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Abstract 
 

 This paper presents a new and low-cost approach for 
identifying sequentially untestable faults. Unlike the single 
fault theorem, where the stuck-at fault is injected only in the 
right-most time frame of the k-frame unrolled circuit, our 
approach can handle fault injection in any time frame 
within the unrolled sequential circuit.  To efficiently apply 
our concept to untestable fault identification, powerful 
sequential implications are used to efficiently extend the 
unobservability propagation of gates in multiple time 
frames. Application of the proposed theorem to ISCAS ‘89 
sequential benchmark circuits showed that more untestable 
faults could be identified using our approach, at practically 
no overhead in both memory and execution time. 

 
1. Introduction 
 

The current state-of-the-art automatic test pattern 
generators (ATPGs) for sequential circuits spend a lot of 
time in trying to generate a test sequence for the detection 
of untestable faults, before aborting on them (or identifying 
them as untestable, given enough time). For untestable 
faults there does not exist a test sequence that can detect 
them, due to the unjustifiability of their excitation condition, 
their propagation condition, or both.  

A number of approaches have been proposed in the 
past for the purpose of identifying untestable faults. Single 
Fault Theorem [1] states that if a single fault injected in the 
last time frame of a k-frame unrolled sequential circuit is 
found to be untestable using combinational ATPG, then the 
fault would be sequentially untestable. Three new 
procedures were also introduced in [2] as an extension to 
the single fault theorem, and a larger set of untestable faults 
were identified with the aid of these new procedures.    
FIRE [3], which is a fault-independent algorithm, identifies 
combinationally untestable faults as the faults that require 
conflicting assignments on a single line as a necessary 
condition for their detection. Since it is not possible for a 
line to have complementary values at the same time, faults 
requiring such an impossible assignment are untestable. 
FIRES [4], was introduced as an extension of FIRE for 
sequential circuits and used illegal state information as an 
additional criterion for identifying untestable faults. FILL 
[5] was introduced as a BDD based approach to identify 
illegal state information and FUNI [5] used that information 
to identify untestable faults. Since the success of algorithms 
such as FIRE and FUNI depends upon the number of 
implications associated with each line, it is important to 
have as large an implication set associated with each line as 
possible. A number of approaches have been proposed for 
learning implications. A 16-value logic algebra and 
reduction list method was used in [6] to determine node 
assignments. A more complete implication engine is based 
on   recursive    learning  [7]. However,  in   order   to   keep   

 

simulation time  within  reasonable  bounds,  the   recursion 
depth has to be kept low. A graphical representation of the 
implication graph was proposed in [8], and the concept of 
indirect implications based on the transitivity property of 
implications, along with extended backward implications [9] 
was used to increase the number of implications learnt. This 
form of representation also had the advantage of the ability to 
be used for sequential circuits, without suffering from 
memory explosion. 
 In this paper, we introduce an efficient and low-cost 
implementation to a powerful theorem, which states that if a 
single fault injected in any time frame of the k-frame unrolled 
sequential circuit is found to be untestable (i.e. there does not 
exist a k - frame combinational test to detect this single fault), 
the fault would be truly sequentially untestable. With this 
theorem, a target fault is untestable if and only if: (1) the 
target fault does not recombine with its copy in any time 
frame greater than the fault excitation frame or (2) the 
recombination occurs, the combined fault effect gets blocked. 
To make the theorem practical, we propose a very inexpensive 
method of ensuring that the fault declared as untestable does 
not become testable after recombining with its own copy in a 
higher time frame. The approach uses a sequential implication 
engine and the single-line conflict analysis similar to that used 
in FIRE as the basis for identifying untestable faults.  
Application of the proposed theorem to ISCAS ‘89 sequential 
benchmark circuits showed that significantly more untestable 
faults can be identified using our approach, at practically no 
overhead in both memory and execution time.  
The rest of the paper is organized as follows. Section 2 gives 
an introduction to static implications along with single line 
conflict (FIRE) algorithm. Section 3 describes our algorithm 
used to extend the single-fault theorem and FIRE to find more 
untestable faults. Section 4 describes the implementation 
along with the overall algorithm. Section 5 reports the 
experimental results and section 6 concludes the paper.  
 
