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Abstract — This paper defines a new diagnosis problem for di-
agnosing delay defects based upon statistical timing models. We
illustrate the differences between the delay defect diagnosis and
traditional logic defect diagnosis. We propose different diagnosis
algorithms, and evaluate their performance via statistical defect
injection and statistical delay fault simulation. With a statistical
timing analysis framework developed in the past, we demonstrate
the new concepts in delay defect diagnosis, and discuss experi-
mental results based upon benchmark circuits.

A. Introduction
Process variations, manufacturing defects, and noise are major fac-

tors to affect timing characteristics of deep sub-micron designs [1, 2].
The delay effects from these factors are hard to predict [3] [4], and
the traditional assumptions of discrete timing and delay models be-
come inapplicable. These DSM factors should better be captured and
simulated using statistical models and methods [5].

In today’s industry, the single stuck-at fault model remains one of
the most affordable and effective models for defect diagnosis. The
stuck-at fault model does not contain timing information and hence,
defect diagnosis is done purely on the logic domain. Logic defect
diagnosis often relies on the construction of afault dictionary that
contains information to differentiate the good and faulty behavior in
the presence of each stuck-at fault. Then, for a given failing chip, the
failing behavior is compared to the information in the fault dictionary,
and the most probable fault is selected as the candidate for the defect
source [6]. If we assume that the defects are from the single stuck-
at faults, then it might be possible to identify the exact fault causing
the problem depending on the existence of a test pattern set that can
achieve themaximal fault resolution [6]. However, since defects are
rarely single stuck-at faults, the diagnosis offers little guarantee. The
best hope is usually that the diagnosis process can help to pin-point
the location where defects might occur.

In delay defect diagnosis, the problem is fundamentally different
in two ways: First, the exact delay configuration of the failing chip
instance is unknown. Second, even with the single defect assumption,
the size of delay defect can be a random variable. These two aspects
prevent us from applying a traditional logic diagnosis algorithm to
delay defect diagnosis.

In this paper, we define the problem of delay defect diagnosis based
upon a statistical timing model. In this new diagnosis problem, sta-
tistical timing analysis serves as a predictor for the actual delay con-
figuration of a given failing chip instance. Our diagnosis algorithms
operate on the probabilistic space, instead of the logic space. Because
of this, how to match the failing behavior to the probabilistic informa-
tion contained in the fault dictionary becomes an interesting question.
Moreover, since the delay defect size is a random variable, the crite-

ria to determine the maximal fault resolution for a given pattern set
become much more complicated.

Based on the statistical timing information, we propose a new di-
agnosis framework. We define the concept of diagnosis error function
and study the performance of different error functions. Each function
views the matching of the failing behavior from a different point of
view and hence, may lead to different diagnosis results. We conduct
experiments based upon statistical defect injection and fault simula-
tion. At the end, we discuss future research directions for the new
diagnosis problem.

B. Background and Motivation
Historically, the diagnosis problem was defined over the logic do-

main and no timing information was involved. To diagnose a logic
defect, a fault model is usually assumed. The stuck-at fault model is
widely used in many diagnosis algorithms that can often be classified
into two types: aneffect-cause approach and acause-effect approach
[6]. An effect-cause approach pre-computes faulty behavior based
upon an assumed fault model and stores the information in a fault
dictionary. Then, the behavior of a failing chip is compared with the
fault dictionary and the most probable faults causing the faulty behav-
ior are identified. In a cause-effect approach, the stuck-at fault model
allows an ATPG to determine, from the failing behavior, if a particular
line should be stuck-at. Then, by searching backward and matching
to the input patterns, probable faults can be identified.

In the past, much of the diagnosis research focused on two direc-
tions. One was to improve the efficiency of diagnosis by avoiding the
computational expense of creating a large fault dictionary. The other
is to extend the basic diagnosis algorithm for the single stuck-at fault
model to other defect types [7, 8, 9] or to multiple faults [15]. Even for
diagnosing gate delay and path delay faults, most of the previous work
is based purely on logic conditions for sensitizing the faults [13, 14].

A statistical diagnosis framework for delay defects has been pro-
posed in [10]. However, this technique requires finding and storing
all possible single and multiplepath delay faults that can be logically
sensitized under any of the failing vectors. Therefore, it is not practi-
cal for large designs.

