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ABSTRACT 
A new method is presented to model symbolically strongly 
nonlinear circuits, characterized by Piece-Wise Linear (PWL) 
functions. The method follows the idea of Bokhoven and 
Leenaerts, and formulates the problem as a linear 
complementarity problem (LCP). A new graph representation, 
called complementarity decision diagram, is introduced to 
represent the explicit LCP solutions. Orders of magnitude 
improvements in computational efficiency and memory usage 
have been obtained. 

1. INTRODUCTION 
Analysis of the effect of device nonlinearity on the system 
performance is critical to high-performance analog/RF systems-
on-chip design [2].  While a class of nonlinear circuits, known as 
weakly nonlinear, can be analyzed via linearized techniques such 
as small-signal analysis or techniques based on linearized analysis 
such as harmonic balance or Volterra series [2], many circuits 
ranging from switches, mixers, saturation-limited amplifiers to 
switched-capacitor filters and switching power converters, exhibit 
strong nonlinearities. Circuits exhibiting strong nonlinearities 
refer to sudden changes of device behavior, for example, 
switching of operating regions, sudden changes of device physics, 
and piecewise I-V characteristics.  

Strong nonlinearities also arise in the following two scenarios. 
First, there is increasing interest in using digital logic signals to 
control the operations of analog/RF front-ends. As a consequence, 
more “novel” analog signal processing circuits may change their 
behaviors abruptly. Second, with the analog hardware description 
languages such as VHDL-AMS and Verilog-AMS gaining more 
momentum, behavioral models are being developed for systems-
on-chip simulation and architecture evaluation. Many behavioral 
models are characterized as piecewise linear models consisting of 
sudden behavior changes.  

Our work is inspired by the recent effort of Bokhoven and 
Leenaerts [1], which demonstrates that explicit formulae can be 
derived for a class of PWL circuits that can be formulated as so-
called P-class linear complementarity problem (LCP). We 
propose a novel graph representation of this explicit LCP solving 
process. The proposed graph exploits the computational sharing 
inherently in the algorithm of Bokhoven and Leenaerts, and uses 
less than 1 percent of computations for relatively large circuits, in 
comparison to the straightforward implementation of the 
algorithm of Bokhoven and Leenaerts.  

                                                                 
* This research was supported in part by U.S. Defense Advanced Research 
Project Agencies (DARPA) under Grant N66001-01-1-8919, and in part 
by the Semiconductor Research Corporation (SRC) under Contract 2000-
NJ-827. 

2. PRELIMINARY 
Piece-Wise Linear (PWL) functions are used to model devices 
that exhibit strong nonlinearities.  
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Figure 1. An orthoator and its I-V curve. 

To be able to represent each piece of the PWL function in a 
behavioral model van Bokhoven and Leenaerts in [1] makes use 
of an ideal diode. To be amenable to Modified Nodal Analysis 
(MNA), we will call this “new” basic two-terminal circuit element 
an orthoator, as illustrated in Figure 1. An orthoator describes the 
behavior of a circuit with “extremely hard” nonlinearities, and it 
is defined in terms of the current j through the orthoator and the 
voltage u across the orthoator as 

u  ≥ 0,   j ≥ 0,    uTj = 0.  (1) 

The relationship between u and j is defined as the linear 
complementarity problem (LCP) [1]. The standard LCP resulting 
from circuit formulation can be re-written as follows:  
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where u (voltage across orthoator), j (current through orthoator) 
and q (input sources) are column vectors of size m x 1 and D 
(linear components of the circuit) is a m x m square matrix. 
It has been shown that there exists a unique solution to (2) if and 
only if D is of class P.  Then explicit solutions of j and u can be 
obtained explicitly using an operator called the modulus 
transform, which is stated here, as [1]: 
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Consider the 1-dimensional (1-D) case (m = 1). The solution is u 
= q, j = 0 or j = -q/D, u = 0.  This result is clearly seen by 
plugging in a zero for u to find j and vice versa.  
The solution to the case m = 2 can be broken down to solve the 
problem of m = 1. Given the 2-D LCP: 









+
















=









2

1

2

1

2221

1211

2

1

q
q

j
j

DD
DD

u
u  (4) 

Assume j1 = 0, then the following is true u1 = D12*ĵ2 + q1 and û2 
= D22*ĵ2 + q2.  The formulation of û2 is equivalent to solving a 1-
D case. Assume û2 = 0, then ĵ2 = -q2/D22.  Substitute ĵ2 into u1 
yields the u1 expression found in (5).  To find j1 then u1 must be 
zero leading to: 0 = D11*j1 + D12*j2 + q1. Evaluating the function 
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in terms of j1 leads to the equation found in (5). The solutions for 
u2 and j2 are found the same way and are shown below. 
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In general, an n-dimensional (n-D) case can be found in the same 
way by breaking the problem down into smaller matrices. The n-
D case leads to n levels of the modulus transform. Clearly this 
procedure takes an exponential amount of computation and space. 

