
A Method of Test Generation for Path Delay Faults
Using Stuck-at Fault Test Generation Algorithms

Satoshi Ohtake†, Kouhei Ohtani‡ and Hideo Fujiwara†

† Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

{ohtake, fujiwara}@is.aist-nara.ac.jp

‡ Hyper Device Division, Semiconductor Company, Sanyo Electronics Co., Ltd.
180 Ohmori, Anpachi-Cho, Anpachi-Gun, Gifu 503-0195, Japan

OOTA021828@swan.sanyo.co.jp

Abstract
In this paper, we propose a test generation method for

non-robust path delay faults using stuck-at fault test gen-
eration algorithms. In our method, we first transform an
original combinational circuit into a circuit called a partial
leaf-dagusing path-leaf transformation. Then we generate
test patterns using a stuck-at fault test generation algorithm
for stuck-at faults in the partial leaf-dag. Finally we trans-
form the test patterns into two-pattern tests for path delay
faults in the original circuit. We prove the correctness of the
approach and experimental results on several benchmark
circuits show the effectiveness of it.

1. Introduction

For complex high speed VLSI circuits, delay testing is
necessary to reach an acceptable quality level. Until now,
many delay fault models have been investigated[1]. The
path delay fault (PDF) model[2] is one of the most gen-
eral models among them because distributed faults along
paths can be tested and the delay size of detectable faults is
scalable. However, the disadvantage with the PDF model
is that the number of faults with respect to the number
of gates in a circuit is exponential in the worst case and
generating efficient (high fault coverage and compact) tests
for faults in a short time is generally hard. In order to
avoid the former disadvantage, a technique for selecting
paths to be tested for combinational circuits[3] and tech-
niques for re-synthesizing circuits such that the path count is
reduced[4, 5] are proposed. The latter disadvantage can be
avoided by synthesis-for-testability (SFT) techniques[1, 6],
design-for-testability (DFT) techniques[1, 7] andcircuit
pseudo-transformation techniques[1, 8, 9, 10, 11].

In this paper, we target to ease test generation. The SFT
and DFT techniques can make a given combinational cir-
cuit easily testable at the cost of additional hardware and in-
creased delay. Therefore we aim to make a new test genera-
tion methodology for PDFs in combinational circuits within

the framework of circuit pseudo-transformation. A circuit
pseudo-transformation transforms a given circuit into dif-
ferent one tentatively during test generation. And then tests
are generated for the transformed circuit. After that, the
generated tests for the transformed circuit are transformed
into that for the original circuit.

Several test generation algorithms for PDFs in combina-
tional circuits have been proposed[1]. A two-pattern test
must be generated for a PDF to launch a signal transition at
the primary input of a path. To deal with signal transitions,
multiple-valued calculi, such as 10-value calculus[12] and
13-value calculus[13], are often used in PDF test generation
algorithms. Such a multi-valued calculus increases the com-
plexity of the test generation compared to the stuck-at fault
(SAF) test generation. However, it was shown by Saldanha
et al. that a single SAF test generation tool can be used for
the generation of robust tests for a combinational circuit by
transforming it into arising(falling)-smooth-circuit[8]. The
transformation is a kind of circuit pseudo-transformation.
Since SAF test generation tools are mature and highly effi-
cient, it is conceivable that utilizing a SAF test generation
tool for PDF test generation is very effective. An alternative
method was also proposed by Gharaybeh et al. [10] where a
given circuit is transformed into a two-level circuit and then
non-robust tests are generated by a single SAF test genera-
tion tool. Although these methods can generate delay tests
using single SAF test generation tools, they have the follow-
ing disadvantages. For Saldanha’s method, only robust test
generation is dealt with. However, it is necessary to gener-
ate tests for non-robust testable PDFs to guarantee the qual-
ity of circuits. For Gharaybeh’s methods, even if the num-
ber of target paths for test generation is significantly smaller
than the total number of paths, the complexity of their cir-
cuit pseudo-transformation depends on the total number of
paths in a given circuit.

Majumder et al.[11] considered a one-to-one correspon-
dence between every untestable path in a circuit and a re-
dundant SAF in itsunfolded circuit. For well-well known

1530-1591/03 $17.00  2003 IEEE

path delay fault classifications, they characterized each
class in terms of the testability of SAFs in a circuit. The
notion of the characterization is also related to this work.

