Communication Centric Architecturesfor Turbo-Decoding on
Embedded M ultiprocessors *

Frank Gilbert, Michael J. Thul, Norbert Wehn
Microelectronic System Design Research Group, University of Kaiserslautern
Erwin-Schrodinger-Strale, 67663 Kaiserslautern, Germany
{gilbert, thul, wehn}@eit.uni-kl.de

Abstract

Software implementations of channel decoding algo-
rithms are attractive for communication systems with their
large variety of existing and emerging standards due to their
flexibility and extensibility. For high throughput, however,
a single processor can not provide the necessary compute
power. Using several processors in parallel without exploit-
ing the internal parallelism of the algorithm leads to intol-
erable overhead in area, power consumption, and latency.

We propose a multiprocessor based Turbo-Decoder im-
plementation where inherently parallel decoding tasks are
mapped onto individual processing nodes. The implied
challenging inter-processor communication is efficiently
handled by our framework such that throughput is not de-
graded. In this paper we present communication centric
architectures from buses to heterogenous networks that al-
low to interconnect numerous processors to perform high
throughput Turbo-decoding.

1 Introduction

Programmable platforms are becoming an emerging
competitor to dedicated hardware solutions in embedded
systems. Design cost reduction, time-to-market, flexibility
and extensibility, which allow to adapt to changing or mul-
tiple standards, are the driving forces behind this trend. For
high throughput applications, communication centric archi-
tectures composed of several processors are mandatory. The
importance of these platforms in communication applica-
tions is continously increasing [1].

The outstanding forward error correction provided by
Turbo-Codes, which were introduced in 1993 [2], made
them part of today’s communication standards, e.g. 3GPP
[3]. They consist of concatenated component codes that
work on the same block of information bits, separated by in-

* This work has been supported by the Deutsche Forschungsgemein-
schaft (DFG) under Grant We 2442/1-1

1530-1591/03 $17.00 & 2003 IEEE

terleavers. The component codes are decoded individually.
Key to the performance of Turbo-Codes is the iterative ex-
change of interleaved information between the component
decoders. For an introduction to Turbo-Codes see [4].

While the maximum throughput of 3GPP is limited to
2 MBit/s, future communication standards will demand for
much higher data rates (>10 MBit/s). Efficient implemen-
tations of Turbo-Decoders on programmable architectures
are of great importance due to their flexibility to support the
various existing or even emerging standards. Throughput
on these architectures, however, is limited by the proces-
sor’s arithmetic and memory architecture.

For higher throughput rates parallelization is required ei-
ther by increasing the instruction-level parallelism, mov-
ing to multiprocessor architectures, or both. We first in-
crease the instruction-level parallelism by an application
specific instruction-set extension of a customized RISC core
which is tuned for embedded applications [5]. It features
a lower power consumption and device cost when com-
pared to high-performance DSPs with VLIW- or SIMD-
architectures.

Parallel interleaving in an iterative process obstructs par-
allelization. Therefore, in standard multiprocessor imple-
mentations several blocks are decoded on independent pro-
cessors, which multiplies the costs (memories, area, power
consumption, and latency) along with the throughput.

Exploiting the inherent algorithmic parallelism of Turbo-
decoding, however, enables a far more efficient partitioning
of the decoding task: as will be shown later, the block to de-
code can be divided into several sub-blocks. Decoding each
sub-block on an individual processor significantly reduces
memory overhead and latency, which is a critical parameter
in many communication applications.

Due to the iterative exchange of interleaved data each
processor has to communicate with each other processor,
yielding only limited locality. We extract the communica-
tion demands for each processor node. Based on this infor-
mation we deduce different communication networks de-
pendent on the throughput requirements. We show that the

©
o}
RSCL = 2
c
&
INT —| RSC2 —

Figure 1. Turbo-Encoder

area overhead is minimal and the interconnection network
does not degrade the throughput of the overall system.

The paper is structured as follows: In Section 2 we
present the concept of Turbo-Codes, the component decoder
algorithm, and the special requirements dictated by the in-
terleaving before we compare different target architectures.
Our new approach is outlined in Section 3 and the proposed
architecture template laid out in detail in Section 4. The
results in Section 5 include throughput and area figures for
various degrees of parallelization and component decoder
implementations using a Tensilica Xtensa Core [6]. Sec-
tion 6 finally concludes the paper.

