
Hierarchical Global Floorplacement Using Simulated Annealing and Network
Flow Area Migration

Wonjoon Choi Kia Bazargan
ECE Department, University of Minnesota, MN 55455

{wjchoi,kia}@ece.umn.edu

Abstract – Floorplanning large designs with many hard
macros and IP blocks of various sizes is becoming an
increasingly important and challenging problem. This
paper presents a global floorplacement method that
combines a hierarchical simulated annealing
floorplanning method with a partitioning-based global
placement technique. A novel area migration method
formulated as a min-cost, max-flow network flow problem
is used to improve area utilization, and provide a
communication mechanism between the partitioning
engine and the placement method for better design
quality. The network flow area migration method can be
used in managing incremental changes in the design as
well. Our global placement wire length is 12% better than
the detailed placement wire length of a previous work,
while our global placement is almost 8 times faster than
their global placement.

Categor ies and Subject Descriptors
B.7.2 [Integrated Circuits]: Placement and routing.

General Terms
Algorithms, Management, Design.

Keywords
Floorplanning, floorplacement, global placement,
hierarchical, network flow, area migration, simulated
annealing.

1. Introduction
The size and complexity of future designs have made it
imperative to employ hierarchical physical design
methods. IP reuse is a definite component of future CAD
tools. There will be large numbers of pre-defined IP
blocks of various sizes that have to be integrated into the
system. Floorplanning of these blocks will be a challenge.
Furthermore, incremental changes should be handled by
the tools to allow for any possible area / delay budget
violations of different teams, as well as any changes
resulting from debugging or ECOs.

2. Previous Work
There have traditionally been two classes of f loorplanning
and placement methods: iterative (usually simulated
annealing), and partitioning-based. Iterative methods are
generally slow but they can eff iciently handle the module
shape management problem. On the other hand,
partitioning-based placement shows good scalabilit y but
cannot handle the sizing problem well . Recently, a
placement method was developed that handles large
blocks by modeling them as tightly coupled clusters of

smaller blocks, forcing the placement tool to keep them
together [1].

3. Partitioning-based Floorplacement
Our proposed floorplanning and placement method (see
Figure 1) combines the quality of annealing-based and
scalabilit y of partitioning-based floorplanning and
placement methods. We call our floorplanning and
placement a “ floorplacement” method, as it starts with
floorplanning large modules and gradually deals with
smaller modules while removing possible area overlaps
using a novel network flow formulation.

Figure 1 Our flow

In our method, partitioning keeps the number of modules
small (hence a runtime controlled annealing), and
floorplacement optimizes metrics such as area, timing and
congestion. Employing a polynomial time legalization
step (called area migration in Figure 1) at each level of the
hierarchy allows us to keep the floorplacement legal
without spending too much time in the annealing process.

Figure 2 An example of our flow. (a) The or iginal netlist
is par titioned into four soft modules and two " large"

hard macros. (b) Floorplan generated. (c) Soft module A
is fur ther par titioned into “ large” macros and modules.

Figure 2 shows an example of how our method works. We
start with a netlist and a fixed floorplan area. At each level
of the partitioning, “ large” hard macros1 and IP blocks are
extracted from the netlist and the rest of the gates and
small hard macros and IP blocks are partitioned
(clustered) into a number of “soft” modules using the

1 A module whose side is larger than 1/K of the sub-
floorplan’s width/height (e.g., K=8).

Partition
Floor-
plan

Area
Migration

Ovrlap?
Y

N

Hard
Macros?

Y

N

done
Detailed
enough?

Y
N

start Partition
Floor-
plan

Area
Migration

Ovrlap?
Y

N

Hard
Macros?

Y

N

done
Detailed
enough?

Y
N

start

�
���

�

�������� 	
� �
���
�
����� � ���

�

(a) (b) (c)

��
���

�

������ � �
� �
���
�
����� � ���

�

(a) (b) (c)

1530-1591/03 $17.00  2003 IEEE

hMetis partitioning tool [3]. The mixed hard/soft modules
are floorplanned using the Wong-Liu slicing floorplanning
method. The same process is recursively repeated on the
“soft” modules.

4. Area Migration by Network Flow
To achieve better area utili zation, we allow soft modules
to be broken into smaller sub-modules and moved to
empty regions on the chip, or even merged with other
modules. Depending on user preferences and timing
criticaliti es of the soft modules, the sub-modules might be
placed at disconnected regions on the chip.