3. COMPLEMENTARITY DECISION DIAGRAM 
FOR EXPLICIT LCP SOLVING 
As stated in Section 2, the LCP problem itself can be explicitly 
solved by using the methodology presented in [1]. However, the 
computation of these explicit functions can take an exponential 
amount of time. A new method is necessary to symbolically 
represent these expressions in a compact and efficient manner to 
be commendable to computer simulation.  

We can determine any jk, where k = 1 … n, by using the technique 
described in Section 2. Ideally we need to find a way to represent 
these exponentially increasing expressions. We introduce 
complementarity decision diagrams (CDDs) to embody these 
explicit LCP solutions symbolically. These CDDs are capable of 
exploiting the sharing of computation during LCP solving 
process. 

The explicit equations for u and j have a distinct pattern, which 
allows the formula to be expressed by a CDD. A CDD is a signed, 
rooted, direct acyclic graph, similar in form to a determinant 
decision diagram (DDD), originally introduced in [3]. As 
illustrated in Figure 2, a CDD vertex V is associated with a sub-
expression (V.subexpr), a positive or negative sign (V.sign), and 
at most two edges. The edges can be one of the possible three; 1-
dot_edge (solid line with solid dot), 1-edge (solid line) and 0-edge 
(dotted line). The 1-dot_edge and 1-edge point to a 1-child 
(V.1child) and 0-edge always points to a 0-child (V.0child).  A 
CDD has one type of terminal and that is called q-terminal. A q-
terminal can be any one of the following {q1, q2, …, qm}.  Then 
each vertex V represents a symbolic, explicit LCP expression 
(V.expr) defined as follows: 
V.expr=V.sign*V.subexpr*(V.child1).expr + (V.child0).expr. (9) 
The 1-dot_edge implies the modulus transform operator is 
executed, V.expr. 
In Figure 2a, the CDD of a 1-D case is shown inside the solid 
circle. To the right is the CDD of the 2-D case. Notice the 2-D 
consists of 1-D CDDs, shown inside dashed circles. For the 2-D 
case, sharing amongst the q’s is exploited. For a 3-D CDD sharing 
is seen amongst the 1-D subgraph and q’s, for a 4-D CDD sharing 
is in use amongst the 2-D and lower subgraphs, and for the n-D 
CDD sharing of subgraphs is utilized amongst the (n-2)-D and 
lower subgraphs. 
A key rule we used in constructing the CDD is to enforce the 
order of expansion of the matrix rows and columns.  For example, 
consider the two vertices inside the solid circle (D12 and D13) in 
Figure 2b. The order of this chain is {2, 3}, where the order is 

determined by the representation of j in Dij. Since these two 
vertices in the chain are connected through the 0-edge 
representing addition, then due to the communitive property order 
{2, 3} is equivalent to {3, 2}.  Therefore, when any such chain is 
constructed, we enforce the same vertex order (from the smallest 
to the largest row/column index). This allows the maximal 
possible sharing of sub-graphs (sub-expressions) in the CDD. 
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Figure 2. (a) Instances of CDDs: 1-D case (left), 2-D case 
(right). (b) 3-D subgraph of a 5-D CDD. 

Shown on the right is 
a comparison of the 
size of CDDs created 
from dense LCP 
matrices versus the 
number of terms 
representative in an 
explicit LCP 
expression. Clearly 
the CDD sizes 
increase much less 
dramatically than the 
size of the expression. 
This is due to the 
massive sharing of 
sub expressions in the 
CDD. 
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4. CONCLUSIONS 
A graph-based method is presented for symbolic analysis of 
strongly nonlinear analog circuits. The method is based on the 
explicit procedure due originally to Bokhoven and Leenaerts. We 
proposed a compact graph representation, called the 
Complementarity Decision Diagram (CDD), and showed that the 
CDDs can be orders of magnitude more efficient than the original 
method for relatively large circuits. 
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