2 Turbo-Codes

Forward error correction is enabled by introducing parity
bits. In Turbo-Codes, the original information (X®), denoted
as systematic information, is transmitted together with the
parity information (X1P, X2P). For the Third Generation Part-
nership Project (3GPP) [3], the encoder consists of two re-
cursive systematic convolutional (RSC) encoders with con-
straint length K = 4, which can also be interpreted as 8-
state finite state machines. One RSC encoder works on the
block of information in its original, the other one in an in-
terleaved sequence, see Figure 1. On the receiver side a
corresponding component decoder for each of them exists.
The maximum a posteriori (MAP) decoder has been recog-
nized as the component decoder of choice as it is superior
to the Soft-Output Viterbi Algorithm (SOVA) in terms of
communications performance and implementation scalabil-
ity [7].

The soft-output of each component decoder (A) is modi-
fied to reflect only its own confidence (Z) in the received in-
formation bit of being sent either as “0” or “1”. These con-
fidences are exchanged between the decoders to bias their
next estimations iteratively (see Figure 2). During this ex-
change, the produced information is interleaved following
the same scheme as in the encoder. The exchange contin-
ues until a stop criterion is fulfilled. The last soft-output
is not modified and becomes the soft-output of the Turbo-
Decoder (7\2). Its sign represents the 0/1 decision and its
magnitude the confidence of the Turbo-Decoder in it. Stop
criteria range from “fixed number of iterations done” over
cyclic redundancy checks (CRC) to statistical analysis.

[~ | 2|'2nt
DE

1
ALx ’——| INT |-
yiP —{MAP1 —@& 2P — MAP2 ©
— - — -
[N
INT 2
¥ 55

Figure 2. Turbo-Decoder

21 TheMAP Algorithm

Given the received samples of systematic and parity bits
(channel values) for the whole block yg‘, where N is the
block length, the MAP algorithm computes the probability
for each bit to have been sent as dy = 0 or dx = 1. The
logarithmic likelihood ratio (LLR) of these probabilities is
the soft-output, denoted as:

Pr{dk = 1|y}'}
Ne=log ————M—-.
<=9 Bria, = oy}

Equation 1 can be expressed using three probabilities,
which refer to the encoder states S;', where k € {0...N}
andm,m’ € {1...8}:

The branch metrics y'k‘?i(ﬂl(dk) is the probability that a

transition between ST and SJ" ; has taken place. Itis derived
from the received signals, the a-priori information given by
the previous decoder, the code structure and the assumption
of dy = 0 or dx = 1, for details see [8]. From these branch
metrics the probability o}’ that the encoder reached state
Sy’ given the initial state and the received sequence yg, is
computed through a forward recursion:

m m ,m
o1% :zakfl' k—1k*
m

Performing a backward recursion yields the probability
Bﬂil that the encoder has reached the (known) final state
given the state Sﬂl and the remainder of the received se-
quence Yy, ;:

)

B = ; Bl VE]knll

as and s are both called state metrics. Equation 1 can be
rewritten as:

SmZn ol Bl i (0= 1)
9 / m m ’
Zm zmaﬂ’] ' Bk+1 ' yrkrji@ﬁ]_(dk = O)
The original probability based formulation as presented
here involves a lot of multiplications and has thus been
ported to the logarithmic domain to become the Log-MAP
Algorithm [8]: Multiplications turn into additions and ad-

ditions into maximum selections with additional correc-
tion terms®. Arithmetic complexity can further be reduced

A= 2

1Also know as the Jacobian logarithm, see [8] for details.

by omitting the correction term (Max-Log-MAP Algorithm)
which leads to a slight loss in communications performance
(about 0.1 dB). Log-MAP and Max-Log-MAP algorithm
are common practice in state-of-the-art implementations.

The branch metrics are computed along with the first re-
cursion and the soft-output (LLR) in parallel to the second
recursion, therefore, only one set of state metrics, either as
or s has to be stored.

