Hierarchical Global Floor placement Using Simulated Annealing and Networ k
Flow Area Migration

Wonjoon Choi

KiaBazargan

ECE Department, University of Minnesota, MN 55455
{wj choi , ki a} @ce. um. edu

Abstract — Floorplanning large designs with many hard
macros and IP blocks of various sizes is becoming an
increasingly important and challenging problem. This
paper presents a global floorplacement method that
combines a hierarchical smulated annealing
floorplanning method with a partitioning-based global
placement technique. A novel area migration method
formulated as a min-cost, max-flow network flow problem
is used to improve area utilization, and provide a
communication mechanism between the partitioning
engine and the placement method for better design
quality. The network flow area migration method can be
used in managing incremental changes in the design as
well. Our global placement wire length is 12% better than
the detailed placement wire length of a previous work,
while our global placement is almost 8 times faster than
their global placement.

Categoriesand Subjed Descriptors
B.7.2 [Integrated Circuits]: Placanent and routing.

General Terms
Algorithms, Management, Design.

Keywords

Floorplanning, floorplacement, global placement,
hierarchicd, network flow, areamigration, smulated
anneding.

1. Introduction

The size and complexity of future designs have made it
imperative to employ herarchicd physicd design
methods. IP reuse is a definite comporent of future CAD
tools. There will be large numbers of pre-defined IP
blocks of various szes that have to be integrated into the
system. Floorplanning of these blocks will be a dallenge.
Furthermore, incremental changes soud be handed by
the toadls to allow for any possble aea/ delay budget
violations of different teams, as well as any changes
resulting from debuggng or ECOs.

2. Previous Work

There have traditionally been two classes of floorplanning
and pacement methods: iterative (usually simulated
anneding), and partitioning-based. Iterative methods are
generally slow but they can efficiently handle the module
shape management problem. On the other hand,
partitioning-based placanent shows good scdability but
canna hande the sizing poblem well. Receitly, a
placanent method was developed that handles large
blocks by modeling them as tightly coupled clusters of

1530-1591/03 $17.00 & 2003 IEEE

smaller blocks, forcing the placanent todl to keep them
together [1].

3. Partitioning-based Floorplacement

Our proposed floorplanning and pgacement method (see
Figure 1) combines the quality of annedingbased and
scdability of partitioning-based floorplanning and
placenent methods. We cal our floorplanning and
placement a “floorplacement” method, as it starts with
floorplanning large modues and gadually deds with
smaller modues while removing possble aea overlaps
using anovel network flow formulation.

Partition

Area
Migration

Figure 1 Our flow

In our method, partitioning kegps the number of modules
smal (hence a runtime ontrolled anneding), and
floorplacement optimizes metrics guch as areg timing and
congestion. Employing a polynomia time legalizaion
step (cdled areamigration in Figure 1) at ead level of the
hierarchy alows us to keep the floorplacement legal
withou spending too much time in the aaneding process

Figure 2 An example of our flow. (a) Theoriginal netlist
is partitioned into four soft modulesand two " large"
hard macros. (b) Floorplan generated. (¢) Soft module A
isfurther partitioned into “large” macros and modules.

Figure 2 shows an example of how our method works. We
start with a netlist and afixed floorplan area. At ead level
of the partitioning, “large” hard maaos' and IP blocks are
extraded from the netlist and the rest of the gates and
smal hard macros and IP blocks are partitioned
(clustered) into a number of “soft” modules using the

' A modue whose side islarger than VK of the sub-
floorplan’ s width/height (e.g., K=8).

hMetis partitioning tod [3]. The mixed herd/soft modules
are floorplanned using the Wong-Liu dlicing floorplanning
method The same processis reaursively repeaed on the
“soft” modues.

4. Area Migration by Network Flow

To adiieve better area utili zation, we dlow soft modues
to be broken into smaler sub-modules and moved to
empty regions on the dip, or even merged with ather
modues. Depending on user preferences and timing
criticditi es of the soft modues, the sub-modues might be
placel at disconreded regions on the chip.