The contribution of this paper is a new test genera-
tion method for non-robust testable PDFs using an exist-
ing single SAF test generation tool based on circuit pseudo-
transformation. Our method deals with non-robust test gen-
eration. We use a transformation called apath-leaf transfor-
mation as circuit pseudo-transformation and we transform a
given combinational circuit into a circuit called apartial
leaf-dag. The complexity of the path-leaf transformation
depends on the number of target paths for test generation
instead of the total number of paths. In this paper, we theo-
retically prove the correctness of the method and also show
the effectiveness of it by performing several experiments on
benchmark circuits. The experimental results show that our
method can generate a test set with complete fault efficiency
in short test generation time compared to a case using an
ordinary commercial test generation tool. Furthermore, the
test set generated by our method is significantly more com-
pact than the one generated by the commercial tool.

2. Preliminary

A combinational circuit is composed of standard gates,
such as AND, OR, NAND, NOR and NOT gates.

In a combinational circuitC, a pathP is defined as an
ordered set of gates{ f1, f2, . .. , fn}, where f1 is a primary
input andfn is a primary output and the output of gatef i is
the input to gatef i+1(1≤ i≤ n−1). PathP has a delay fault
if propagation time of a rising or a falling signal transition
through the path exceeds a specified limit. Such a delay
fault on a path is called apath delay fault (PDF)[2, 1]. A
path delay fault onP is referred to asP ↑ or P ↓, depending
on whether the transition is rising or falling atf n.

A controlling value for f i is a value at its input that deter-
mine the value at the output independent of the other inputs
and is denoted ascv(fi). Inversely, anon-controlling value
for fi is a value at its input which is not a controlling value of
the gate and is denoted asncv(fi). The input offi connected
from fi−1 is called anon-inputs of f i alongP and denoted as
on(fi,P). On the other hand, the inputs off i other thanfi−1
are calledoff-inputs of f i alongP and denoted asoff(fi,P).

PDFs can be classified into four categories by the condi-
tions of their off-inputs: (1)robust testable, (2) non-robust
testable, (3) functional sensitizable and (4)functional un-
sensitizable [1]. This paper targets (1) and (2) and does not
distinguish them. Therefore, instead of using definition of
non-robust off-input andnon-robust testability in [1], we re-
define as follows.
Definition 1 Let { f1, f2, .. ., fn} be a path in a combina-
tional circuitC. Let gi j be a gate such thatgi j ∈ off(fi). The
off-input gi j is called anon-robust off-input with respect to
an input vector pair〈v1,v2〉 for C if gi j(v2) = ncv(fi), where
gi j(v2) is the value ofgi j whenv2 is applied toC. �

1

2

3

4

5

6

a

b

c
x

11

00

00

00

11

00

Figure 1. An NRPDF c246x ↑.

a

b

c

x

11

13

12

21

22

23

3

42

41

5

6

Figure 2. A full leaf-dag.

Definition 2 Let P = { f1, f2, .. ., fn} andP ↑ (P ↓) be a path
in a combinational circuitC and a PDF onP, respectively.
The PDFP ↑ (P ↓) is called anon-robust testable PDF (NR-
PDF) if there exists an input vector pair〈v1,v2〉 of C such
that at eachfi ∈ P, fi(v1) �= fi(v2) andgi j(v2) = ncv(fi) for
eachgi j ∈ off(fi,P). Such an input vector pair is called a
non-robust two-pattern test. �

Example 1 A PDFc246x ↑ shown in Figure 1 is an NRPDF
because there is a two-pattern test〈000,001〉 and all the off-
inputs meet the condition of non-robust off-input.
Definition 3 A full leaf-dag is a combinational circuit such
that a fanout and an inverter are only permitted at the pri-
mary inputs and the output of an inverter is not allowed to
have a fanout. �

Notice that full leaf-dag is originally referred to asleaf-
dag in [9]. However, in this paper, to distinguish frompar-
tial leaf-dag defined as follows, we call leaf-dag full leaf-
dag.
Example 2 A full leaf-dag is shown in Figure 2.
Definition 4 Let α = {P1,P2, .. .,Pm} be a subset of paths
in a combinational circuitC. For eachPi ∈ α , if there is no
fanout and inverter onPi except for the primary input and an
inverter is not allowed fanout,C is called apartial leaf-dag
with respect toα . �

Example 3 Consider a circuit shown in Figure 3. The cir-
cuit is a partial leaf-dag with respect toc23426x.
Definition 5 A transformation from a combinational circuit
C to a partial leaf-dag with respect to a pathP composed of
the following two steps is called apath-leaf transformation
with respect toP.