We model the area migration problem as an instance of
weighted network-flow problem [2]. Figure 3 shows a
very simple example of the network flow formulation.
Area can migrate from “spatially critical” modules (e.g.,
“B”, “C”) to empty r egions or other modules. The dashed
rectangle is the area allocated to the floorplan. The edge
capacities are not shown, but they determine how much
area can migrate along the edge. We also define edge
costs as the amount of increase in timing or wirelength if
area migrates using the edge.

Figure 3 Area migration formulation. a) floorplan.
 b) network graph. c) floorplan after area migration.

When some area is taken from a soft module to migrate to
another location, some internal nets become external, i.e.,
connect cells from different modules in the floorplan. We
use Rent’s rule to estimate the number of wires
“exposed”.

5. Experimental Results
We performed global floorplacement (recursively perform
floorplacement until the modules contain less than 30
gates) on the ISPD98 IBM circuits and compared our
results to those from [1]. Runtimes are measured on a 900
MHz PC/Intel system running Linux. Wirelength is
measured using half-perimeter of the minimum bounding
box containing all terminals of a net (HPWL). The amount
of overlap in a final floorplan is measured by computing
the sum of overlaps between each pair of modules,
divided by the whole chip area. The floorplanning area is
set to have a square shape with 15% of white space.

Table 1 shows that our global placement HPWL is 12%
better than the detailed placement HPWL of [1] (they do
not report their global placement HPWL), while our
global placement is almost 8 times faster than their global
placement ("ShredPlace by Capo" + "Floorplan time by
Parquet" in [1]).

6. Conclusion
We showed our global floorplacement method can
produce reasonably good results very quickly. The method
is scalable and provides quality / runtime tradeoff by
balancing the annealing runtime at each hierarchy level
and the effort put into the area migration method. The area
migration method can improve the floorplan and provide a
means for incremental design.

7. References
[1] S. N. Adya and I. L. Markov, “Consistent Placement of

Macro-Blocks Using Floorplanning and Standard-Cell
Placement”, International Symposium on Physical Design
(ISPD), pp. 12 – 18, 2002.

[2] A. V. Goldberg, "An Eff icient Implementation of a Scaling
Minimum-Cost Flow Algorithm", Journal of Algorithms,
22, pp. 1--29, 1997.

[3] G. Karypis and V. Kumar. "Multilevel k-way Hyper-graph
Partitioning". Design Automation Conference (DAC), pp.
343-348, 1999.

 Capo + Parquet + Capo Our Floorplanning Flow Comparison
circuit #nodes #nets HPWL runtime(min) #Hmacros HPWL runtime (min) Overlap HPWL speedup
ibm01 12752 14111 3.96E+06 17 3 2.78E+06 2 6.31% 0.70 8.5
ibm02 19601 19584 8.37E+06 28 12 6.64E+06 3 5.52% 0.79 8.0
ibm03 23136 27401 1.22E+07 38 10 1.04E+07 5 7.62% 0.86 7.0
ibm04 27507 31970 1.35E+07 42 8 1.17E+07 6 7.85% 0.87 7.0
ibm05 29347 28446 1.15E+07 8 0 1.31E+07 5 1.72% 1.13 1.6
ibm06 32498 34826 1.03E+07 50 12 9.89E+06 9 5.46% 0.96 5.6
ibm07 45926 48117 1.58E+07 49 11 1.62E+07 14 7.04% 1.03 3.5
ibm08 51309 50513 2.12E+07 84 15 1.80E+07 15 8.06% 0.85 5.6
ibm09 53395 60902 1.96E+07 53 13 2.02E+07 16 7.91% 1.03 3.3
ibm10 69429 75196 6.07E+07 215 8 4.23E+07 27 4.29% 0.70 8.0
ibm11 70558 81454 2.85E+07 90 14 2.76E+07 23 9.69% 0.97 3.9
ibm12 71076 77240 5.17E+07 659 15 4.80E+07 27 7.06% 0.93 24.4
ibm13 84199 99666 3.94E+07 131 12 3.54E+07 33 10.11% 0.90 4.0
Avg 2.28E+07 112.62 2.02E+07 14.23 6.82% 0.88 7.91

Table 1 Comparison between our method and [1]

A
B

C

Dα

β
γ A D

B

Cs t

α

β

γ
A

B’
C’

Dα γ’

E β’
F

(a) (b) (c)

A
B

C

Dα

β
γ A D

B

Cs t

α

β

γ
A D

B

Cs t

α

β

γ
A

B’
C’

Dα γ’

E β’
F

A
B’

C’

Dα γ’

E β’
F

(a) (b) (c)

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

