the DWT
can be written. Some can be purely behavioral whilst others
can be at the timed functional or untimed functional level or
transactional level. Exactly what kind of implementation is
being used for a specific application of DWT is evident
from its type.

For the design space exploration we tried different
kinds of implementation for the DWT operation each of
which have different concrete types but all of which are
instances of the general type for DWT operation. For exam-
ple, for the 2D DWT case we can represent the input as a
list of lists where each list represents a line of the image.
For the 1D DWT case we can represent the input as a list of
values which represents a continuous image signal. Then
software can be used to apply the 1D DWT twice to obtain
a 2D DWT.

Using type classes in this way we can compose the
entire JPEG 2000 system which can be represented at
mixed levels of abstraction using many different models of
communication. At some point we will end up specifying
the type of bus to be used and properties for various com-
ponents and peripherals. This information can be
automatically exported to external vendor tools to create
the specified platform and implement it on a specific FPGA
and then perform timing analysis to check the speed of the
system buses and the hardware sub-components as well as
making sure components like digital clock managers
(DCMs) will function properly.

Memory mapped system components can be specified
in Lava using a class that defines the properties of a simple
peripheral:

class Peripheral periph where
 isMaster :: periph -> Bool
 baseAddress :: periph -> Int
 addressSize :: periph -> Int

This can be used to define the properties of a specific
peripheral which can be of any time with the appropriate
signals.

data SimpleUART = SimpleUART {rx, tx, clk :: Bool}

instance Peripheral SimpleUART where
 isMaster uart = False
 baseAddress uart = 0xffff0800
 addressSize uart = 0x100

A specific configuration of the JPEG 2000 encoder which
uses a single 2D DWT hardware engine has been imple-
mented on a XC2V1000 FPGA. This is produced from a
collection of system components described in system level
Lava although the existence of the software for the soft
processor and the peripherals, buses, and hardware DWT
engine is assumed. It is important to note that the constitu-
ent components for this example were not designed in RTL-
level Lava (although in principle they could have been).
Instead, system level Lava has been used to model the inter-
faces of these pre-designed components and provides the
basic infrastructure for composing these components
together to form a complete system.

The benefit of the system level Lava description is that
the whole system configuration can be expressed in a high
level exploiting the powerful features of type classes and
that this is the same language that the RTL blocks are spec-
ified in so there is no need to try and maintain consistency
between two different notations for representing module
functionality and system configuration. Furthermore, the
single system specification remains executable. The output
of system level Lava is a series of configuration files that
are used to drive the vendor back end tools which then per-
form the tasks of elaborating the soft processors,
peripherals etc. and composes them together. In the case of
the JPEG 2000 encoder the Lava system generated input
files for Xilinx’s Embedded Developer Kit in the form of
MHS files and MSS files which describe the details of the
hardware configuration and software device drivers. These
files, along with the actual implementation netlists for the
base components and run-time system are then combined
by Xilinx’s vendor tools to produce a final implementation
bitstream.

5 Related Work

Functional languages have been used extensively for the
RTL level description of hardware, especially for data-flow
style descriptions. However, their use for system level
description and analysis is less developed. Examples of
system level executable specifications include Launchbury
and Matthews work on the Hawk [5] system which has
been successfully used to model the behaviour of modern
pipelined microprocessors through the notion of transac-
tions.

Jantsch and Sander argue for the integration of the
functional and object-orientated techniques for system

level specification [10]. They argue that functional tech-
niques should only be used for the “functional design space
exploration” and that object-orientated representations
should be used only for architectural exploration. Here we
try and blur the distinction by stretching the capabilities of
the functional type classes system to provide capabilities
similar to those found in object-orientated systems. This
experiment can be taken further by using a small extension
to the Haskell [16] language by Hughes and Spraud called
Haskell++ which provides even more direct representation
of object-oriented representations. A formal link between
functional and object-oriented notations has already been
shown by [17] who demonstrate how an object-oriented
language can be translated into a lambda calculus with
higher-order functions and subtyping.

Recently the ForSeDe [20] system, which like system
level Lava is implemented in Haskell, has been proposed to
assist with semantic preserving transformations and for
support design designs.

The underlying semantics for our descriptions of based
on recurrence equations over streams as described by Kloos
[13]. Reekie [19] has used Haskell to represent digital
signal processing circuits using higher order functions over
infinite streams. Li and Leeser [14] have developed HML
which exploits powerful features of the strict functional
language ML for expressing structural circuit descriptions.

