

 A Novel, Low-Cost Algorithm for Sequentially Untestable Fault Identification*

Manan Syal and Michael S. Hsiao <{msyal, mhsiao}@vt.edu>
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA.

Abstract

 This paper presents a new and low-cost approach for
identifying sequentially untestable faults. Unlike the single
fault theorem, where the stuck-at fault is injected only in the
right-most time frame of the k-frame unrolled circuit, our
approach can handle fault injection in any time frame
within the unrolled sequential circuit. To efficiently apply
our concept to untestable fault identification, powerful
sequential implications are used to efficiently extend the
unobservability propagation of gates in multiple time
frames. Application of the proposed theorem to ISCAS ‘89
sequential benchmark circuits showed that more untestable
faults could be identified using our approach, at practically
no overhead in both memory and execution time.

1. Introduction

The current state-of-the-art automatic test pattern
generators (ATPGs) for sequential circuits spend a lot of
time in trying to generate a test sequence for the detection
of untestable faults, before aborting on them (or identifying
them as untestable, given enough time). For untestable
faults there does not exist a test sequence that can detect
them, due to the unjustifiability of their excitation condition,
their propagation condition, or both.

A number of approaches have been proposed in the
past for the purpose of identifying untestable faults. Single
Fault Theorem [1] states that if a single fault injected in the
last time frame of a k-frame unrolled sequential circuit is
found to be untestable using combinational ATPG, then the
fault would be sequentially untestable. Three new
procedures were also introduced in [2] as an extension to
the single fault theorem, and a larger set of untestable faults
were identified with the aid of these new procedures.
FIRE [3], which is a fault-independent algorithm, identifies
combinationally untestable faults as the faults that require
conflicting assignments on a single line as a necessary
condition for their detection. Since it is not possible for a
line to have complementary values at the same time, faults
requiring such an impossible assignment are untestable.
FIRES [4], was introduced as an extension of FIRE for
sequential circuits and used illegal state information as an
additional criterion for identifying untestable faults. FILL
[5] was introduced as a BDD based approach to identify
illegal state information and FUNI [5] used that information
to identify untestable faults. Since the success of algorithms
such as FIRE and FUNI depends upon the number of
implications associated with each line, it is important to
have as large an implication set associated with each line as
possible. A number of approaches have been proposed for
learning implications. A 16-value logic algebra and
reduction list method was used in [6] to determine node
assignments. A more complete implication engine is based
on recursive learning [7]. However, in order to keep

simulation time within reasonable bounds, the recursion
depth has to be kept low. A graphical representation of the
implication graph was proposed in [8], and the concept of
indirect implications based on the transitivity property of
implications, along with extended backward implications [9]
was used to increase the number of implications learnt. This
form of representation also had the advantage of the ability to
be used for sequential circuits, without suffering from
memory explosion.
 In this paper, we introduce an efficient and low-cost
implementation to a powerful theorem, which states that if a
single fault injected in any time frame of the k-frame unrolled
sequential circuit is found to be untestable (i.e. there does not
exist a k - frame combinational test to detect this single fault),
the fault would be truly sequentially untestable. With this
theorem, a target fault is untestable if and only if: (1) the
target fault does not recombine with its copy in any time
frame greater than the fault excitation frame or (2) the
recombination occurs, the combined fault effect gets blocked.
To make the theorem practical, we propose a very inexpensive
method of ensuring that the fault declared as untestable does
not become testable after recombining with its own copy in a
higher time frame. The approach uses a sequential implication
engine and the single-line conflict analysis similar to that used
in FIRE as the basis for identifying untestable faults.
Application of the proposed theorem to ISCAS ‘89 sequential
benchmark circuits showed that significantly more untestable
faults can be identified using our approach, at practically no
overhead in both memory and execution time.
The rest of the paper is organized as follows. Section 2 gives
an introduction to static implications along with single line
conflict (FIRE) algorithm. Section 3 describes our algorithm
used to extend the single-fault theorem and FIRE to find more
untestable faults. Section 4 describes the implementation
along with the overall algorithm. Section 5 reports the
experimental results and section 6 concludes the paper.