The data dependency throughout the whole block can be
”loosened” by starting the recursions on arbitrary positions
in the block with approximated initialization values. For
this, a recursion on a certain number of proceeding bits (ac-
quisition) must be performed to obtain sufficiently accurate
estimates. Windowing [9] exploits this property to divide
the data into sub-blocks. Several sub-blocks can thus be
decoded sequentially on the same hardware for memory re-
duction as only the state metrics of one sub-block have to be
stored. Moreover, windowing allows to map sub-blocks to
individual nodes for parallel processing, allowing to trade
off hardware for latency. This is exploited in our approach.

2.2 Interleaving

Interleaving is scrambling the processing order to break
up neighborhood-relations. It is essential for the perfor-
mance of Turbo-Codes. Interleaver and deinterleaver ta-
bles contain one-to-one mappings of source addresses to
destination addresses. One LLR has to be read for every
LLR produced. Interleaving can be performed on the fly
through indirect addressing for up to one LLR per clock cy-
cle only. When more LLRs are produced, multiple LLRs
have to be read and written concurrently. This is, several
of them have to be fetched from and stored to memories
in the same clock cycle. Without advanced communication
schemes the resulting conflicts form the major bottleneck in
parallel Turbo-decoding.

In [10] we presented an optimized concurrent interleav-
ing architecture to solve the resulting conflicts. It is a dis-
tributed architecture with local entities that resolve local
conflicts only, which is called ring-interleaver-bottleneck-
breaker (RIBB) architecture. Nodes, each associated with a
producer of one LLR/cycle, are connected in a ring structure
with buffers between them. These nodes determine locally
where the incoming LLRs have to be routed to: store them
in the local RAM, or forward them to the next node. See
[10] for details.

Note that good interleavers, in terms of communica-
tion performance, map neighboring addresses evenly to far
spread target addresses. The probability that produced data
is assigned to a given node can thus be assumed to have an
equal distribution 1/N, where N is the number of nodes.

2.3 Target Architecture

The computational complexity of the decoding algorithm
is very high, e.g. up to about 6000 MOPS for a Log-MAP
decoder for 3G, assuming a data-rate of 2 Mbit/s. Recently
some very advanced DSPs like the TigerSharc from Analog
Devices [11] have implemented a special max* instruction
to support an efficient Log-Map implementation. This is a
similar approach as for the Viterbi algorithm which is sup-
ported by many DSPs with the special ACS instruction.

In [5] we presented an Turbo-Decoder implementa-
tion on a customized RISC core with application specific
instruction-set extensions for Turbo-decoding and com-
pared the results to implementations on state-of-the-art
VLIW DSPs. This analysis shows competitive through-
put results of the customized RISC core but with much
lower power consumption and device cost compared to
high-performance DSPs.

Dedicated hardware solutions are chosen for applica-
tions, where throughput, area, and power requirements
are more important than flexibility. In [12] we pre-
sented a scalable high-throughput architecture in an ASIC
design methodology. A high area/power efficiency is
reached by optimized datapaths and a tailored memory- and
communication-architecture. Though it is a fully parame-
terizable design, code rate and generator polynomial must
be fixed at design time.

3 New Approach

In this work we present for the first time a Turbo-
Decoder implementation on a multiprocessor platform
based on sub-block parallelization. This is, instead of dis-
tributing independent blocks, one block is segmented into
sub-blocks (or windows) which are decoded on individual
processors. Thus latency and memory demand for each
processor are decreased significantly, on the other hand,
communication between processors becomes mandatory.
We show how the communication problem of distributing
the interleaved (or de-interleaved) LLRs can be efficiently
solved by an optimized message passing communication
network. A scalable architecture template and a construc-
tion scheme for different throughput requirements based on
the decoding performance of a single processor node are
proposed. The communication network is derived exploit-
ing the statistical properties of the interleaving scheme that
each node is addressed with the same probability.

4 Architecture Template

As motivated above, efficient distribution of the in-
terleaved (or deinterleaved) LLRs is the key to high-
throughput Turbo-decoding on any parallel architecture.