2.   Preliminaries  
 
2.1   Static Implications 

Static implications are the implications associated with 
both binary values of every gate in a given circuit, and 
comprise of direct, indirect and extended backward 
implications. Though direct implications for a gate can be 
easily found, indirect and extended backward implications 
require the extensive use of the transitive property and the 
contrapositive property [8]. These concepts can be understood 
from the following example. 
We use the following terminology: 
1.   [N,v,t] :  Indicates  logic  value  v  assigned  to  gate N      

during time frame t. Also, [N,v,0] is expressed as [N,v].   
2. impl[N,v,t] : Set of implications resulting from assigning 

logic value v to gate N during time frame t. 
3. a/v : Indicates line a stuck-at logic value v. 
Example 1: Let us consider the implications of gate ‘A’ in 
Figure 1, set to logic value 1. * Supported in part by NSF Grant CCR-0196470  and  NJ  Commission  
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a) Direct Implications: 
 A logic value of ‘1’ present at the output of gate A would 
imply B = D = 1. Also A = 1� H = 1 and I = 1.   
Thus, the set {(A,1,0), (B,1,0), (D,1,0), (H,1,0), (I,1,0)} 
represents the direct implications of A = 1. 
Similarly, direct implications associated with B = 1 would 
be {(B,1,0), (C,1,0), (A,1,0)} and so on. 
These implications are stored in the form of a graph with 
each node representing a gate (with value), a directed edge 
between nodes representing an implication, and a weight 
along with an edge representing the relative time-frame 
associated with the implication. Figure 2 shows the 
graphical representation of the direct implications for A = 1. 

 
 
 

 
 
 
 
 
 
 
 
The complete set of implications resulting from setting A to 
1 can be obtained by traversing the graph rooted at node    
A = 1 (transitive closure on A = 1). Thus, the complete set 
of direct implications associated with A = 1 is: 

    {(A,1,0), (H,1,0), (B,1,0), (C,1,0), (D,1,0), (I,1,0),  (J,1,-1)} 
 

b) Indirect Implications: Although C = 1 or D = 1 do not 
imply anything on gate F individually, together, they imply 
F = 1. Thus, indirectly, A = 1 would imply F = 1 (shown as 
a dashed line in Figure 1). This is called an indirect 
implication, and this implication is added as an additional 
outgoing edge from A = 1 in the implication graph. 
 Another non-trivial implication inferred from each indirect 
implication derives its roots from the contrapositive law. 
According to the contrapositive law, if [N,v] � [M,w,t1], 
then [M, w’] � [N,v’,-t1] (here, v’ represents the logical 
complement of v). Since A = 1 � F = 1 in time frame 0, 
then by contrapositive law, F = 0 � A = 0 in time frame 0. 

 
c) Extended Backward (EB) Implications: 
 Extended backward implications apply to unjustified 
gates in the implication list. For the circuit shown in Figure 
1, gate H = 1 is an unjustified gate in the implication list for 
A = 1, as none of H’s inputs is implied to a value of logic 1. 
Thus, H is a candidate for the application of extended 

backward implications. To perform extended backward 
implications on H, a transitive closure is first performed for 
each of its unspecified inputs (i.e. ‘a’ and ‘b’), obtaining 
impl[a=1] and impl[b=1], respectively. The implications of 
A=1 are simulated together with each of H’s unspecified 
inputs’ implication sets in turn, creating a set (seti) of newly 
found implications for each input i. All new implications (not 
currently in the implication set for A = 1) that are common 
among these sets, are the extended backward implications and 
added as new edges to the original node A=1. 
For our example, when the implications of (a = 1) and (A = 1) 
are simulated, then new implications found are (E,0,0) and 
(O,0,0). For the combined implication set of (b=1) and (A= 1), 
new implications found are (G,0,0) and (O,0,0).  The set of 
implications common between the two sets is (O,0,0) and is 
hence added as a new edge to the implication graph for A = 1.   
 