In this work, our primary purpose is to carefully define the diagno-
sis problem for delay defects and understand what are the key aspects
that make the problem different from traditional diagnosis. Then,
we propose a new diagnosis framework based upon statistical tim-
ing analysis and develop various diagnosis algorithms. Through this
study, we intend to answer the following questions:

(1). What are the differences between traditional logic fault diag-
nosis and the delay defect diagnosis in terms of their ATPG and fault
simulation requirements?(2). With a good pattern set that gives us a
good fault resolution in the logic domain, what is the remaining prob-
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lem(s) for delay defect diagnosis to solve in the timing domain?(3).
Assuming that computing and storing logic information in fault dic-
tionary is not an issue, how well can we do delay defect diagnosis?
(4). What assumptions do we need to make to facilitate the devel-
opment of a feasible delay defect diagnosis algorithm? Additionally,
what tools do we need?

By using an ATPG operating on logic faults without timing, we
temporarily avoid the complexity of thetimed ATPG in this work.
Similarly, by assuming that storing fault dictionary is possible, we
temporarily avoid the problem of fault dictionary optimization. By
isolating these two crucial issues within the logic domain, we can fo-
cus our work primarily on the aspects of the problem which uniquely
belongs to the delay defect diagnosis. Moreover, we can study how
effective the diagnosis will be when the test patterns are produced
without considering the timing.

C. Logic Diagnosis Vs. Delay Diagnosis
In logic diagnosis, the circuit model used in the simulation is as-

sumed to logically match to the chip instance. In delay diagnosis,
this is not true due to the inclusion of statistical delay information.
The failing chip represents only a single instance of all possible delay
configurations intended to be modeled statistically by the CAD tools.

Suppose the single stuck-at fault model is used in logic diagno-
sis. Letf f1; : : : ; fng be then faults that belong ton different fault
equivalence classes. Suppose a pattern set is available to achieve the
maximal fault resolution, i.e. for any pair of faultsfi; f j, there exists
a pattern in the set to differentiate these two faults (detect one but not
the other). Then, in theory, given the failing behavior resulting from
a single stuck-at defect the diagnosis algorithm can conclude exactly
which fault is the cause. On the other hand, if the pattern set does not
achieve the maximal fault resolution, then depending on the resolu-
tion, an algorithm can conclude a subset of the faults as the potential
causes. Exactly which one is unknown. Based upon these obser-
vations, we can say that the resolution of the diagnosis in the logic
domain is the same as the fault resolution.

Take the single transition fault model as an example. In the model,
no delay information is involved. Therefore, the above statement for
the stuck-at fault model is also true in this case. However, if delay
information is involved, then the resolution of the diagnosis is not the
same as the fault resolution in the logic domain. Figure 1 illustrates
the reasons. In the figure, output arrival times are characterized as
probability distributions.

Apply v1 or v2

clk

clk

p1

p2

o1

o2

p1, p2 sensitized by v
p1: long path
p2: short path

CC p2

p1

d1

d2

max(a1,a2)a2

a1

d1,d2: potential faults
a1,a2: delay random vars
max(a1,a2): joint pdf

Apply v

d

Figure 1: The Impact of Delays in Diagnosis
In the first case, for a faultd, suppose two patternsv1;v2 are avail-

able. In logic domain, both patterns detectd and can differentiate
betweend andd0. However, depending on the timing length of the
sensitized path (p1 or p2), the critical probability (shaded area) re-
sulting from each pattern can be different. If a pattern detects a fault
through a short path (likev2), then it is possible that with a small delay
defect size, the pattern does not detect the defect at all. Consequently,
v2 can differentiate the two faults in the logic domain but cannot do
so by considering the delays (it may detect none).

In the second case, a patternv detects both faultsd1;d2, logically

through sensitized pathsp1; p2, respectively. Suppose the two paths
merge at a 2-input cell and the arrival time random variables at the two
inputs are denoted asa1;a2. The output arrival time random variable
of the cell is the joint pdf random variable max(a1;a2). Then, suppose
Prob(a1 > a2) = 1. Then, it is possible thatp1 always dominates the
output delay (or vice verse). Hence, the patternv can differentiate the
two faults. As it can be seen, even though logically the patternv does
not differentiate the two faults, timing-wise it may.

Due to the above two reasons, in general, whether or not a test pat-
tern can differentiate two given faultsshould be characterized as a
probability value that depends on the given clock period clk. There-
fore, in delay defect diagnosis, given a patternv, our first task is to
compute the probability thatv detects a particular fault. This infor-
mation is used to build theprobabilistic fault dictionary, and our algo-
rithm will use the dictionary to guess which fault is the most probable
one to be the cause of failure.