CPU-Core (Xtensa)

A || | A amemeeee- '
P /o
P - 1
3 :
Mc Lt g MP :
Yo 1Y . f
Cluster Bus y

\

Figure 3. Architecture of Processing Node

For efficient processing all input data of an iteration has
to be stored in a fast single cycle access memory (cache
or SRAM). Therefore the LLRs must also be delivered in a
single cycle access to the processing node. This results in an
1/0-device tightly coupled to the pipeline of the embedded
processor.

In Figure 3 we show a processing node based on Xtensa
processor architecture. We assume that the input data are
stored in the fast memory Mc instead of the main memory
Mp due to the high memory-bandwidth required by the al-
gorithm. The 1/O-device for LLR-distribution is connected
to the processors internal address- and databus for fast ac-
cess. For the Xtensa processor, the 1/0-device is connected
to the XLMiI-interface.

The memory-mapped 1/0O-device can be accessed by
the processor using the example address map of Figure 4
which implements a message-passing model for multipro-
cessor communication. For LLR-distribution the processor
writes a data word (target processor-id, local address in in-
put buffer, and LLR-value) to the LLR Distribution FIFO.
From there the LLR is transmitted through the communi-
cation network and stored at the appropriate address in the
input buffer of the target processor’s I/0O-device. During de-
coding one LLR-input buffer is read, while the other is filled
with the received LLRs.

Device Base: +Offset0 | Status Register

+Offset1 | LLR Distr. FIFO
+Offset 2
LLR-Data
Input Buffer 1
+Offset 3

LLR-Data
Input Buffer 2

Figure 4. Address-Map of 1/0-Device

Py) PN

I/0 I/0 110

<
.
Cluster Bus

\ J
Bus Switch

Figure 5. Cluster of Processing Nodes

We characterize a processing node with its average num-
ber of clock cycles R for one LLR during soft-output calcu-
lation. During decoding of a block with a length of K bits
on a multiprocessor platform with N processors the commu-
nication network has to be able to process N/R LLRs per
clock cycle. For small scale multiprocessor systems with
N < R a simple bus structure similar to Figure 5 is suffi-
cient.

For N = R the maximum capacity of one LLR per cycle
on the bus is reached, adding further processing nodes can
not increase decoding throughput. Therefore a new commu-
nication scheme is necessary. We combine maximal loaded
busses with the RIBB-architecture to form a hierarchical
communication network. The modified RIBB-cell with a
bus switch to connect the cluster bus is shown in Figure 6.

For large number of processing nodes (N > R) we pro-
pose the architecture of Figure 7. A number N¢ of process-
ing nodes is connected to a bus. The number N¢ is chosen
to fully exploit the bus* capacity. Each cluster is connected
over the bus switch to a ring-interleaving network. The total
number of clusters is denoted as C in the following. Note
that Nc-C = N.

Given an equal distribution of the traffic (each node pro-
duces an equal humber of LLRs for each other node includ-
ing itself), which is a fair assumption for good interleavers,
we can statically analyze the network. The traffic on each
cluster’s bus can be divided as follows:

o Mo K 2 - K LLRs internal cluster traffic, which are

the LLRs produced and consumed in the cluster.

o Nc- &2 K= €5 -K LLRs leaving the cluster, which
are the LLRs produced within the current cluster but
consumed by nodes of different clusters.

o Nc- &2 . K — C1 K LLRs entering the cluster,
which are the LLRs consumed by the nodes of the cur-
rent cluster but produced by nodes of different clusters.

For a communication network which does not degrade
the performance all of the clusters’ bus cycles (C—l2 K+

2- % -K) must be completed during the processors soft-
output calculation period of R - % cycles.

3| LR Dist
a Left In

LLR Dist
Local In

Bus Switch

Local Out
Buffer

-l

| LR Dist|
Right In

Right Out |«

Figure 6. RIBB Cell with Bus Switch

Therefore, for a given processor-node with LLR-
throughput R and a targeted parallelism of N nodes the num-
ber of clusters C and the number of nodes per cluster Nc
must be carefully chosen to satisfy the relation

ZCCilNch, with Nc-C = N. (3)

The bus arbitration scheme must reflect the ratio of the
number of LLRs produced by the current cluster to the total
number of LLRs transferred over the bus. In our architec-
ture the arbitration scheme should on average grant the bus
in ﬁ cycles to one of the local nodes. For larger C a

A

=
2
2
o
)

RIBB

A

Y
Fr
2
o

—
A
 J

i
>

\ 2

Figure 7. Ring-connected Clusters

round-robin-arbitration is sufficient which grants the bus to
one of the local nodes and the bus switch alternately.