2.2  Untestable Fault Identification 
    The method used in our approach is the same as the original 
FIRE algorithm, based on single line conflicts. The basic 
concept is to find faults that require conflicting assignments on 
a line as a necessary condition for their detection.  
    For every gate ‘g’, the algorithm computes the following 
two fault sets: 
Set0:  consisting of all faults that require gate ‘g’ to be 1 in 

order for each fault to be detected. 
Set1:  consisting of all faults that require gate ‘g’ to be 0 in 

order for each fault to be detected. 
Then, the set of untestable faults is simply all the faults 
common in the two sets, as these faults cannot be detected 
irrespective of the value on gate ‘g’. 
     Let us consider the following example to understand the 
concept clearly: 
Example 2: Consider the combinational portion of a circuit as 
shown in Figure 4. Let us consider the implications of x = 1. 
Impl[x,1] = {(x,1,0), (x1,1,0), (x2,1,0), (b,1,0), (d,0,0), (e,0,0)} 

 
 
 
 
 
 
 
 

 
 
Faults unexcitable due to x = 1:  
    With x = 1, it would not be possible to set line b to 0, since 
x = 1 � b = 1. Thus, fault b/1 would be unexcitable with x=1, 
and would require x = 0 to be testable. Essentially, if (k,v,t) is 
in the implication list for a node N, then  fault  k/v  would  be 
unexcitable in time frame t.  As a result, faults x/1, x1/1, x2/1, 
b/1, d/0, e/0 would all be unexcitable with x = 1.  
 
Faults unobservable due to x = 1:  

As x = 1 � d = 0, any fault value appearing at line c 
cannot be propagated to the next level. Hence faults c/0, c/1 
require x to be 0 in order for them to be propagated/detected. 
Similarly, any faults appearing on lines y, a1, a2 etc would also 
be blocked due to the implications of x = 1.  The complete set 
of faults that cannot be propagated because of x = 1 is {y/0, 
y/1, a1/0, a1/1, c/0, c/1, a2/0, a2/1, a/0, a/1, z/0, z/1, x2/0, x2/1}. 
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      Figure 1: Segment of a sequential circuit 
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Thus, Set1 = {x/1, x1/1, x2/1, d/0, e/0, b/1, y/0, y/1, z/0, z/1, 
a1/0, a1/1, c/0, c/1, a2/0, a2/1, a/0, a/1, z/0, z/1, x2/0} 
 
Now consider implications of x = 0. 

Impl[x,0] = {(x,0,0), (x1,0,0), (x2,0,0), (a,0,0), (a1,0,0),          
(a2,0,0), (c,1,0)} 

Similar to the analysis for x = 1, faults which are 
unexcitable and unobservable due to x = 0 are enumerated:  
 Set0 = {x/0, x1/0, x2/0, a/0, a1/0, a2/0, c/1, z/0, z/1} 
 
Thus, Set0 ∩ Set1 = {x2/0, a/0, a1/0, a2/0, c/1, z/0, z/1} forms 
the set of faults that are untestable, because these faults 
require an impossible (conflicting) assignment on line x as a 
necessary condition for their detection. 
 
3. Our formulation for untestable fault identification 
 

The iterative logic array (ILA) expansion of a 
sequential circuit consists of unrolled copies of the 
combinational portion of the circuit. Such an ILA expansion 
of a sequential circuit is shown in Figure 5. Here X defines 
the input bus, Y defines the output bus, Si defines the 
present state inputs to the ith frame, and Ni defines the next 
state outputs of the ith frame. Let’s assume that the initial 
state, S0 as shown in Figure 5, has a reachable state space of 
size |S0|. The subsequent reachable state space for 
successive time frames shrinks monotonically, i.e. Si+1 ⊆ Si 
for 0 < i < k-1, where the circuit is unrolled in k frames. 

 
 
 
 
 
 
 
 

Before discussing our approach, let’s illustrate how a 
combinationally untestable fault in a k-frame ILA circuit 
may become sequentially testable if the fault effect(s) 
combine with the same fault in any higher time frame. 

Example 3: Consider the stuck-at fault a/1 injected in 
time frame ‘i’, as shown in Figure 6. Assume that the fault 
effect for a/1 propagates to the next time frame (marked as 
E).  Assuming that the excitation condition  for   fault a/1 
also implied gate C equal to logic 0 in time frame i+1, the 
fault effect ‘E’ would seem to be blocked in time frame i+1 
at gate D. However, it   would   be incorrect   to mark the 
fault   as   untestable because the controlling off-path that 
blocked the fault effect at   gate  D,  contained   gate   A   
(the fault site)   itself, indicating that the injected fault can 
recombine with its copy in time frame i+1 and become 
testable. 

