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Abstract – Floorplanning large designs with many hard 
macros and IP blocks of various sizes is becoming an 
increasingly important and challenging problem. This 
paper presents a global floorplacement method that 
combines a hierarchical simulated annealing 
floorplanning method with a partitioning-based global 
placement technique. A novel area migration method 
formulated as a min-cost, max-flow network flow problem 
is used to improve area utilization, and provide a 
communication mechanism between the partitioning 
engine and the placement method for better design 
quality. The network flow area migration method can be 
used in managing incremental changes in the design as 
well. Our global placement wire length is 12% better than 
the detailed placement wire length of a previous work, 
while our global placement is almost 8 times faster than 
their global placement. 

Categor ies and Subject Descriptors 
B.7.2 [Integrated Circuits]: Placement and routing. 
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Algorithms, Management, Design. 
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1. Introduction 
The size and complexity of future designs have made it 
imperative to employ hierarchical physical design 
methods. IP reuse is a definite component of future CAD 
tools. There will be large numbers of pre-defined IP 
blocks of various sizes that have to be integrated into the 
system. Floorplanning of these blocks will be a challenge. 
Furthermore, incremental changes should be handled by 
the tools to allow for any possible area / delay budget 
violations of different teams, as well as any changes 
resulting from debugging or ECOs. 

2. Previous Work 
There have traditionally been two classes of f loorplanning 
and placement methods: iterative (usually simulated 
annealing), and partitioning-based. Iterative methods are 
generally slow but they can eff iciently handle the module 
shape management problem. On the other hand, 
partitioning-based placement shows good scalabilit y but 
cannot handle the sizing problem well . Recently, a 
placement method was developed that handles large 
blocks by modeling them as tightly coupled clusters of 

smaller blocks, forcing the placement tool to keep them 
together [1]. 

3. Partitioning-based Floorplacement  
Our proposed floorplanning and placement method  (see 
Figure 1) combines the quality of annealing-based and 
scalabilit y of partitioning-based floorplanning and 
placement methods. We call our floorplanning and 
placement a “ floorplacement” method, as it starts with 
floorplanning large modules and gradually deals with 
smaller modules while removing possible area overlaps 
using a novel network flow formulation.  

Figure 1 Our flow 

In our method, partitioning keeps the number of modules 
small (hence a runtime controlled annealing), and 
floorplacement optimizes metrics such as area, timing and 
congestion. Employing a polynomial time legalization 
step (called area migration in Figure 1) at each level of the 
hierarchy allows us to keep the floorplacement legal 
without spending too much time in the annealing process.   

Figure 2 An example of our flow. (a) The or iginal netlist 
is par titioned into four soft modules and two " large" 

hard macros. (b) Floorplan generated. (c) Soft module A 
is fur ther par titioned into “ large” macros and modules. 

Figure 2 shows an example of how our method works. We 
start with a netlist and a fixed floorplan area. At each level 
of the partitioning, “ large” hard macros1 and IP blocks are 
extracted from the netlist and the rest of the gates and 
small hard macros and IP blocks are partitioned 
(clustered) into a number of “soft” modules using the 
                                                           
1 A module whose side is larger than 1/K of the sub-
floorplan’s width/height (e.g., K=8). 
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hMetis partitioning tool [3]. The mixed hard/soft modules 
are floorplanned using the Wong-Liu slicing floorplanning 
method. The same process is recursively repeated on the 
“soft” modules.  

4. Area Migration by Network Flow 
To achieve better area utili zation, we allow soft modules 
to be broken into smaller sub-modules and moved to 
empty regions on the chip, or even merged with other 
modules. Depending on user preferences and timing 
criticaliti es of the soft modules, the sub-modules might be 
placed at disconnected regions on the chip.  

We model the area migration problem as an instance of 
weighted network-flow problem [2]. Figure 3 shows a 
very simple example of the network flow formulation. 
Area can migrate from “spatially critical” modules (e.g., 
“B”, “C”) to empty r egions or other modules. The dashed 
rectangle is the area allocated to the floorplan. The edge 
capacities are not shown, but they determine how much 
area can migrate along the edge. We also define edge 
costs as the amount of increase in timing or wirelength if 
area migrates using the edge.  

Figure 3 Area migration formulation. a) floorplan. 
 b) network graph. c) floorplan after area migration. 

When some area is taken from a soft module to migrate to 
another location, some internal nets become external, i.e., 
connect cells from different modules in the floorplan. We 
use Rent’s rule to estimate the number of wires 
“exposed”.  

5. Experimental Results 
We performed global floorplacement (recursively perform 
floorplacement until the modules contain less than 30 
gates) on the ISPD98 IBM circuits and compared our 
results to those from [1]. Runtimes are measured on a 900 
MHz PC/Intel system running Linux. Wirelength is 
measured using half-perimeter of the minimum bounding 
box containing all terminals of a net (HPWL). The amount 
of overlap in a final floorplan is measured by computing 
the sum of overlaps between each pair of modules, 
divided by the whole chip area. The floorplanning area is 
set to have a square shape with 15% of white space. 

Table 1 shows  that our global placement HPWL is 12% 
better than the detailed placement HPWL of [1] (they do 
not report their global placement HPWL), while our 
global placement is almost 8 times faster than their global 
placement ("ShredPlace by Capo" + "Floorplan time by 
Parquet" in [1]). 

6. Conclusion 
We showed our global floorplacement method can 
produce reasonably good results very quickly. The method 
is scalable and provides quality / runtime tradeoff by 
balancing the annealing runtime at each hierarchy level 
and the effort put into the area migration method. The area 
migration method can improve the floorplan and provide a 
means for incremental design.  
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  Capo + Parquet + Capo Our Floorplanning Flow Comparison   
circuit #nodes #nets HPWL runtime(min) #Hmacros HPWL runtime (min) Overlap HPWL speedup 
ibm01 12752 14111 3.96E+06 17 3 2.78E+06 2 6.31% 0.70 8.5 
ibm02 19601 19584 8.37E+06 28 12 6.64E+06 3 5.52% 0.79 8.0 
ibm03 23136 27401 1.22E+07 38 10 1.04E+07 5 7.62% 0.86 7.0 
ibm04 27507 31970 1.35E+07 42 8 1.17E+07 6 7.85% 0.87 7.0 
ibm05 29347 28446 1.15E+07 8 0 1.31E+07 5 1.72% 1.13 1.6 
ibm06 32498 34826 1.03E+07 50 12 9.89E+06 9 5.46% 0.96 5.6 
ibm07 45926 48117 1.58E+07 49 11 1.62E+07 14 7.04% 1.03 3.5 
ibm08 51309 50513 2.12E+07 84 15 1.80E+07 15 8.06% 0.85 5.6 
ibm09 53395 60902 1.96E+07 53 13 2.02E+07 16 7.91% 1.03 3.3 
ibm10 69429 75196 6.07E+07 215 8 4.23E+07 27 4.29% 0.70 8.0 
ibm11 70558 81454 2.85E+07 90 14 2.76E+07 23 9.69% 0.97 3.9 
ibm12 71076 77240 5.17E+07 659 15 4.80E+07 27 7.06% 0.93 24.4 
ibm13 84199 99666 3.94E+07 131 12 3.54E+07 33 10.11% 0.90 4.0 
Avg   2.28E+07 112.62  2.02E+07 14.23 6.82% 0.88 7.91 

Table 1 Comparison between our method and [1] 
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