C-1. Probabilistic Fault Dictionary
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Figure 2: Illustration of The Key Problem
The probabilistic nature of the fault dictionary raises an interesting

question. Consider the example in Figure 2. Suppose the failing be-
havior of a chip instance is characterized as an 0-1 matrix (1 means
that an error is observed). Suppose we have a way to calculate (in
the simulation), for each candidate suspect fault, a probability matrix
P wherepi j represents the chance that a failing output is observed at
primary outputi during the application of test vectorj. Then, in the
example, the underlying question to ask is: which probability matrix
is a better match to the failing behavior?

If we focus on matching the ”1” entries in the 0-1 matrix, we would
say that fault # 1 is a better match. However, if we focus on matching
the ”0” entries, fault # 2 would be a better match. In general, depend-
ing on our view of what do we mean by a ”better match” the diagnosis
answer can be different. Hence, from this example it is clear that in
order to develop an accurate diagnosis algorithm, our first task is to
define carefully how to match the information in the probabilistic fault
dictionary to the failing behavior. We call such functions thediagno-
sis error functions. In this paper, we propose different diagnosis error
functions and compare their performance.

The concept of probabilistic fault dictionary also implies that an
optimal test set considering only the logical conditions may not be
optimal for delay defect diagnosis. In this work, we do not consider
using a timed ATPG due to its high complexity. Instead, we use a path
delay fault ATPG as an approximation.

D. Problem Definition
In this section, we define the statistical timing framework and the

delay diagnosis problem. We begin with a sequence of definitions
regarding the circuit, statistical timing models, and the defect models.
Definition D.1 (Circuit Model) A circuit is a 5-tuple C =
(V;E; I;O; f ), where V is a set of vertices, E is a set of arcs, I;O
are two subsets of V with I \O = φ, and f is a function on E where
8ei 2 E, f (ei) is a random variable defined over [0;+∞].

This view of the circuit is consistent with the statistical timing
model defined based upon cell-based pin-to-pin delay random vari-
ables proposed in [5]. In essence, thef function characterizes the
pin-to-pin delay random variables while each vertex corresponds to a



cell. We note that in this circuit model, the delay random variables
can be correlated, i.e.f (ei) can be correlated withf (ej) for anyi 6= j.
This circuit model is supported in our false-path-aware statistical tim-
ing analysis framework [17].
Definition D.2 (Circuit Instance) A circuit instance is a 5-tuple Cin =
(V;E; I;O; fin), where V is a set of vertices, E is a set of arcs, I;O are
two subsets of V with I \O = φ, and fin is a function on E where
8ei 2 E, fin(ei) is a constant value 2 [0;+∞].

Unlike a circuit model, on a circuit instance, the pin-to-pin delay
are all fixed values. For convenience, we useC to denote a circuit
model, andCin to denote a circuit instance. In essence,C is used in
our CAD tools as the predictor for eachCin manufactured.

D-1. Terminology in Statistical Timing Analysis
Below we define the terminology used in our statistical timing anal-

ysis framework [17]. The diagnosis problem will be formulated using
these terms.

A path p onC (orCin) is defined as a path starting from a vertex inI
and ending with a vertex inO. Let p = fe1; : : : ;eig, theTiming Length
of p, denoted asTL(p) is a random variable characterized by the joint
distributionSum = f (e1)+ � � �+ f (ei). For each vertexoi 2 O, the
arrival time denoted asAr(oi) is a random variable characterized by
the joint distributionMax = maxfp1; : : : ; p jg where eachpl , 1� l �
j, is ending atoi.

Thecircuit delay of C is defined as a random variable characterized
by the distribution∆(C) = maxfAr(o1); : : : ; Ar(ojOj)g.
Definition D.3 (Induced Circuit) Given path set P, the induced cir-
cuit of P on C (or Cin), denoted as induced(P), is a subcircuit C0

where any arc not on a path in P is removed from C.
Definition D.4 (Sensitized Paths) Given a test pattern v for a circuit
C, we define the sensitized set of paths by v as Sen(v) = Pathv that
contains all paths in C sensitized by the test pattern v. Similarly,
given a test pattern set TP for a circuit C, the Sensitized Path Set
Sen(T P) = PathT P is the set of paths fp1; : : : ; p jg such that for all i,
1� i� j, pi 2 Pathv and v 2 TP for some test pattern v.
Definition D.5 (Static and Dynamic Timing Simulations) Given a
circuit C, in static timing simulation, the goal is to compute the ran-
dom variable ∆(C). To compute ∆(C), the simulator will compute
fAr(o1); : : : ; Ar(ojOj)g as well. With a test pattern set TP, a dynamic
timing simulator computes the random variables ∆(Induced(Pathv))
for each v 2 TP and consequently, computes ∆(Induced(PathT P)).