 
 
 
 
 
 
 

 
 

This recombination effect is shown in Figure 7.  
 
 
 
 
 
 
 

 
 
Thus, if we inject a single fault, in order to avoid 

declaring a fault as untestable incorrectly, we must check if 
the fault effect recombines with itself in a higher time frame. 
However, recombination of a fault effect with its own copy 
does not necessarily imply that the fault is definitely testable. 
For example, assume that gate D is followed by gate F as 
shown in Figure 8. In this case, the fault effect would be truly 
blocked at gate F in time frame i+1, because the controlling 
off-path does not contain gate A, and the fault would not 
become testable even after recombination. Thus, declaring a 
fault as testable just because it recombines with itself in a 
higher time frame may be too conservative.  
 
 
 
 
 
 
 
 
 
 
In our approach, we guarantee that a fault that we declare as 
untestable either does not recombine with itself in any time 
frame greater than the time frame in which the fault is 
injected, or even if recombination occurs, the combined fault 
effect truly gets blocked. Thus, we present the following 
classifications that an untestable fault can fall under, as 
depicted by Figure 9. 
a) If the fault is combinationally redundant (represented by 

region A in Figure 9). 
b) If the fault can be excited in some time frame ‘i’, but the 

fault effect cannot be propagated across to time frame i+1 
(represented by region B in Figure 9). (These can be 
captured by the Single Fault Theorem [2]). 

c) If the fault effect crosses time frame boundaries, but does 
not recombine with a copy of itself in any higher time 
frame, and the fault effect is blocked before it can reach 
either the primary output or the flip-flop boundary in the 
last time frame (represented by region C in Figure 9). 

d) If the fault effect recombines with itself in a higher frame, 
but the combined fault effect is eventually blocked 
(represented by region D). 
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       Figure 6: A sequential circuit unrolled in two frames
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Region E in Figure 9 represents the entire set of 
sequentially untestable faults. In our work, we target 
regions C and D.  
 
Theorem 1: If a target fault injected in any time frame ‘i’ is 
found to be combinationally untestable, and if it can be 
guaranteed that the injected fault either does not recombine 
or does not become testable after re-combination with a 
copy of the same fault in any time frame greater than ‘i’, 
the fault would be truly sequentially untestable. 
 
 
 
 
 
 
 
 
 

 
 
 
Proof: Consider the ILA representation of a circuit as 
shown in Figure 10. A k-frame window is selected to 
identify untestable faults. For illustration, assume k = 5. 
Also assume that the fault f is injected in time frame i = 2, 
as shown. Faults f 1 and f 2 represent copies of f in higher 
time frames. Let us assume the initial state S0, to be fully 
controllable. If after excitation, the fault effect does not 
propagate across the current time frame boundary, then, in 
accordance with the single fault theorem [2], the fault is 
truly sequentially untestable. However, if the fault effect 
crosses the current time frame boundary (crosses frame 2), 
then one of the following may occur: 
 
a)  Assume that the fault effect f does not recombine with 

any of its copies (f 1 and f 2) in any higher time frame. 
Since f 1 and f 2 would not affect the injected fault f, every 
copy of f for time frames greater than 2 (i.e. f 1 and f 2) 
can be ignored from the perspective of f. If the injected 
fault f does not propagate to the primary outputs or to the 
D flip-flops in the last time frame of the k-frame window 
(i.e. to S5), then the single fault would be combinationally 
untestable. Now we must prove that this fault is the 
sequentially untestable too. Consider the same fault 
injected in a higher time frame i+m. The analysis can be 
performed simply by shifting the 5-frame window over 
which the analysis is performed by m time units. In 
Figure 10, let’s consider the same fault injected in time 
frame 3, so the window would shift by one time unit and 
would now extend from time frame 1 to time frame 5.  
Since the reachable state space at S1 is a proper subset of 
the state space at S0, it follows that if the fault injected in 
time frame 2 is untestable in the first 5-frame window, 
the same fault injected in time frame 3 will definitely not 
be observed over the shifted window as well. This is true 
for any fault injected in any time frame because if a fault 
injected in time frame i gets blocked in time frame i+m, 
then the same fault injected in any other time frame         
(i ± n) would also be blocked in time frame (i ± n)+m. 
Thus, if the fault injected in any time frame does not 
recombine with its own copy in a higher time frame and 

is found to be combinationally untestable, it would be 
sequentially untestable too. 