2. Preliminaries

2.1 Static Implications

Static implications are the implications associated with
both binary values of every gate in a given circuit, and
comprise of direct, indirect and extended backward
implications. Though direct implications for a gate can be
easily found, indirect and extended backward implications
require the extensive use of the transitive property and the
contrapositive property [8]. These concepts can be understood
from the following example.
We use the following terminology:
1. [N,v,t] : Indicates logic value v assigned to gate N

during time frame t. Also, [N,v,0] is expressed as [N,v].
2. impl[N,v,t] : Set of implications resulting from assigning

logic value v to gate N during time frame t.
3. a/v : Indicates line a stuck-at logic value v.
Example 1: Let us consider the implications of gate ‘A’ in
Figure 1, set to logic value 1. * Supported in part by NSF Grant CCR-0196470 and NJ Commission

 on Science & Technology

1530-1591/03 $17.00  2003 IEEE

a) Direct Implications:
 A logic value of ‘1’ present at the output of gate A would
imply B = D = 1. Also A = 1� H = 1 and I = 1.
Thus, the set {(A,1,0), (B,1,0), (D,1,0), (H,1,0), (I,1,0)}
represents the direct implications of A = 1.
Similarly, direct implications associated with B = 1 would
be {(B,1,0), (C,1,0), (A,1,0)} and so on.
These implications are stored in the form of a graph with
each node representing a gate (with value), a directed edge
between nodes representing an implication, and a weight
along with an edge representing the relative time-frame
associated with the implication. Figure 2 shows the
graphical representation of the direct implications for A = 1.

The complete set of implications resulting from setting A to
1 can be obtained by traversing the graph rooted at node
A = 1 (transitive closure on A = 1). Thus, the complete set
of direct implications associated with A = 1 is:

 {(A,1,0), (H,1,0), (B,1,0), (C,1,0), (D,1,0), (I,1,0), (J,1,-1)}

b) Indirect Implications: Although C = 1 or D = 1 do not
imply anything on gate F individually, together, they imply
F = 1. Thus, indirectly, A = 1 would imply F = 1 (shown as
a dashed line in Figure 1). This is called an indirect
implication, and this implication is added as an additional
outgoing edge from A = 1 in the implication graph.
 Another non-trivial implication inferred from each indirect
implication derives its roots from the contrapositive law.
According to the contrapositive law, if [N,v] � [M,w,t1],
then [M, w’] � [N,v’,-t1] (here, v’ represents the logical
complement of v). Since A = 1 � F = 1 in time frame 0,
then by contrapositive law, F = 0 � A = 0 in time frame 0.

c) Extended Backward (EB) Implications:
 Extended backward implications apply to unjustified
gates in the implication list. For the circuit shown in Figure
1, gate H = 1 is an unjustified gate in the implication list for
A = 1, as none of H’s inputs is implied to a value of logic 1.
Thus, H is a candidate for the application of extended

backward implications. To perform extended backward
implications on H, a transitive closure is first performed for
each of its unspecified inputs (i.e. ‘a’ and ‘b’), obtaining
impl[a=1] and impl[b=1], respectively. The implications of
A=1 are simulated together with each of H’s unspecified
inputs’ implication sets in turn, creating a set (seti) of newly
found implications for each input i. All new implications (not
currently in the implication set for A = 1) that are common
among these sets, are the extended backward implications and
added as new edges to the original node A=1.
For our example, when the implications of (a = 1) and (A = 1)
are simulated, then new implications found are (E,0,0) and
(O,0,0). For the combined implication set of (b=1) and (A= 1),
new implications found are (G,0,0) and (O,0,0). The set of
implications common between the two sets is (O,0,0) and is
hence added as a new edge to the implication graph for A = 1.