In [17], we developed a false-path-aware statistical timing analysis
tool that provides an approximation for∆(Induced(PathT P)) where
TP consists of all possible patterns. The analysis was done implicitly
without a pattern setTP.

Since all delays are calculated as random variables, we introduce
the notion ofcritical probability below.
Definition D.6 (Critical Probability) Given a delay random variable
A and a cut-off period clk, the critical probability of A, denoted as
crtA is the probability Prob(A > clk).
Definition D.7 (Error Vectors) Given a circuit C = (V;E; I;O; f )
(or a circuit instance Cin), a pattern set TP, and a cut-off pe-
riod clk, the error (probability) vector for a test pattern v 2 TP is
Err(C;v;clk) = [crt1; : : : ;crtjOj], where each crti, for 1 � i �j O j,
is the critical probability Prob(Ar(oi) > clk) in the induced cir-
cuit Induced(Pathv) for oi 2 O. Subsequently, we define the er-
ror (probability) matrix as an j O j � j TP j-matrix ErrM(C;TP;clk)
= [ErrT (C;v1;clk); : : : ;ErrT (C;vjT Pj;clk)]. The ErrT denotes the
transpose vector of Err. We note that for any output oj that is not
included in Induced(Pathv), crt j = 0 by default.

If C is a circuit model, the error matrix characterizes the proba-
bilities of error behavior predicted by the model. IfCin is a circuit

instance, the error matrix characterizes the error behavior observed
on the particular circuit by applying the test pattern setTP. Later, we
will illustrate these points in the development of our diagnosis algo-
rithms. In the following, we define the diagnosis problem.

D-2. The Delay Diagnosis Problem
Definition D.8 (Problem Definition - Diagnosis for Delay Defects)
Given a circuit model C = (V;E; I;O; f ), a circuit instance Cin =
(V;E; I;O; fin), a test pattern set TP, a cut-off period clk, and an
unknown defect distribution function Din, the problem of diagnosis is
to find a defect distribution function D such that the following margin
of error is minimized:

ε = Mar(ErrM(Din(Cin);TP0
;clk);ErrM(D(C);TP0

;clk)) (1)
where TP0 is any other arbitrary pattern set.

We need to emphasize several key aspects in the above definition of
the diagnosis problem:

(1). TheMargin of Error in essence is thediagnosis error function
mentioned earlier in Section C-1, which is to measure the accuracy of
diagnosis. Depending on the definition of such a margin function, the
problem of diagnosis can be different and consequently, can lead to
different views about what diagnosis algorithm is the optimal one.(2).
By using an arbitrary pattern setTP0 in the margin of error function,
we ensure that the diagnosis results can be generalized. This avoids
the problem of identifying a defect function that is specialized to the
pattern setTP whenTP is small. (3). In the definition, we assume
that the circuit model is correct. In general, the modelC may not be
correct. However, in this paper we do not extend the discussion to that
situation. (4). There are three unknown things in the definition: the
delay functionfin in the circuit instance and the defect functionsDin

andD. For fin, we can usef in the model as a predictor. For defect
functionDin, the most intuitive approach is to assume it has a certain
structure in order to simplify the search forD.

D-3. Defect Distribution
SinceD essentially alters the circuit delay ofC, in this work we

adopt a simple segment-oriented assumption for the structure ofD.
Definition D.9 (Segment Oriented) Given a circuit model C =
(V;E; I;O; f ), D is a function defined on E, where D(ei) = (δi;ρi),
ρi is a random variable characterizing the probability of a defect oc-
currence on ei, and δi is a random variable characterizing the delay
defect size. Usually, we can assume that δi and ρi are independent.

For simplicity, we further assume thatδi andδj are independent
for i 6= j. Similarly, we assumeρi andρ j are independent.
Definition D.10 (Single Defect Model) Given a circuit C =
(V;E; I;O; f ), Ds is a function defined on E such that Ds(ei)= (δi;ρi).
Let m =j E j. Ds is a single-defect model if ρi 2 f0;1g and (Σm

i=1ρi) =
1. Again, ρi is the probability of defect occurrence and δi is the ran-
dom variable of the defect size.

With the single defect assumption, the defect functionD in the
problem definition D.8 is assumed to be of the formDs. Then, during
the diagnosis, the only unknown parameters inDin which needs to be
determined from the error behaviorErrM is thedefect vector ρvec =
(ρ1;ρ2; : : : ;ρm).