b)  Assume that the fault effect does recombine with one or 
more copies of the same fault in a higher time frame. 
However, if the combined fault effect gets blocked, then 
again, fault effects present in time frames greater than the 
fault injection frame (i) would not affect the detection of f. 
This is true because even though recombination of fault 
effects occurs, the fault effect (both combined and single) 
does not become observable. In order to prove that the fault 
is sequentially untestable, we can consider fault injection in 
any time frame i+m, and shift the analysis window by m 
time units. Again, the fault effect would recombine with a 
copy in some frame greater than i+m, but the combined 
fault effect would eventually get blocked within the 
analysis window. Thus, if a fault injected in any time frame 
gets blocked even after recombination, it would truly be 
sequentially untestable. 

 
4.  Implementation 
 
 Since our implementation is fault independent, unlike the 
implementation of the single fault theorem, we do not inject 
any fault in the circuit.     
   Whenever any input(s) to a gate is a controlling value for 
the gate, all the other inputs become unobservable because 
values present at these inputs would be blocked by the 
controlling value present at the other input. This 
unobservability propagates along the input cone of each of the 
“unobservable lines/inputs”. The concept of unobservability 
propagation is shown in Figure 11. Whenever a stem is 
encountered in this unobservable cone, an analysis (in 
accordance with lemma 1 introduced in FIRE [3]) is 
performed to determine if all paths starting from the stem are 
blocked or not. However, we take special care when this 
unobservability cone extends beyond time frame boundaries. 
This is required to prevent declaring a signal as unobservable, 
when it actually becomes observable after re-combining with 
itself in a higher time frame.  
 
 
 
 
 

 
 
 
 
As stated in the theorem, if it can be guaranteed that a 

signal/fault does not re-converge with itself in a higher time 
frame or does not become observable/testable even after 
recombination, it can safely be   marked  as   unobservable   or 
untestable. Thus, we propagate unobservability backwards 
across time frame boundaries, and declare a signal as 
unobservable only if it is truly unobservable in accordance 
with our theorem. The key is to develop a technique that 
would determine if a signal is truly unobservable (even after 
recombination) or not, without causing extra overhead in 
terms of both execution time and memory requirements. We 
achieve this by performing a special stem analysis in a 
sequentially unrolled circuit. The concept can be better 
understood through the following example. 
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Figure 11: Unobservability cone 
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Example 4:  Consider the circuit in Figure 12. Let us 
assume that the implications of a node, say z = 0, are as 
shown in Figure 12 ((C,1,i), (B,0,i+1), etc). The presence of 
a controlling value at the input of D in time frame i+1 (due 
to C = 0) would cause the input cone associated with the 
other input to become unobservable. Assuming that the 
unobservability propagates backward across the time frame 
boundaries, we would need to analyze the observability of 
the stem at the output of gate A in time frame i. The 
following steps are undertaken for this analysis: 
 
1)  We associate an ID (say ‘X’) with gate A in time frame i, 

and propagate it forward. Even though ‘X’ cannot 
propagate across path B-C-D (blocked by the controlling 
value present at the off-path input of C), the stem cannot 
be declared as unobservable at this stage because there is 
another path for the ID to propagate (bold, dashed path) 
across the time frame boundary. 
 
 

 
 
 
 
 
 
 

 
2)  Before we start analyzing the propagation path for ID 

‘X’ in time frame i+1, we associate gate A (the gate from 
which ID propagation began in time frame i) in time 
frame i + 1 with a new ID ‘Y’. We propagate this new ID 
until it gets blocked in the current time frame (i.e. frame 
i+1). Here, ‘Y’ would propagate across gates B, C and D.  
 