2.2 Untestable Fault Identification
 The method used in our approach is the same as the original
FIRE algorithm, based on single line conflicts. The basic
concept is to find faults that require conflicting assignments on
a line as a necessary condition for their detection.
 For every gate ‘g’, the algorithm computes the following
two fault sets:
Set0: consisting of all faults that require gate ‘g’ to be 1 in

order for each fault to be detected.
Set1: consisting of all faults that require gate ‘g’ to be 0 in

order for each fault to be detected.
Then, the set of untestable faults is simply all the faults
common in the two sets, as these faults cannot be detected
irrespective of the value on gate ‘g’.
 Let us consider the following example to understand the
concept clearly:
Example 2: Consider the combinational portion of a circuit as
shown in Figure 4. Let us consider the implications of x = 1.
Impl[x,1] = {(x,1,0), (x1,1,0), (x2,1,0), (b,1,0), (d,0,0), (e,0,0)}

Faults unexcitable due to x = 1:
 With x = 1, it would not be possible to set line b to 0, since
x = 1 � b = 1. Thus, fault b/1 would be unexcitable with x=1,
and would require x = 0 to be testable. Essentially, if (k,v,t) is
in the implication list for a node N, then fault k/v would be
unexcitable in time frame t. As a result, faults x/1, x1/1, x2/1,
b/1, d/0, e/0 would all be unexcitable with x = 1.

Faults unobservable due to x = 1:

As x = 1 � d = 0, any fault value appearing at line c
cannot be propagated to the next level. Hence faults c/0, c/1
require x to be 0 in order for them to be propagated/detected.
Similarly, any faults appearing on lines y, a1, a2 etc would also
be blocked due to the implications of x = 1. The complete set
of faults that cannot be propagated because of x = 1 is {y/0,
y/1, a1/0, a1/1, c/0, c/1, a2/0, a2/1, a/0, a/1, z/0, z/1, x2/0, x2/1}.

x x2

y

a a2

a1

x1

b d

c

e

z
 Figure 4: Combinational portion of a circuit

Edge weight
 represents time

frame

 Figure 2: Implication graph (shows direct implications)

0
0 0 0

-1

A = 1

B = 1 I = 1 D = 1 H = 1

J = 1

0

C = 1
0

Implication edge

Node represents gate
with value

A

C

B

D

E

F

I

H

J

b

 Figure 1: Segment of a sequential circuit

O 1

1

1

1

1

1

1

1

 0

 : Indirect Implication
: Extended Backward Implication

G

a

Thus, Set1 = {x/1, x1/1, x2/1, d/0, e/0, b/1, y/0, y/1, z/0, z/1,
a1/0, a1/1, c/0, c/1, a2/0, a2/1, a/0, a/1, z/0, z/1, x2/0}

Now consider implications of x = 0.

Impl[x,0] = {(x,0,0), (x1,0,0), (x2,0,0), (a,0,0), (a1,0,0),
(a2,0,0), (c,1,0)}

Similar to the analysis for x = 1, faults which are
unexcitable and unobservable due to x = 0 are enumerated:
 Set0 = {x/0, x1/0, x2/0, a/0, a1/0, a2/0, c/1, z/0, z/1}

Thus, Set0 ∩ Set1 = {x2/0, a/0, a1/0, a2/0, c/1, z/0, z/1} forms
the set of faults that are untestable, because these faults
require an impossible (conflicting) assignment on line x as a
necessary condition for their detection.

3. Our formulation for untestable fault identification

The iterative logic array (ILA) expansion of a
sequential circuit consists of unrolled copies of the
combinational portion of the circuit. Such an ILA expansion
of a sequential circuit is shown in Figure 5. Here X defines
the input bus, Y defines the output bus, Si defines the
present state inputs to the ith frame, and Ni defines the next
state outputs of the ith frame. Let’s assume that the initial
state, S0 as shown in Figure 5, has a reachable state space of
size |S0|. The subsequent reachable state space for
successive time frames shrinks monotonically, i.e. Si+1 ⊆ Si
for 0 < i < k-1, where the circuit is unrolled in k frames.