1

23

3

42

5

6

a

b

c
x

41

21

22

Figure 3. A partial leaf-dag with respect to a
path c23426x.

a

b

c

d

b

c

d

a1

a2

a3

P P'

e

e

Figure 4. 1st step of path-leaf transformation:
a fanout of a is moved to its input by duplicat-
ing a to a1, a2 and a3.

Step 1: Move all the fanouts on P to the primary input.
From the primary output, each fanout onP is moved
from an output of a gate to its input by duplicating the
gate (see Figure 4.)

Step 2: Move all the inverters on P to the primary input.
From the primary output, each inverter onP is moved
from an output of a gate to its input by replacing AND
(resp. OR) gate by OR (resp. AND) gate using De
Morgan Law (see Figure 5.)

The path in the transformed circuit corresponding toP is
referred to asL(P). �

We consider a combinational circuitC and pathP in C.
LetCl

P be a partial leaf-dag with respect toL(P) transformed
from C with respect toP. Although the circuit structures
of C andCl

P are different, the functionalities ofC andC l
P

are the same. There is one-to-one correspondence between
pathsP in C andL(P) in Cl

P.
Example 4 We obtain a partial leaf-dag with respect to
c23426x shown in Figure 3 by applying the path-leaf trans-
formation with respect toc246x to a combinational circuit
shown in Figure 1.

Any combinational circuit can be transformed into par-
tial leaf-dag with respect to its subset of paths by the path-
leaf transformation. If we transform the circuit with respect
to the set of its all the path, its full leaf-dag can be obtained.
Definition 6 Let C be a partial leaf-dag with respect toα
whereα is a subset of paths. TheI-edge of P ∈ α in C refers
to either the connection from primary input if no inverter is
there, or else the connection immediately after the inverter.
�

The I-edge is originally defined for full leaf-dag by Sal-
danha et al.[8]. In order to apply this notion to partial leaf-

1

P'

1 0

0

0 1

P l P l

P'

Figure 5. 2nd step of path-leaf transformation:
an inverter on a gate is moved to its input by
changing the type of the gate.

dag, our definition overrides the definition by Saldanha et
al.[8].

In general, to determine a path in a combinational circuit,
all the gates on a path must be specified. However, for a full
leaf-dag, if an I-edge is specified, the path which contains
the I-edge is uniquely determined [9]. For a partial leaf-dag
with respect to pathsα , Pi ∈ α is uniquely determined by
specifying the I-edge onPi.

3. Test Generation

In this section, we propose a test generation method for
NRPDFs using a stuck-at fault (SAF) test generation algo-
rithm. Given a combinational circuitC and a subsetα of
paths inC, the method proceeds as follows.
Step 1: We make a partial leaf-dagCl

α with respect toα
by applying the path-leaf transformation scheme toC
with respect to every path inα .

Step 2: ForCl
α , we generate tests for SAFs on I-edges cor-

responding to paths inα using a single SAF test gen-
eration algorithm.

Step 3: We transform the generated tests for the SAFs in
Cl

α into non-robust two-pattern tests for PDFs inC.
Notice that, even if a PDF is robust testable, our method

may generate a non-robust test for the PDF. If robust tests
are required for robust testable PDFs, robust tests can be
obtained by applying the method proposed by Saldanha et
al.[8] prior to our method.

We explain our method in detail in the following subsec-
tions. We first define correspondence between a PDF onP
in C and an SAF on a I-edge ofL(P) in Cl

α . Next, we de-
fine a transformation which transforms a test pattern for the
SAF inCl

α to a two-pattern test for the corresponding PDF
on P in C. Then, to prove the correctness of the proposed
method, we show reducibility between the test generation
problem for an NRPDF inC and the test generation prob-
lem for the corresponding SAF inCl

α .

3.1. Correspondence between PDF and SAF

From the structural property of partial leaf-dag, forP∈α
if the I-edge ofL(P) is specified,L(P) is uniquely deter-