E. The Initial Algorithm
The matrix defined in definition D.7 serves as the basis for our

diagnosis algorithm. We use itMcrt to denoteErrM(C;TP;clk) as
the matrix of critical probabilities based upon the cut-off periodclk.
Eachcrti j in Mcrt is the critical probability of the arrival time random
variableAr(oi) at outputoi during the dynamic simulation of pattern
v j in TP. In addition, we useEcrt to denoteErrM(Ds(C);TP;clk) as
the matrix of critical probabilities when a particular defect function
Ds is applied to the circuitC.



Definition E.1 (Signature Probability Matrix) Given Mcrt and Ecrt ,
the signature probability matrix is defined as the difference between
the two matrix: Scrt = Ecrt �Mcrt =��������

err11� crt11 � � � err1jT Pj� crt1jT Pj
err21� crt21 � � � err2jT Pj� crt2jT Pj

� � �
errjOj1� crtjOj1 � � � errjOj�jT Pj� crtjOj�jT Pj

��������
(2)

We note that8i; j, erri j � crti j. Hence, for eachsi j in the sig-
nature probability matrix,si j � 0. If we use a very large clockclk,
thenMcrt can be very sparse, i.e. most of the entries are zeros. In
fact, we can always makeclk large enough so thatMcrt = 0. In that
case,Scrt = Ecrt . Also note that eachsi j characterizes the ”additional
contribution” to the critical probability at outputoi from the defect
function Ds. For example, suppose that without a defectcrti j = 0:1.
It means that with 0.1 probability,oi’s delay would exceedclk when
applying patternvj. With defectDs, that probability would increase
to erri j = 0:3. Hence, the contribution of the defect to the critical
probability is 0:3�0:1 = 0:2.

How to proceed with the diagnosis? The diagnosis information we
need for a chip instance ofCin can be characterized by a 0-1 matrix as
the following:

B =

��������

b11 b12 � � � b1jT Pj
b21 b22 � � � b2jT Pj
� � �

bjOj1 bjOj2 � � � bjOj�jT Pj

��������
(3)

wherebi j = 1 if outputoi fails patternv j and,bi j = 0 otherwise.
We callB the (failing) behavior matrix. It corresponds to the ob-

served behavior of the failing chip. Given a behavior matrix, our goal
is to, under the single defect assumption, uncover the defect vector

ρvec. We note that under the single defect assumption,(ΣjEj

i=1ρi) = 1.
Algorithm E.1 (Diagnosis Algorithm Algsim)

Inputs A circuit C = (V;E; I;O; f ); a pattern setTP; a behavior ma-
trix B; and an unknown defect functionDs under the single de-
fect assumption. Moreover, a user-defined numberK.

Outputs A set ofranked defect vectorsρvec
1 ; : : : ;ρvec

K each indicating
an unique location of potential defect occurrence.

Steps Use the same cut-off periodclk to observe the matrixB.

1. Find a set of suspect faultsS � E such that each fault inS is
logically sensitized to a faulty output by at least one pattern.
This step follows acause-effect approach in the logic domain to
first prune down the number of suspect faults.

2. For each faulti = 1: : : j S j, perform the steps 3-7 to calculate
the probability thatρi = 1, i.e., the suspect faulti is the cause of
behavior described by matrixB. Denote this probability as℘ i.

3. Assumeρi = 1 andρ j = 0 for all j 6= i.

4. With statistical dynamic timing simulation, calculate the matrix
Mcrt and the matrixEcrt . As a result, we can obtain the signa-
ture probability matrixScrt .
Let Scrt = [S1; : : : ;SjT Pj], where eachSj is a column vector, for
1� j �j TP j.

5. For eachj, 1� j �j TP j, calculatePj =
2
664

b1 js1 j +(1�b1 j)(1� s1 j)
b2 js2 j +(1�b2 j)(1� s2 j)

� � �
bmjOj jsjOj j +(1�bjOj j)(1� sjOj j)

3
775=

2
664

p1 j
p2 j
� � �

pjOj j

3
775

Probability pi j, i = 1: : : j O j represents the probability that the
behavior at the outputi under vectorj is consistent with the
observed behavior on the failing chip.

6. From Pj, calculateφj = ΠjOj

k=1(pk j). Treat φj as an approxi-
mation to the probability thatBj is caused byρi = 1, i.e., the
behavior of all the primary outputs under vectorj matches the
observed behavior.

7. For all 1� j �j TP j, after calculating allφj, we calculate℘ i,
the overall probability that the faulty behaviorB is caused byρi
(defecti is the cause). Essentially, each method below implies a
different diagnosis error function (how eachScrt matches toB).