Before discussing our approach, let’s illustrate how a
combinationally untestable fault in a k-frame ILA circuit
may become sequentially testable if the fault effect(s)
combine with the same fault in any higher time frame.

Example 3: Consider the stuck-at fault a/1 injected in
time frame ‘i’, as shown in Figure 6. Assume that the fault
effect for a/1 propagates to the next time frame (marked as
E). Assuming that the excitation condition for fault a/1
also implied gate C equal to logic 0 in time frame i+1, the
fault effect ‘E’ would seem to be blocked in time frame i+1
at gate D. However, it would be incorrect to mark the
fault as untestable because the controlling off-path that
blocked the fault effect at gate D, contained gate A
(the fault site) itself, indicating that the injected fault can
recombine with its copy in time frame i+1 and become
testable.

This recombination effect is shown in Figure 7.

Thus, if we inject a single fault, in order to avoid

declaring a fault as untestable incorrectly, we must check if
the fault effect recombines with itself in a higher time frame.
However, recombination of a fault effect with its own copy
does not necessarily imply that the fault is definitely testable.
For example, assume that gate D is followed by gate F as
shown in Figure 8. In this case, the fault effect would be truly
blocked at gate F in time frame i+1, because the controlling
off-path does not contain gate A, and the fault would not
become testable even after recombination. Thus, declaring a
fault as testable just because it recombines with itself in a
higher time frame may be too conservative.

In our approach, we guarantee that a fault that we declare as
untestable either does not recombine with itself in any time
frame greater than the time frame in which the fault is
injected, or even if recombination occurs, the combined fault
effect truly gets blocked. Thus, we present the following
classifications that an untestable fault can fall under, as
depicted by Figure 9.
a) If the fault is combinationally redundant (represented by

region A in Figure 9).
b) If the fault can be excited in some time frame ‘i’, but the

fault effect cannot be propagated across to time frame i+1
(represented by region B in Figure 9). (These can be
captured by the Single Fault Theorem [2]).

c) If the fault effect crosses time frame boundaries, but does
not recombine with a copy of itself in any higher time
frame, and the fault effect is blocked before it can reach
either the primary output or the flip-flop boundary in the
last time frame (represented by region C in Figure 9).

d) If the fault effect recombines with itself in a higher frame,
but the combined fault effect is eventually blocked
(represented by region D).

D
C B

E

 Figure 9: Untestable fault model

A

Figure 5: ILA representation of a sequential circuit

Comb.
Logic
(C)

X Y

N(t) S(t)

S0 S1 N0 Sk

X X X

Y Y

C C C

Y f/fs

 Figure 6: A sequential circuit unrolled in two frames

a/1
E (0/1)

0
0 0

D
C B A

1

A
B C

D

 Frame i Frame i+1

0/1

E (0/1)

0 0/1

D
CBA

1

A B D
0/1

0/1

Figure 7: Recombination of two copies of a fault

C

Figure 8: True sequentially untestable fault

0/1

E (0/1)

0

0/1

CBA

1

A
B C

D
0/1 0/1

0/0
FF

0

D

Region E in Figure 9 represents the entire set of
sequentially untestable faults. In our work, we target
regions C and D.

Theorem 1: If a target fault injected in any time frame ‘i’ is
found to be combinationally untestable, and if it can be
guaranteed that the injected fault either does not recombine
or does not become testable after re-combination with a
copy of the same fault in any time frame greater than ‘i’,
the fault would be truly sequentially untestable.