We model the area migration problem as an instance of
weighted network-flow problem [2]. Figure 3 shows a
very simple example of the network flow formulation.
Area ca migrate from “spatialy criticd” modues (e.g.,

“B”, “C") to empty r egions or other modues. The dashed
redangle is the aea dlocaed to the floorplan. The elge
cgpadties are not shown, but they determine how much
area ca migrate dong the elge. We dso define alge
costs as the anount of increase in timing a wirelength if
areamigrates using the edge.

a Dy. (A

L o

@ (b) ©

Figure 3 Area migration formulation. a) floorplan.
b) network graph. c) floorplan after area migration.

When some aeais taken from a soft module to migrate to
ancther location, some internal nets become external, i.e.,
conred cdls from different modues in the floorplan. We
use Rent's rule to estimate the number of wires
“exposed”.

5. Experimental Results

We performed gobal floorplacement (reaursively perform
floorplacament until the modules contain less than 30
gates) on the ISFD98 IBM circuits and compared our
results to those from [1]. Runtimes are measured ona 900
MHz PCl/Intel system running Linux. Wirelength is
measured using half-perimeter of the minimum bounding
box containing all terminals of a net (HPWL). The anount
of overlap in afinal floorplan is measured by computing
the sum of overlaps between eat pair of modules,
divided by the whole chip area. The floorplanning area is
set to have asquare shape with 13% of white space

Table 1 shows that our global placenent HPWL is 12%
better than the detailed placement HPWL of [1] (they do
not report their global placement HPWL), while our
global placement is amost 8 times faster than their global
placement ("ShredPlace by Capo' + "Floorplan time by
Parquet” in [1]).

6. Conclusion

We showed our globa floorplacanent method can
produce reasonably good results very quickly. The method
is scdable and provides quality / runtime tradeoff by
balancing the anneding runtime & ead hierarchy level
andthe dfort put into the aeamigration method. The aea
migration method can improve the floorplan and provide a
means for incremental design.

7. References

[1] S. N. Adya and I. L. Markov, “Consistent Placenent of
Maao-Blocks Using Floorplanning and Standard-Cell
Placement”, International Symposium on Physical Design
(ISPD), pp. 12 — 18, 2002.

[2] A.V. Goldberg, "An Efficient Implementation o a Scding
Minimum-Cost Flow Algorithm", Journal of Algorithms,
22, pp. 1--29, 1997.

[3] G. Karypisand V. Kumar. "Multilevel k-way Hyper-graph
Partitioning". Design Automation Conference (DAC), pp.
343-348, 1999.

Capo + Parquet + Capo Our Floorplanning Flow Comparison
circuit | #nodes | #nets| HPWL |runtime(min)i#Hmaaog HPWL |runtime (min)| Overlap|| HPWL speadup
ibm01 | 12752 |14111| 3.96E+06§ 17 3 2.78E+06 2 6.31% 0.70 8.5
ibm02 | 19601 |19534| 8.37E+06 28 12 6.64E+06 3 5.52% 0.79 8.0
ibm03 | 23136 |27401| 1.22E+07 38 10 1.04E+07 5 7.62% 0.86 7.0
ibm04 | 27507 |31970| 1.35E+07 42 8 1.17E+07 6 7.85% 0.87 7.0
ibm05 | 29347 |28446| 1.15E+07 8 0 1.31E+07 5 1.72% 1.13 1.6
ibm06 | 32498 |348%6| 1.03E+07 50 12 9.89E+06 9 5.46% 0.96 5.6
ibm07 | 45926 |48117| 1.58E+07 49 11 1.62E+07 14 7.04% 1.03 3.5
ibm08 | 51309 |50513| 2.12E+07 84 15 1.80E+07 15 8.06% 0.85 5.6
ibm09 | 53395 |60902| 1.96E+07 53 13 2.02E+07| 16 7.91% 1.03 3.3
ibm10 | 69429 |75196| 6.07E+07 215 8 4.23E+07 27 4.2% 0.70 8.0
ibmll | 70558 (81454 2.85E+07 90 14 2.76E+07| 23 9.6%% 0.97 3.9
ibml12 | 71076 |77240| 5.17E+07 659 15 4.80E+07 27 7.06% 0.93 24.4
ibml13 | 84199 (99666 3.94E+07 131 12 3.54E+07| 33 10.11% 0.90 4.0
Avg 2.28E+07] 112.62 2.02E+07 14.23 6.82% 0.88 7.91

Table 1 Comparison between our method and [1]

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