Simulation and static analysis of our ring-interleaving
network (which is beyond the scope of this paper) show
that it has a limited scalability. The total number of nodes
should not exceed a certain maximum (N < 8-R). If the
number of nodes is further increased, the latency induced by
this communication architecture becomes dominant, limit-
ing the throughput increase. Communication architectures
for higher degrees of parallelism and their static analysis are
ongoing work.

Although our proposed architecture is optimized for the
distribution of LLRs, it can also be used for the state-metric
exchange after acquisition and first recursion. Furthermore
it can be easily extended to the transmission of the input and
decoded data.

5 Reaults

In Section 4 we have shown that the multiprocessor ar-
chitecture strongly depends on the implementation perfor-
mance on a single processor R. Therefore we compare the
throughput and area of different multiprocessor configura-
tions based on two different decoder implementations on
the Xtensa architecture. All area and throughput results are
based on synthesis with Synopsys Design Compiler on a
0.18um ASIC-technology under worst-case conditions.

Configuration A is described in detail in [5]. It im-
plements a Turbo-Decoder on a Xtensa processor with
customized instruction-set extensions running at 100MHz
(worst-case conditions). It takes about 33 cycles per LLR
in each MAP decoder leading to a total throughput of
0.303MBit/s with 5 Turbo-iterations. During soft-output
calculation one LLR is calculated every 15 cycles (R = 15).
The CPU-core with the application specific extensions re-
quires 1.28mm?.

Configuration B is an optimized version of configuration
A (see [13]). This configuration runs at 133MHz (worst-
case conditions), it takes about 9 cycles per LLR in each
MAP decoder leading to a total throughput of 1.48MBit/s
with 5 Turbo-iterations. During soft-output calculation one
LLR is calculated every 5 cycles (R =5). The CPU-core
with the application specific extensions is expected to re-
quire 1.54mm?.

The results of the throughput calculation include the de-
coding time for all nodes plus the multiprocessor overhead
(i.e time for calculation of the acquisition, exchange of
state-metric values after acquisition and first recursion, and
distribution of the LLRS). A blocklength of 5114 Bit is as-
sumed, which is the maximum blocklength of the 3GPP
standard. The throughput does not include the time for
transmission of input or decoded data.

The total area includes: the area of all processor cores,
their associated data-memories for input- and intermediate

Total # of Cluster Approx. Area Area

Nodes | Clusters | Nodes | Throughp. | Comm. Total
(N) © (Nc) [MBit/s] [mm?] [mm?]

1 1 1 0.303 6.16

15 1 15 4.44 0.64 29.10
20 2 10 5.90 1.26 37.41
32 4 8 9.33 2.27 56.99
64 8 8 17.99 4.91 109.14
112 16 7 29.99 10.67 189.57
119 17 7 31.63 11.53 201.36

Table 1. Results for Different Degrees of Par-
allelization, Configuration A

Total # of Cluster Approx. Area Area
Nodes | Clusters | Nodes Throughp. | Comm. Total
(N) © (Ne) [MBit/s] mm? | [mm?]
1 1 1 1.48 6.42
5 1 5 7.28 0.21 14.45
6 2 3 8.72 0.66 16.73
9 3 3 12.96 1.03 22.52
8 4 2 11.58 1.25 20.91
16 8 2 22.64 2.88 36.98
32 16 2 43.25 7.29 70.26
40 20 2 52.83 10.05 87.47

Table 2. Results for Different Degrees of Par-
allelization, Configuration B

values, the 1/O-device logic, the memories for the LLR-
Distribution-FIFO, the LLR input-buffers, and the area for
all RIBB-cells. The instruction memories of the processor
cores for Turbo-Decoder application, interrupt service rou-
tines, or boot-code etc. are not included.