Proof: Consider the ILA representation of a circuit as
shown in Figure 10. A k-frame window is selected to
identify untestable faults. For illustration, assume k = 5.
Also assume that the fault f is injected in time frame i = 2,
as shown. Faults f 1 and f 2 represent copies of f in higher
time frames. Let us assume the initial state S0, to be fully
controllable. If after excitation, the fault effect does not
propagate across the current time frame boundary, then, in
accordance with the single fault theorem [2], the fault is
truly sequentially untestable. However, if the fault effect
crosses the current time frame boundary (crosses frame 2),
then one of the following may occur:

a) Assume that the fault effect f does not recombine with

any of its copies (f 1 and f 2) in any higher time frame.
Since f 1 and f 2 would not affect the injected fault f, every
copy of f for time frames greater than 2 (i.e. f 1 and f 2)
can be ignored from the perspective of f. If the injected
fault f does not propagate to the primary outputs or to the
D flip-flops in the last time frame of the k-frame window
(i.e. to S5), then the single fault would be combinationally
untestable. Now we must prove that this fault is the
sequentially untestable too. Consider the same fault
injected in a higher time frame i+m. The analysis can be
performed simply by shifting the 5-frame window over
which the analysis is performed by m time units. In
Figure 10, let’s consider the same fault injected in time
frame 3, so the window would shift by one time unit and
would now extend from time frame 1 to time frame 5.
Since the reachable state space at S1 is a proper subset of
the state space at S0, it follows that if the fault injected in
time frame 2 is untestable in the first 5-frame window,
the same fault injected in time frame 3 will definitely not
be observed over the shifted window as well. This is true
for any fault injected in any time frame because if a fault
injected in time frame i gets blocked in time frame i+m,
then the same fault injected in any other time frame
(i ± n) would also be blocked in time frame (i ± n)+m.
Thus, if the fault injected in any time frame does not
recombine with its own copy in a higher time frame and

is found to be combinationally untestable, it would be
sequentially untestable too.

b) Assume that the fault effect does recombine with one or
more copies of the same fault in a higher time frame.
However, if the combined fault effect gets blocked, then
again, fault effects present in time frames greater than the
fault injection frame (i) would not affect the detection of f.
This is true because even though recombination of fault
effects occurs, the fault effect (both combined and single)
does not become observable. In order to prove that the fault
is sequentially untestable, we can consider fault injection in
any time frame i+m, and shift the analysis window by m
time units. Again, the fault effect would recombine with a
copy in some frame greater than i+m, but the combined
fault effect would eventually get blocked within the
analysis window. Thus, if a fault injected in any time frame
gets blocked even after recombination, it would truly be
sequentially untestable.

4. Implementation

 Since our implementation is fault independent, unlike the
implementation of the single fault theorem, we do not inject
any fault in the circuit.
 Whenever any input(s) to a gate is a controlling value for
the gate, all the other inputs become unobservable because
values present at these inputs would be blocked by the
controlling value present at the other input. This
unobservability propagates along the input cone of each of the
“unobservable lines/inputs”. The concept of unobservability
propagation is shown in Figure 11. Whenever a stem is
encountered in this unobservable cone, an analysis (in
accordance with lemma 1 introduced in FIRE [3]) is
performed to determine if all paths starting from the stem are
blocked or not. However, we take special care when this
unobservability cone extends beyond time frame boundaries.
This is required to prevent declaring a signal as unobservable,
when it actually becomes observable after re-combining with
itself in a higher time frame.

As stated in the theorem, if it can be guaranteed that a

signal/fault does not re-converge with itself in a higher time
frame or does not become observable/testable even after
recombination, it can safely be marked as unobservable or
untestable. Thus, we propagate unobservability backwards
across time frame boundaries, and declare a signal as
unobservable only if it is truly unobservable in accordance
with our theorem. The key is to develop a technique that
would determine if a signal is truly unobservable (even after
recombination) or not, without causing extra overhead in
terms of both execution time and memory requirements. We
achieve this by performing a special stem analysis in a
sequentially unrolled circuit. The concept can be better
understood through the following example.