Method I ℘ i = 1�ΠjT Pj
j=1(1�φj). (1�φj) is the probability

that the defect causeρi = 1 is not consistent with the out-

put behavior by test patternvj. Hence,ΠjT Pj
j=1(1�φj) is

the probability thatρi = 1 is not consistent with the out-
put behavior by all test patterns. Consequently,℘ i is the
probability thatρi = 1 (defecti) is the cause for the be-
havior of at least one test pattern inTP.

Method II ℘ i =
ΣjTPj

j=1 φj

jT Pj . In this way,℘ i is the average proba-
bility that ρi = 1 is the cause for the output behavior of a
test pattern inTP.

Method III ℘ i = ΠjT Pj
j=1(φj). ℘ i is the probability that the de-

fect ρi = 1 is the cause (or is consistent with) the output
behavior of all test patterns inTP.

As it can be seen, each method has a different way to decide
which defect is the most probable cause for the faulty behavior.

8. Let℘ = [℘ 1;℘ 2; : : : ;℘ jSj]. To diagnose the faulty behavior, we
rank them as℘ j1 � ℘ j2 � �� � � ℘ jjSj

and output the firstK de-
fectsfρvec

j1
; : : : ;ρvec

jK
g as the answer.

The key in the above algorithm lies in Step 5. In that step, we
calculatepk j = bk jsk j +(1�bk j)(1� sk j) for 1� k � jOj. Then, we
calculate the quantityφj = Πm

k=1(pk j) in Step 6. We treatφj as the
probability thatB j is caused by faulti. The meaning can better be
explained through an example.
Example E.1 Suppose O = fo1;o2;o3g, i.e., we have a 3-output cir-
cuit. By applying a test pattern vj, suppose we observe BT

j = [0;1;1].
Also assume that the jth column in the signature probability matrix
S j is ST

j = [0:4;0:3;0:1]. Now we compute pk j as the following.
p1 j = 0�0:4+(1�0)� (1�0:4) = 0:6
p2 j = 1�0:3+(1�1)� (1�0:3) = 0:3
p3 j = 1�0:1+(1�1)� (1�0:1) = 0:1

As we can see, we basically ”flip” the probability (meaning that
we get 1� p) if the corresponding entry in Bj is 0 (no error). Oth-
erwise, we keep the probability for that entry. Therefore, we obtain
Pj = [0:6;0:3;0:1] as the probability vector such that given ρi = 1,
the circuit behavior on pattern vj would match that specified in Bj. If
we need to convert this into a single probability number, then we have

φj = 0:6�0:3�0:1 = 0:018(all three match)
Therefore, with a probability 0:018, ρi will lead to the outcome Bj.

F. Defining An Explicit Diagnosis Error Function
The above algorithm is based upon the principle of selecting the

most probable cause. Therefore, for each candidate defecti, the larger
the probability℘ i is, the most likely the defect is the cause. The
diagnosis error function in those methods is never explicitly defined.
In this section, we propose a diagnosis error function explicitly and
use the function to decide which fault is the most probable cause.

F-1. An Error Function Based Upon Euclidean ”Distance”
Now, suppose our choice forD is limited, i.e. we can only pick the

answer as one of the defect functions from the setfD1;D2; : : : ;DjEjg,
then how can we define which is the best choice?



Suppose we have an algorithm such that for each defect function
Di, our algorithm is able to compute, for a single output circuit, ann-
dimensional (n is the number of total patterns,jTPj) probability vector
Pi = [pi1; pi2; : : : ; pin]. Eachpi j is the probability that outputy = 1 for
patternv j if D is actuallyDi. Suppose the observed behavior for this
outputy is indeed the vectory = [y1;y2; : : : ;yn]. Then, it seems that
the Euclideandistance between the expected resultsPi and the true
outputs can actually be measured by

Erri =jj Pi� y jj2= Σn
k=1(pik� yk)

2 (4)

Then, we computeErri for all Di, 1� i �j E j, and we can simply
pick the minimum, i.e. pick the defect function that minimizes the
error function defined in equation ( 4).

F-2. Error Under An Equivalence Checking Model
For multiple-output circuits, Figure 3 demonstrates a simple view

about the meaning of an error in the diagnosis. Under the equivalence
checking model, an error in the diagnosis for a given pattern, is de-
fined asat least one output produces a difference. In the figure, the
true defect functionD is unknown. Moreover, the delay configuration
of the failing chip instance is also unknown. What we know is only
the behavior matrixB.