3)  Now we analyze the path of the previous ID, ‘X’ which 
came from time frame i. X would naturally propagate to 
gate D in frame i+1. Although the other input to gate D 
presents a controlling value, it actually has the other ID 
‘Y’, implying that there exists a path for the fault at gate 
A in the time frame i to re-combine with the fault present 
at gate A in a higher time frame. Thus, the stem is not 
declared as unobservable and ID ‘X’ propagates across 
gate D in frame i+1. This analysis is in accordance with 
our theorem, because we declare a stem as unobservable 
only if the signal cannot become observable even after 
recombination with its copies in higher frames.  

 
Clearly, this propagation of unobservability across frame 
boundaries increases the probability of finding more 
untestable faults.  
 
Algorithm 
 

The implication graph is generated as a preprocessing 
step to untestable fault identification. Initially a graph 
consisting of direct implications is generated. Indirect and 
extended backward implications are then computed for each 
gate and added to the implication graph. Single line conflict 
algorithm is then applied to identify untestable faults. The 
new theorem is applied wherever applicable to extend the 
unobservability cone across frame boundaries.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
5. Results 

The proposed algorithm was implemented in C++ and 
experiments were conducted on ISCAS89 and ISCAS93 
circuits on a 1.8 GHz, Pentium-4 workstation with 512 MB 
RAM, with Linux as the operating system. The results are 
reported in Tables 1 and 2. In Table 1, results were obtained 
for two implementations for each circuit. The first 
implementation (traditional method) did not consider the 
newly proposed theorem, and here, the unobservability 
propagation does not cross time frame boundaries. The second 
implementation, based on the proposed method, did not bound 
unobservability propagation to time frame boundaries, and we 
made sure that recombination of fault effects would not cause 
false positives via our theorem and algorithm.   Since the 
implication graph for both the traditional and our approaches 
are exactly the same, the memory requirements are identical. 
For the traditional implementation, the untestable fault set 
Suntest, and execution time, are reported for time frames 
ranging from –1 to 1 (M or Maximum Edge Weight = 1) in 
columns 2 and 3 of table 1 and for time frames ranging –5 to 5 
(M = 5) in columns 4 and 5. For the second implementation, 
which involves the implementation of our theorem, the 
implication graph is generated only over time frame range –1 
to 1, and the set of untestable faults Suntest identified and the 
corresponding execution times are reported in columns 5 and 
6 in Table 1. It can be seen that for many circuits, our 
proposed approach could identify more untestable faults 
without too much additional computational effort.  For 
example, in s5378, the proposed theorem could identify 877 
untestable faults in only 46.02 seconds (with time frames 
ranging –1 to 1), while the traditional implementation could 
identify only 778 untestable faults over the same time frame 
range of –1 to 1, in 45.04 seconds.  Even when the ILA size is 
increased to 11 (time frame –5 to 5), only 781 untestable 
faults were identified with the traditional method, at a cost of 
more than 900 seconds. This indicates that increasing the ILA 
size by the traditional method cannot capture untestable faults 
that recombine within the ILA.  Note that our approach only 
required less than 1 seconds (in same ILA size) to perform 
unobservability propagation across time frame boundaries and   
detected nearly 100 more untestable faults. Likewise, for 
s3330, 73 more untestable faults were identified at practically 
no overhead. Not only does the implementation based on our 
new theorem identify more untestable faults without costing 
much additional effort, it also does not require additional 
memory overhead. For some circuits (s9234.1, s15850.1, etc), 
the number of untestable faults identified using the new 
method was the same as those identified using the traditional 

 
Generate sequential implication graph using: 
Direct, indirect and extended backward implications. 
 
//Perform single line conflicts with the addition of 
//extended unobservability propagation. 
Suntestable = φ; 
For every gate ‘g’ { 
      compute set0 = set of all faults that require g = 1; 
      compute set1 = set of all faults that require g = 0; 
     (propagate unobservability across time frame              

boundaries when required) 
       Suntestable = Suntestable + (set0 ∩ set1) } 
 

Figure 12: Sequential circuit unrolled in two time frames 
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approach. For these circuits, crossing the time frame 
boundaries did not benefit in identifying more untestable 
faults. Here, an implementation based on the single fault 
theorem would be sufficient to identify untestable faults, 
because faults injected in a time frame i that cross time 
frame boundaries do not get blocked in higher time frames 
with or without recombination with multiple copies of the 
same fault.  