D
C B A

0 Unobservability cone.
No signal in this cone is
observable due to the
controlling value present
at one of D’s inputs

Figure 11: Unobservability cone

0 1 2 3 4 5

Figure 10: ILA representation of a circuit, with a 5- frame
 window for untestability identification

f 1 f 2

Shifted 5 frame window [frame 1- frame 5]

5-frame untestability analysis window [frame 0 – frame 4]

f

S0 S1 S2 S3 S4 S5

Example 4: Consider the circuit in Figure 12. Let us
assume that the implications of a node, say z = 0, are as
shown in Figure 12 ((C,1,i), (B,0,i+1), etc). The presence of
a controlling value at the input of D in time frame i+1 (due
to C = 0) would cause the input cone associated with the
other input to become unobservable. Assuming that the
unobservability propagates backward across the time frame
boundaries, we would need to analyze the observability of
the stem at the output of gate A in time frame i. The
following steps are undertaken for this analysis:

1) We associate an ID (say ‘X’) with gate A in time frame i,

and propagate it forward. Even though ‘X’ cannot
propagate across path B-C-D (blocked by the controlling
value present at the off-path input of C), the stem cannot
be declared as unobservable at this stage because there is
another path for the ID to propagate (bold, dashed path)
across the time frame boundary.

2) Before we start analyzing the propagation path for ID

‘X’ in time frame i+1, we associate gate A (the gate from
which ID propagation began in time frame i) in time
frame i + 1 with a new ID ‘Y’. We propagate this new ID
until it gets blocked in the current time frame (i.e. frame
i+1). Here, ‘Y’ would propagate across gates B, C and D.

3) Now we analyze the path of the previous ID, ‘X’ which
came from time frame i. X would naturally propagate to
gate D in frame i+1. Although the other input to gate D
presents a controlling value, it actually has the other ID
‘Y’, implying that there exists a path for the fault at gate
A in the time frame i to re-combine with the fault present
at gate A in a higher time frame. Thus, the stem is not
declared as unobservable and ID ‘X’ propagates across
gate D in frame i+1. This analysis is in accordance with
our theorem, because we declare a stem as unobservable
only if the signal cannot become observable even after
recombination with its copies in higher frames.

Clearly, this propagation of unobservability across frame
boundaries increases the probability of finding more
untestable faults.

Algorithm

The implication graph is generated as a preprocessing
step to untestable fault identification. Initially a graph
consisting of direct implications is generated. Indirect and
extended backward implications are then computed for each
gate and added to the implication graph. Single line conflict
algorithm is then applied to identify untestable faults. The
new theorem is applied wherever applicable to extend the
unobservability cone across frame boundaries.

5. Results

The proposed algorithm was implemented in C++ and
experiments were conducted on ISCAS89 and ISCAS93
circuits on a 1.8 GHz, Pentium-4 workstation with 512 MB
RAM, with Linux as the operating system. The results are
reported in Tables 1 and 2. In Table 1, results were obtained
for two implementations for each circuit. The first
implementation (traditional method) did not consider the
newly proposed theorem, and here, the unobservability
propagation does not cross time frame boundaries. The second
implementation, based on the proposed method, did not bound
unobservability propagation to time frame boundaries, and we
made sure that recombination of fault effects would not cause
false positives via our theorem and algorithm. Since the
implication graph for both the traditional and our approaches
are exactly the same, the memory requirements are identical.
For the traditional implementation, the untestable fault set
Suntest, and execution time, are reported for time frames
ranging from –1 to 1 (M or Maximum Edge Weight = 1) in
columns 2 and 3 of table 1 and for time frames ranging –5 to 5
(M = 5) in columns 4 and 5. For the second implementation,
which involves the implementation of our theorem, the
implication graph is generated only over time frame range –1
to 1, and the set of untestable faults Suntest identified and the
corresponding execution times are reported in columns 5 and
6 in Table 1. It can be seen that for many circuits, our
proposed approach could identify more untestable faults
without too much additional computational effort. For
example, in s5378, the proposed theorem could identify 877
untestable faults in only 46.02 seconds (with time frames
ranging –1 to 1), while the traditional implementation could
identify only 778 untestable faults over the same time frame
range of –1 to 1, in 45.04 seconds. Even when the ILA size is
increased to 11 (time frame –5 to 5), only 781 untestable
faults were identified with the traditional method, at a cost of
more than 900 seconds. This indicates that increasing the ILA
size by the traditional method cannot capture untestable faults
that recombine within the ILA. Note that our approach only
required less than 1 seconds (in same ILA size) to perform
unobservability propagation across time frame boundaries and
detected nearly 100 more untestable faults. Likewise, for
s3330, 73 more untestable faults were identified at practically
no overhead. Not only does the implementation based on our
new theorem identify more untestable faults without costing
much additional effort, it also does not require additional
memory overhead. For some circuits (s9234.1, s15850.1, etc),
the number of untestable faults identified using the new
method was the same as those identified using the traditional