For comparison, parallelization on block level with 16
independent processing nodes (Configuration B) would lead
to a throughput of 23.68 MBit/s with an area of 102.7 mmZ.
Our approach (see Table 2), in contrast, can reach up to
95 % of that throughput with only 36 % of the area. This
shows the superior efficiency of sub-block parallelization.

6 Conclusion

In this paper we present, to the best of our knowledge
for the first time, an efficient mapping of a Turbo-decoding
algorithm onto a multiprocessor platform by optimally ex-
ploiting its inherent parallelism:

The instruction-level parallelism is increased by choos-
ing the Tensilica Xtensa core with an appropriate applica-
tion specific instruction set extension. The sub-block paral-
lelism is exploited by distributing the task of decoding one
block on multiple communicating processors. The major
bottleneck in parallel Turbo-decoding, the exchange of in-
terleaved data, is solved through an advanced heterogenous

communication network, thus minimizing the paralleliza-
tion overhead.

The architecture is, however, not limited to Turbo-
decoding, it solves the communication bottleneck for any
multiprocessor platform where each node communicates
with each other node with equal probability.

Future work will focus on integration aspects for large
numbers of processors when communication architectures
for even higher throughputs are incorporated.

References

[1] J. Rabaey, R. Camposano, D. Samani, L. Lerner, and R. Het-
herington. Panel: "What’s the Next EDA Driver?”. In Proc.
2002 Design Automation Conference (DAC '02), page 652,
New Orleans, Louisiana, USA, June 2002.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shan-
non Limit Error-Correcting Coding and Decoding: Turbo-
Codes. In Proc. 1993 International Conference on Com-
munications (ICC ' 93), pages 1064-1070, Geneva, Switzer-
land, May 1993.

[3] Third Generation Partnership Project. 3GPP home page.
www. 3gpp. or g.

[4] S. A. Barbulescu and S. S. Pietrobon. Turbo Codes: A Tu-
torial on a New Class of Powerful Error Correcting Coding
Schemes. Journal of Electrical and Electronics Engineer-
ing, Australia, 19(3):129-152, Sept. 1999.

[5] H. Michel, A. Worm, M. Muench, and N. Wehn. Hard-
ware/Software Trade-offs for Advanced 3G Channel Cod-
ing. In Proc. 2002 Design, Automation and Test in Europe
(DATE 2002), Paris, France, Mar. 2002.

[6] Tensilicalnc. http://ww. tensilica.com

[7] J. Vogt, K. Koora, A. Finger, and G. Fettweis. Comparison
of Different Turbo Decoder Realizations for IMT-2000. In
Proc. 1999 Global Telecommunications Conference (Globe-
com '99), volume 5, pages 2704-2708, Rio de Janeiro,
Brazil, Dec. 1999.

[8] P. Robertson, P. Hoeher, and E. Villebrun. Optimal and
Sub-Optimal Maximum a Posteriori Algorithms Suitable for
Turbo Decoding. European Transactions on Telecommuni-
cations (ETT), 8(2):119-125, March—April 1997.

[9] H. Dawid, G. Gehnen, and H. Meyr. MAP Channel De-
coding: Algorithm and VLSI Architecture. In VLS Sgnal
Processing VI, pages 141-149. |IEEE, 1993.

[10] M.J. Thul, F. Gilbert, and N. Wehn. Optimized Concurrent
Interleaving for High-Speed Turbo-Decoding. In Proc. Sth
|EEE International Conference on Electronics, Circuits and
Systems - ICECS 2002, Dubrovnik, Croatia, Sept. 2002.

[11] Analog Devices, Inc. htt p: / / www. anal og. com

[12] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and
N. Wehn. A Scalable System Architecture for High-
Throughput Turbo-Decoders. In Proc. 2002 Workshop on
Sgnal Processing Systems (SPS2002), San Diego, Califor-
nia, USA, Oct. 2002.

[13] H. Michel. Implementation of Turbo-Decoders on Pro-
grammable Architectures. PhD thesis, Institute of Micro-
electronic Systems, Department of Electrical Engineering
and Information Technology, University of Kaiserslautern,
2002. ISBN 3-925178-87-2.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