6 Conclusions

The system level designer has a wide array of design nota-
tions and languages to choose from for the task of system
specification. Some, like SystemC, are enjoying a high
level of endorsement from vendors and propose an almost
entirely automatic flow from system description or specifi-
cation to system implementation. We argue that although
such approaches are appropriate for many kinds of systems
the system architect should have a choice of notations and
sometimes these notations may be executable and perhaps
not directly automatically implementable. We have pre-
sented an example of a system level specification technique
which makes for lack of complete automatic implementa-
tion (i.e. no synthesis) through power abstractions for
system level specification and configuration. Furthermore,
these descriptions can be used to create SoC platforms com-
prising of high level components, buses, arbiters etc. and
then the module level components can be specified and
implemented using conventional techniques or advanced
tools for managing the configuration os SoCs like Coral.

“Virtex” and “Virtex-II” are trademarks of Xilinx Inc.

References

[1] Reinaldo A. Bergamaschi, William R. Lee, “Design-
ing Systems-on-Chip Using Cores”, DAC 2000.

[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh,
“Lava: Hardware design in Haskell”, International
Conference on Functional Programming, 1998.

[3] Per Bjuréus and Axel Jantsch, “MASCOT: A specifi-
cation and cosimulation method integrating data and
control flow”, Proc. of the Design, Automation and
Test in Europe Conference, pages 161-168, Paris,
France, March 2000.

[4] J. P. Calvez, “Embedded Real-Time Systems”, J. Wi-
ley and Sons, 1993.

[5] Byron Cook, John Launchbury, and John Matthews,
“Specifying superscalar microprocessors in Hawk”,
1998 Workshop on Formal Techniques for Hardware,
Marstrand, Sweden. 1998.

[6] T. DeMarco, “Structured Analysis and System Speci-
fication”, Yourdon Inc., New York, 1978.

[7] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,
“Specification and Design of Embedded Systems”,
Prentice Hall, 1994.

[8] IBM, “The CoreConnectTM Bus Architecture”, http://
www.chips.ibm.com/product/coreconnect/
docscrcon_wp.pdf, 1999.

[9] I. Jacobson, M. Christerson, P. Jonsson, and G. Över-
gaard, “Object Oriented Software Engineering: A Use
Case Driven Approach”, Addison Wesley, Reading,
Massachusetts, 1992.

[10] Axel Jantsch and Ingo Sander, “On the roles of func-
tions and objects in system specificatio”, Proc. of the
International Workshop on Hardware/Software Code-
sign, 2000.

[11] G. Kahn, “Coroutines and networks of parallel proc-
esses”, Information Processing, North-Holland Pub-
lishing Company, 1977.

[12] K. Keuzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli, “System-level design:
Orthogonolization of concerns and platform-based
design”, IEEE Transaction on Computer-Aided De-
sign of Integrated Circuits and Systems, 19(12):1523–
1543, December 2000.

[13] Carlos Delgado Kloos, “Semantics of Digital Cir-
cuits:, Lecture Notes in Computer Science Vol. 285
Springer 1987,

[14] Y. Li and M. Leeser, “HML, a novel hardware de-
scription language and its translation to VHDL”,
IEEE Transactions on VLSI, 8(1):1–8, February
2000.

[15] M. Odersky, P.Wadler, “Pizza into Java: Translating
Theory into Practice”, Proceedings of 24th ACM
Symposium on Principles of Programming Languag-
es, Paris, France, January, 1997.

[16] Simon Peyton Jones et. al. “Report on the Program-
ming Language Haskell 98, a Non-strict, Purely Func-
tional Language”, Available from http://haskell.org.
February 1999.

[17] Benjamin C. Pierce and David N. Turner, “Simple
type-theoretic foundations for object-oriented pro-
gramming”, Journal of Functional Programming,
4(2):207, April 1994.

[18] R. Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F.
Hill, P. Skelly, “CONLAN - A Formal Construction
Method for Hardware Desceiption Languages: Basic
Principles”, National Computer Conference, Vol. 49,
Anaheim, 1980.

[19] H. J. Reekie, “Realtime Signal Processing”, PhD the-
sis, University of Technology at Sydney, Australia,
1995.

[20] Ingo Sander and Axel Jantsch, “Transformation
Based Communication and Clock Domain Refine-
ment for System Design”, DAC 2002 June 10-14,
2002.

[21] SystemC. http://www.systemc.org. 2002.
[22] P. Wadler and S. Blott, “How to make ad hoc polymorphism

less ad hoc.”, In Proceedings 1989 Symposium Principles of
Programming Languages, pages 60, Austin, Texas, 1989.

[23] Jianwen Zhu, Rainer Dömer, Daniel D. Gajski, “Syn-
tax and Semantics of the SpecC Language”, Proceed-
ings of the Workshop on Synthesis and System
Integration of Mixed Technologies 1997, Osaka, Ja-
pan, December 1997.

[24] Jianwen Zhu and Daniel D. Gajski, "OpenJ: An Ex-
tensible System Level Design Language," Proceed-
ings of Design Automation and Test Conference in
Europe, Munich, Germany, March, 1999.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