Generate sequential implication graph using:
Direct, indirect and extended backward implications.

//Perform single line conflicts with the addition of
//extended unobservability propagation.
Suntestable = φ;
For every gate ‘g’ {
 compute set0 = set of all faults that require g = 1;
 compute set1 = set of all faults that require g = 0;
 (propagate unobservability across time frame

boundaries when required)
 Suntestable = Suntestable + (set0 ∩ set1) }

Figure 12: Sequential circuit unrolled in two time frames

0 0

D
C B

A

1

A B C
D

1

i-frame (i + 1)-frame

1

X
X X X

Y Y

Y

Z Z

approach. For these circuits, crossing the time frame
boundaries did not benefit in identifying more untestable
faults. Here, an implementation based on the single fault
theorem would be sufficient to identify untestable faults,
because faults injected in a time frame i that cross time
frame boundaries do not get blocked in higher time frames
with or without recombination with multiple copies of the
same fault.

Table 2 compares our results with the untestable fault
set obtained using FUNI+FIRE. Here, column 2 shows the
number of untestable faults identified by the combination of
FUNI and FIRE, when run on SUN sparc10 [5]. The
column shows two quantities: number of untestable faults
identified / number of time frames the sequential circuit was
unrolled into. Column 3 shows the corresponding execution
times. Column 4 through 7 show the number of untestable
faults identified by our tool, using only 3 frames for all
circuits, and the time taken for the analysis, respectively.
We report results for 2 scenarios: with and without
extended backward (EB) implications (since FUNI+FIRE
did not use EB implications). It can be seen that although
our tool does not explicitly enumerate a subset of the illegal
state space, we can identify more untestable faults as
compared to FUNI and FIRE combined, for quite a few
circuits. FUNI outperforms our implementation for circuits
which have a lot of un-initializable flip flops (such as
s15850), and hence a lot of unreachable states. Since we do
not enumerate unreachable states, we identify a smaller
subset of untestable faults for these circuits. Note that for
most circuits, we can identify more untestable faults using
fewer number of frames. Finally, even when the tool is run
without EB implications, we still identify a larger subset of
untestable faults for a few circuits.

6. Conclusion

A novel, low-cost method for identifying untestable
faults has been presented. Unlike the single fault theorem,
we can handle fault injection in any time frame of a k-frame
unrolled circuit. In order to make the implementation of the
theorem feasible in terms of memory requirements and
execution time, an implication-based algorithm is
developed. More untestable faults were identified using this
new theorem for many sequential circuits at low
computational cost and no memory overhead. Future work
includes identification of more untestable faults by
combining our method with fault injection oriented
algorithms.

Refrences:
[1] V. D. Agrawal and S. T. Chakradhar, "Combinational ATPG

theorems for identifying untestable faults in sequential
circuits", IEEE Trans. Computer-Aided Design, vol. 14, no. 9,
Sept. 1995, pp. 1155-1160.

[2] Sudhakar. M. Reddy, Irith. Pomeranz, X. Lim and Nadir Z.
Basturkmen, “New procedures for identifying Undetectable
and Redundant Faults in Synchronous Sequential Circuits”,
VLSI Test Symposium, 1999. Proceedings. 17th IEEE, 1999
Page(s): 275 –281.

