Hardware/Software Partitioning of Operating Systems

Vincent J. Mooney III, School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA, USA, {mooney }Qece.gatech.edu

1 Introduction

Traditionally, an Operating System (OS) implements
in software basic system functions such as task/process
management and I/O. Furthermore, a Real-Time Oper-
ating Systems (RTOS) has also been implemented in
software to manage tasks in a predictable, real-time
manner. However, with System-on-a-Chip (SoC) ar-
chitectures similar to Figure 1 becoming more and more
common, OS and RTOS functionality need not be im-
plemented solely in software. Thus, partitioning the in-
terface between hardware and software for an OS is a
new idea that can have a significant impact.

m ple
%09 | 16 \og

®e
-

pEZ —— Hw :
- SIW :
- RTOS :
pE3 : 2 :
-‘1 --------------l“:

s -
pE memo”

|

We present the § hardware/software RTOS genera-
tion framework for System-on-a-Chip (SoC). We claim
that current SoC designs tend to ignore the RTOS until
late in the SoC design phase. In contrast, we propose
RTOS/SoC codesign where both the multiprocessor SoC
architecture and a custom RTOS (with part potentially
in hardware) are designed together. Thus, this paper in-
troduces a hardware/software RTOS generation frame-
work for customized design of an RTOS within specific
predefined RTOS services and capabilities available in
software and/or hardware (depending on the service or
capability).

Figure 1: Sample SOC Architecture

2 Approach

Our framework is designed to provide automatic hard-
ware/software configurability to support user-directed

1530-1591/03 $17.00 & 2003 IEEE

hardware/software partitioning.

A Graphical User Interface (GUI) (see Figure 2) allows
the user to select desired RTOS features most suitable
for the user’s needs [6, 8. Some RTOS features have
both hardware and software versions available.

K A SoC/RTOS Codesign Framework =lol x|

A Framework for Automatic Generation of Configuration Files for a
Custom Hardware/Software RTOS

PE selection Micellaneous

PE1: PowerPC — Mumber of cpus: IA—
PE2: PowerPC — Number of tasks: |40

PE3: PowerPC —

PE4: PowerPC —

Software Comy Hardware Comg IPC

W SoCLC

W Deadlock Detection @ Semaphore

1 Memory Management 1 SoCDDU 1 Event

_1 SoCDMMU _1i MailBox
1 Queue
_1i Mutual
-1 Allocation
Exit Help I Generate

Figure 2: Graphical User Interface for the § Framework

2.1 Methodology

Figure 3 shows a novel approach to automating the
partitioning of a hardware/software RTOS between a
few pre-designed partitions. The 6 Hardware/Software
RTOS generation framework takes as input the following
four items:
e Hardware RTOS Library
This hardware RTOS library currently consists of
SoCLC, SoCDDU and SoCDMMU [1, 2, 7, 3,
4, 5].
e Base System Library
The base system library consists of basic elements
such as bus arbiters and memory elements such as
various caches (L1, L2, etc.). Furthermore, we also
need in the base system library I/O pin descrip-
tions of all processors supported in our system.
o Software RTOS Library
In our case, the software RTOS library consists of
Atalanta [9].

GUI tool

Software
RTOS
library

Hardware
RTOS
library

Figure 3: Flow of automatic generation of configuration
files

e User Input

Currently the user can select number of proces-
sors, type of each processor (e.g., PowerPC 750
or ARM9TDMI), deadlock detection in hardware
(SoCDDU) or software, dynamic memory man-
agement in hardware (SOCDMMU) or software,
a lock cache in hardware (SOCLC), and different
Inter-Procedure Call (IPC) methods. (Note that
while all the IPC methods are partly implemented
in software, the IPC methods might also depend on
hardware support — specifically, if SOCLC is cho-
sen, then lock variables will be memory mapped
to the SOCLC.)

The three files on the right-hand-side of Figure 3
(the Makefile, User.h and Verilog files) show the
configuration files output to glue together the hard-
ware/software RTOS Intellectual Property (IP) library
components chosen in the multiprocessor SOC specified
by the user.

2.2 Target SoC

The target system for the § Framework is an SOC con-
sisting of custom logic, reconfigurable logic and multiple
PEs sharing a common memory, as shown in Figure 1.
Note that all of the hardware RTOS components (So-
CLC, SoCDDU and SOCDMMU) have well-defined
interfaces to which any PE — including a hardware PE
(i-e., anon Von-Neumann or non-instruction-set process-
ing element) — can connect and thus use the hardware
RTOS component’s features. In other words, both the
custom logic and reconfigurable logic can contain spe-
cialized PEs which interface to the hardware RTOS com-
ponents.

Figure 4 shows the generation of five different hard-
ware/software RTOSes based on five different user spec-
ifications (specified using Figure 2).

3 Conclusion

We have briefly discussed some of the issues involved in
partitioning an RTOS between hardware and software.
Our claim is that SOC architectures can only benefit
from early codesign with a software/hardware RTOS to

Hardware
RTOS
library

Software
RTOS
library

RTOS1 RTOS2 RTOS3 RTOS4

Application =ed» Compile Stage for each system

Executable SW
file for each

Executable HW
file for each

Simulation in
Seamless CVE

Figure 4: Five Custom Hardware/Software RTOS Ex-
amples and Simulation

be run on the SoC.
References

[1] B. Saglam (Akgul) and V. Mooney, “System-on-a-Chip Processor
Support in Hardware,” Proceedings of the Design, Automation
and Test in Europe Conference (DATE’01), pp. 633-639, March
2001.

[2] B. S. Akgul, J. Lee and V. Mooney, “System-on-a-Chip Processor
Synchronization Hardware Unit with Task Preemption Support,”
International Conference on Compilers, Architecture and Syn-
thesis for Embedded Systems (CASES’01), pp. 149-157, Novem-
ber 2001.

P. Shiu, Y. Tan and V. Mooney, “A Novel Parallel Deadlock Detec-

tion Algorithm and Architecture,” 9t® International Symposium
ggofardware/Software Codesign (CODES’01), pp. 30-36, April

3

[4] M. Shalan and V. Mooney, “A Dynamic Memory Management
Unit for Embedded Real-Time System-on-a-Chip,” International
Conference on Compilers, Architecture and Synthesis for Em-
bedded Systems (CASES’00), pp. 180-186, November 2000.

[5] M. Shalan and V. Mooney, “Hardware Support for Real-Time Em-
bedded Multiprocessor System-on-a-Chip Memory Management,”
10t* International Symposium on Hardware/Software Codesign
(CODES’02), pp. 79-84, May 2002.

[6] V. Mooney and D. Blough, “A Hardware-Software Real-Time Op-

erating System Framework for SOCs,” IEEE Design & Test of
C%gzputers, Volume 19, Issue 6, pp. 44-51, November-December

[7] B. E. S. Akgul and V. Mooney, “The System-on-a-Chip Lock
Cache,” International Journal of Design Automation for Em-
bedded Systems, Vol. 7, No. 1-2, pp. 139-174, September 2002.

[8] J. Lee, K. Ryu and V. Mooney, “A Framework for Automatic Gen-
eration of Configuration Files for a Custom Hardware/Software
RTOS,” Proceedings of the International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (ERSA’02),
pp. 31-37, June 2002.

[9] D. Sun, et. al, Atalanta: A New Multiprocessor RTOS Kernel
for System-on-a-Chip Applications, Technical Report GIT-CC-
02-19, http://www.cc.gatech.edu/pubs.html, Atlanta, GA, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