Simulate(D)

Din
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....

vn,...,v2,v1 e1, e2, ..., en

D

The circuit model with
statistical timing information

The failing chip instance
Observed behavior B

Figure 3: Error Under An Equivalence Checking Model

What is the ideal case? The ideal case, where no mismatch oc-
curs, is thate1 = e2 = � � �= en = 0. However, this is impossible even
though we have correctly guessed the defect function in the diagno-
sis process. The reason is that we still do not know the exact delay
configuration of the chip instance. Hence, we can only rely on the
statistical timing model in order to make the most probable guess.

Now, suppose we have an algorithm to compute, for each potential
defect functionDi, the probabilitypi j thate j is 1. In other words, the
algorithm outputs an answer forDi asPi = [pi1; pi2; : : : ; pin]. Then,
since the ideal outcome we want to see is0 = [0;0; : : : ;0], we can
measure the Euclidean ”distance” between the probability vectorPi
and the ideal solution0 as simply

Erri = Σn
j=1(pi j)

2 (5)

Equation (5) follows the same spirit as equation (4), both of them
use the Euclidean distance to measure the error. Then, it is clear that
we can use equation (5) to pick a defect function whose error is the
minimum.

F-3. The Revised Algorithm
We revise the simple algorithm presented earlier in order to mini-

mize the error function defined in equation (5).
Algorithm F.1 (Revised Diagnosis Algorithm Algrev)

Inputs and Outputs Same asAlgsim.

Steps Same asAlgsim, except that we change step 7, and step 8

7. (Revised) For all j, 1� j �j TP j, after calculating allφj,
we calculate℘ v

i = [℘ i1;℘ i2; : : : ;℘ ijTPj] where each℘ i j =

(1�φj). Hence, each℘ i j is the probability thatat least
one output has a mismatch (diagnosis error).

We then calculate℘ i = ΣjT Pj
j=1(℘ i j)

2

8. (Revised) After we finish the calculation for all possible de-
fect functions, we have℘ = [℘ 1;℘ 2; : : : ;℘ jSj]. We rank
them such that℘ j1 � ℘ j2 � �� � � ℘ jjSj

and output the first
K defectsfρvec

j1
; : : : ;ρvec

jK
g as the answer.

End of Algorithm

G. Pattern Generation for Delay Fault Diagnosis
Our diagnosis algorithms still need ”good” diagnostic patterns.

However, generating good patterns for delay faults with timing con-
sideration is a complex task. This is because a given fault can be
sensitized through short or long paths and also because the delay of
a particular path depends on the applied patterns. To ensure good
diagnostic patterns for defects resulting from small-size delay faults
(e.g., faults caused by crosstalk, bridging faults or by resistive opens
or shorts) the first task is to select long paths to sensitize the faults.
Next, a path delay fault test generator needs to produce a test such
that it actually results in a long path delay for the given fault.

Due to the complexity reasons, most conventional path delay fault
test generators do not take timing information into account and gen-
erate tests based purely on logic path sensitization conditions. Thus,
the tests might not always exercise the worst-case timing scenarios for
the given path. One possible solution for generating such tests could
be a timed ATPG technique in which the timing information is used
to guide each step in the test generation process. One such technique
has been proposed in [12] for generating tests for detecting crosstalk
induced delay faults. However, due to its complexity, timed ATPG
might not be widely applicable in practice.

Another possibility could be to use Genetic Algorithm based ATPG
techniques that can generate tests resulting in longer path delays based
on a fitness function [11]. After assigning the mandatory values to
sensitize a given path, usually there are still many unspecified val-
ues at the primary inputs. Different assignments of these unspecified
values can result in different path delays.

H. Tools and Methodologies for Experiments
The key tools to realize the proposed diagnosis algorithms include

a statistical timing analysis tool and a dynamic timing simulator.
Moreover, to measure the effectiveness of each diagnosis method, we
need to perform statistical defect injection and fault simulation.

H-1. Statistical Timing Analysis
In statistical timing analysis framework, the delays of

cells/interconnects are modeled as correlated random variables
with known probability density functions (pdf’s). These pdf’s
can be obtained using a Monte-Carlo-based SPICE simulator.
Given cell/interconnect delay functions and a cell-based netlist, the
statistical framework can derive the pdf’s of signal arrival times for
both internal signals and primary outputs using Monte-Carlo based
simulation technique.