Table 2 compares our results with the untestable fault 
set obtained using FUNI+FIRE.  Here, column 2 shows the 
number of untestable faults identified by the combination of 
FUNI and FIRE, when run on SUN sparc10 [5]. The 
column shows two quantities: number of untestable faults 
identified / number of time frames the sequential circuit was 
unrolled into. Column 3 shows the corresponding execution 
times. Column 4 through 7 show the number of untestable 
faults identified by our tool, using only 3 frames for all 
circuits, and the time taken for the analysis, respectively. 
We report results for 2 scenarios: with and without 
extended backward (EB) implications (since FUNI+FIRE 
did not use EB implications). It can be seen that although 
our tool does not explicitly enumerate a subset of the illegal 
state space, we can identify more untestable faults as 
compared to FUNI and FIRE combined, for quite a few 
circuits. FUNI outperforms our implementation for circuits 
which have a lot of un-initializable flip flops (such as 
s15850), and hence a lot of unreachable states. Since we do 
not enumerate unreachable states, we identify a smaller 
subset of untestable faults for these circuits. Note that for 
most circuits, we can identify more untestable faults using 
fewer number of frames. Finally, even when the tool is run 
without EB implications, we still identify a larger subset of 
untestable faults for a few circuits.  

 
6.    Conclusion 
 

A novel, low-cost method for identifying untestable 
faults has been presented. Unlike the single fault theorem, 
we can handle fault injection in any time frame of a k-frame 
unrolled circuit. In order to make the implementation of the 
theorem feasible in terms of memory requirements and 
execution time, an implication-based algorithm is 
developed. More untestable faults were identified using this 
new theorem for many sequential circuits at low 
computational cost and no memory overhead. Future work 
includes identification of more untestable faults by 
combining our method with fault injection oriented 
algorithms.  
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      Traditional Implementation New Approach

  Circuit Suntest 
M*=1

Time
(sec)

Suntest 
M=5 

Time 
(sec) 

Suntest 
M=1

Time 
(sec) 

s386 60 0.53 60 0.92 60 0.55 
s400 7 0.22 8 0.81 8 0.26 
s499 89 0.84 89 7.04 89 0.89 
s713 32 0.38 32 0.64 32 0.41 
s953 5 3.36 5 8.41 5 3.99 
s991 0 0.48 0 1.69 6 0.50 
s1238 9 1.57 9 1.76 9 1.90 
s1423 9 0.43 9 1.24 9 0.58 
s3330 420 89.6 420 114.33 493 90.69
s5378 778 45.04 781 965.46 877 46.02
s9234.1 193 69.71 193 180.31 195 103.48
s13207.1 374 343.12 381 1577.6 399 355.70
s15850.1 315 201.85 317 1166.4 317 239.22
s35932 3984 484.23 3984 880.08 3984 542.73
s38417 328 365.27 332 3085.8 356 706.67
s38584 1638 8113.5 1654 21341 1691 8415.1

            Table 1: Untestable faults (new thm. v/s the trad. method) 
         * M : Maximum Edge Weight. M = 1 � frame range of –1 to 1 

    
    FUNI+FIRE Our Tool 

(W/O EB impl) 
Our Tool       

(W/ EB impl) 

  Circuit Suntest / 
# Fr. 

Time
(sec)

Suntest /  
#Fr.=3 

Time 
(sec) 

Suntest / 
#Fr.=3

Time
(sec)

s386 36/2 0.4 42 0.11 60 0.55 
s400 16/3 2.0 8 0.42 8 0.26 
s713 91/15 1.7 32 0.11 32 0.41 
s953 0/5 8.5 2 1.20 5 3.99 
s1238 6/3 4.1 6 0.85 9 1.90 
s1423 5/2 12.3 9 0.25 9 0.58 
s1196 0/3 3.5 0 0.32 0 0.96 
s5378 414/15 43.5 577 4.79 877 46.02
s9234 257/15 108.8 272 43.95 274 180.27
s13207 654/10 150.8 688 29.06 791 486.24
s15850 816/10 114.0 356 78.1 445 815.02
s35932 3984/0 237.4 3984 80.47 3984 542.72
s38417 381/5 373.4 337 297.1 356 706.67
s38584 1582/5 405.4 1553 333.8 1691 8415.1

Table 2: Comparison of our tool with FUNI +FIRE 
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