[3] M. A. Iyer and M. Abramovici, “FIRE: a fault independent
combinational redundancy algorithm”, IEEE Trans. VLSI,
June 1996, pp. 295-301.

[4] M.A. Iyer, D.E. Long, Abramovici, "Identifying sequential

redundancies without search," Design Automation Conference,
1996, pp. 457-462

[5] D. E. Long, M. A. Iyer, M. Abramovici, “FILL and FUNI:
Algorithms to identify illegal states and sequentially untestable
faults,” ACM TODAES, pp 631-657

[6] J. Rajski and H. Kox, “A method to calculate necessary
assignments in ATPG”. Proc. Int’l. Test Conf. 1990, pp. 25-34

[7] W. Kunz and D. K. Pradhan, “Recursive Learning: A new
implication technique for efficient solutions to CAD problems-
test, verification, and optimization”, IEEE Trans. On CAD, Sept
1994, pp. 1149-1158.

[8] J. Zhao, J. A. Newquist and J. Patel, “A graph traversal based
framework for sequential logic implication with an application
to c-cycle redundancy identification”, Proc. VLSI Design Conf.,
2001, pp. 163-169.

[9] J. Zhao, M. Rudnik, J. Patel,“Static Logic Implication with
application to fast redundancy identification”, Proc. VLSI Test
Sym., 1997 pp. 288-293

 Traditional Implementation New Approach

 Circuit Suntest
M*=1

Time
(sec)

Suntest
M=5

Time
(sec)

Suntest
M=1

Time
(sec)

s386 60 0.53 60 0.92 60 0.55
s400 7 0.22 8 0.81 8 0.26
s499 89 0.84 89 7.04 89 0.89
s713 32 0.38 32 0.64 32 0.41
s953 5 3.36 5 8.41 5 3.99
s991 0 0.48 0 1.69 6 0.50
s1238 9 1.57 9 1.76 9 1.90
s1423 9 0.43 9 1.24 9 0.58
s3330 420 89.6 420 114.33 493 90.69
s5378 778 45.04 781 965.46 877 46.02
s9234.1 193 69.71 193 180.31 195 103.48
s13207.1 374 343.12 381 1577.6 399 355.70
s15850.1 315 201.85 317 1166.4 317 239.22
s35932 3984 484.23 3984 880.08 3984 542.73
s38417 328 365.27 332 3085.8 356 706.67
s38584 1638 8113.5 1654 21341 1691 8415.1

 Table 1: Untestable faults (new thm. v/s the trad. method)
 * M : Maximum Edge Weight. M = 1 � frame range of –1 to 1

 FUNI+FIRE Our Tool

(W/O EB impl)
Our Tool

(W/ EB impl)

 Circuit Suntest /
Fr.

Time
(sec)

Suntest /
#Fr.=3

Time
(sec)

Suntest /
#Fr.=3

Time
(sec)

s386 36/2 0.4 42 0.11 60 0.55
s400 16/3 2.0 8 0.42 8 0.26
s713 91/15 1.7 32 0.11 32 0.41
s953 0/5 8.5 2 1.20 5 3.99
s1238 6/3 4.1 6 0.85 9 1.90
s1423 5/2 12.3 9 0.25 9 0.58
s1196 0/3 3.5 0 0.32 0 0.96
s5378 414/15 43.5 577 4.79 877 46.02
s9234 257/15 108.8 272 43.95 274 180.27
s13207 654/10 150.8 688 29.06 791 486.24
s15850 816/10 114.0 356 78.1 445 815.02
s35932 3984/0 237.4 3984 80.47 3984 542.72
s38417 381/5 373.4 337 297.1 356 706.67
s38584 1582/5 405.4 1553 333.8 1691 8415.1

Table 2: Comparison of our tool with FUNI +FIRE

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