In our experiments, we use a cell-based statistical timing analysis
framework [5]. It requires pre-characterization of cells, i.e., building
libraries of pin-pin cell delays and output transition times (as random
variables). We use a Monte-Carlo-based SPICE (ELDO) [18] to ex-
tract the statistical delays of cells for a 0.25µm, 2.5V CMOS technol-
ogy. The input transition time and output loading of the cells are used
as indices for building/accessing these libraries. Each interconnect
delay is also modeled as a random variable and is pre-characterized
once the RCs are extracted.



H-2. Dynamic Timing Simulation
With a given set of test patterns the statistical timing analysis

framework can be used to perform statistical dynamic timing simu-
lations to obtain the pdf’s of internal signals and primary outputs for
the given set of test patterns. These pdf’s are obtained by simulat-
ing a large number of circuit instances with different cell/interconnect
delay assignments.

H-3. Defect Injection and Simulation
We experimented based upon the single defect model in defini-

tion D.10. This model can be used to represent small delay faults
resulting from manufacturing defects, resistive opens and shorts,
crosstalk or bridging faults.

H-4. Pattern Generation
For the injected fault and circuit instance, we find a set of ”longest”

paths through the fault site and generate path delay tests for them.
The longest paths are derived using false-path aware static statistical
timing analysis [17]. Path are tested with robust or non-robust patterns
derived without considering timing.

I. Experimental Results
To measure the accuracy of a method, our approach is the follow-

ing. For each circuit modelC and a defect modelDs, we produce
N circuit instances with different delay configurations. On each in-
stance, we inject a delay defect of which both location and size are
drawn randomly according to the modelDs. We then apply a diag-
nosis method to each instance. The accuracy of the diagnosis is mea-
sured in two ways: 1) In the algorithm, if the user-definedK value is
1 (refer to Algorithm E.1 above), then the accuracy is a binary value
success and failure depending on if the answer matches the injected
defect or not. 2) If the user-definedK > 1, then if the injected defect is
contained in the potential defect set answered by the algorithm, then it
is counted as asuccess; otherwise, it fails. Then, we calculate the suc-
cess rate as the accuracy measurement by averaging over the results
from all N instances. Clearly, the larger theK value is, the higher the
success rate will be.

K Algsim(%) Algrev K Algsim (%) Algrev

I II (%) I II (%)

1 0 5 10 1 0 15 20
s1196 3 0 30 30 s1238 2 5 25 25

7 5 35 60 7 25 65 65
1 10 15 10 1 5 5 5

s1423 2 30 35 35 s1488 3 35 30 30
9 50 60 65 5 55 60 65
1 15 25 25 2 25 30 30

s5378 2 30 40 45 s9234 5 40 50 50
7 80 85 90 11 60 75 70
1 10 20 20 1 10 10 10

s13207 5 30 50 60 s15850 2 30 30 30
13 70 70 80 9 40 35 45

TABLE I: D IAGNOSISACCURACY ON BENCHMARK EXAMPLES

Table I shows results on the accuracy of diagnosis for different
methods and different values forK for several benchmark examples.
As expected, the rates of success increase for largerK. From our
experiments, Method III of Algorithm D.1 seems to be too restric-
tive since it requires that none of the primary outputs for none of the
vectors and none of the circuit delay configurations shows a behavior
different than the observed behavior. Otherwise,℘ i = 0 for fault i.

In these experimentsN = 20. The number of applied test patterns
used for diagnosis is usually smaller than 20. This is because in step
(1), we have applied thecause-effect approach to prune down the fault
candidate set. Then, the average number of suspect faults (faults log-
ically sensitized by the paths ending at primary outputs that are ob-
served as failing) varies per circuit and is in the range of 100 to 600.

The random variable corresponding to the injected defect size has a
mean that is in the range of 50% to 100% of a cell delay and we as-
sume 3σ is 50% of the mean.

As discussed earlier, the accuracy of diagnosis depends on the set
of test patterns and the quality of the test patterns applied in our ex-
periments could probably be further increased by including timing
information into the test generation process.

J. Conclusion
Algrev seems to be the best so far. This demonstrates the effective-

ness of using an explicit error-function-driven approach. Therefore,
our conclusion is that to develop a good diagnosis algorithm in the
future, we need to search for a good error function first.

Future research includes many possible directions: 1) enhance the
diagnosis test pattern quality, 1) improve the dynamic statistical tim-
ing simulator for more accurate delay fault simulation, 2) develop
heuristics to selectK automatically, 3) relax the restriction of the sin-
gle defect assumption and see how that impacts the performance of
the diagnosis algorithms, 4) reduce the expense of computing and
storing the probabilistic fault dictionary, and 5) develop new error
functions that are more consistent with the error definition in problem
definition D.8, and develop new diagnosis algorithms accordingly.
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