mined inCl
α . In our test generation method, we target to

generate a test for an SAF SA0 on the I-edge ofL(P) in
Cl

α instead of a PDFP ↑ on P in C. An SAF SA1 on the
I-edge is also targeted instead ofP ↓ on P. The reason why
we define such a correspondence between the PDF and the
SAF is intuitively discussed in the following example. It is
formally discussed in subsection 3.3.
Example 5 Consider a circuit shown in Figure 6(a). Fig-
ure 6(b) is its partial leaf-dag with respect toc23426x(=
L(c246x)) by applying the pah-leaf transformation to the
circuit (a) with respect toc246x. In our test genera-
tion method, SA0 (resp. SA1) on the I-edge ofc23426x
is targeted for the generation instead ofc246x ↑ (resp.
c246x ↓). When a non-robust two-pattern test〈000,001〉
(resp.〈001,000〉) is applied to the circuit (a), the faulty be-
havior of a PDFc246x ↑ (resp.c246x ↓) can be observed at
the primary outputx shown in (c) (resp. (d)). If there exists
a PDFc23426x ↑ (resp.c23426x ↓) in the circuit (b), when
the same two-pattern test is applied, the faulty behavior can
also be observed at the primary outputx shown in (c) (resp.
(d)). If there exists an SAF SA0 (resp. SA1) on the I-edge
of c23426x in the circuit (b), when the second vector of the
two-pattern test 001 (resp. 000) is applied, the faulty behav-
ior can be observed at the primary outputx as 0 (resp. 1).
The observed responses of the second vector for both the
PDF and the SAF are the same.

3.2. Test pattern transformation

Let v andi be a test pattern for an SAF on the I-edge of
L(P) in Cl

α and the primary input ofL(P). We transform
v into a vector pair〈ṽ,v〉 as a non-robust two-pattern test
for the corresponding PDF onP in C, where ˜v denotes that
ṽi = v̄i for the coordinatei of v and ṽ and ṽ j = v j for each
coordinatej other thani. Such a two-pattern test is reffered
to as asingle input change (SIC) two-pattern test. The rea-
son why the transformed vector pair becomes a non-robust
two-pattern test is described in subsection 3.3.
Example 6 Consider again the circuit shown in Figure 6(a)
and (b). If a test pattern 001 (resp. 000) is generated to
the SA0 (resp. SA1) on the I-edge ofc23426x in the circuit
of (b), the test pattern is transformed to a two-pattern test
〈000,001〉 (resp.〈001,000〉) for the corresponding PDF on
c246x of the circuit (a).

3.3. Correctness of the proposed method

In this section, we show the reducibility between the test
generation problem for SA0 (resp. SA1) on the I-edge of
L(P) in Cl

α and the test generation problem forP ↑ (resp.
P ↓) onP in C.
Theorem 1 A vector pair 〈ṽ,v〉 of C is an SIC non-robust
two-pattern test for P ↑ (resp. P ↓) on P if and only if there
exists a test v of Cl

α for SA0 (resp. SA1) on the I-edge of
L(P).

1

2

3

4

5

6

a

b

c
x

1

23

3

42

5

6

a

b

c
x

41

21

22

v1 v2 t v1 v2 t

1

1

0

0

s-a-0 (s-a-1)

(c) (d)

(b)

(a)
c246x (c246x)

PI c
PO x

(Fault-free)

PO x
(Faulty)

PI c
PO x

(Fault-free)

PO x
(Faulty)

Figure 6. (a) a PDF c246x ↑ (c246x ↓) of a cir-
cuit, (b) its corresponding SA0 (resp. SA1)
fault in the partial leaf-dag of the ciruit of (a)
with respect to c246x, and (c) and (d) are faulty
behaviors of c246x ↑ and c246x ↓, respectivery.

Proof: We show that a vector pair〈ṽ,v〉 of C is an SIC
non-robust two-pattern test forP ↑ on P if and only if there
exists a testv of Cl

α for SA0 on the I-edgee of L(P).
If part: An input vectorv of Cl

α is a test for SA0 one. If
v is applied toCl

α , for each gatef l ∈ L(P), gl(v) = ncv(f l)
becausev is a test for SA0 one, wheregl = off(f l). If v is
applied toC, for each gatef ∈ P, g(v) = ncv(f), where
g = off(f), because, from Definition 5,L(P) is obtained
by moving all the inverters onP to the primary input of
P. Therefore, if a vector pair whose second vector isv is
applied toC, all the off-input ofP meets the condition of
Definition 1. Here, leti be the primary input ofP. The
primary input ofL(P) is alsoi because the primary input
is unchanged by the path-leaf transformation of Definition
5. Sincev is a test for SA0 one, v makese should be 1
if v is applied toCl

α . If ṽ is applied as a first vector of
the vector pair, the logic value one becomes 0. There-
fore, if the vector pair〈ṽ,v〉 is applied toCl

α , a rising tran-
sition is induced ate. The rising transition is propagated
to the primary output ofL(P) because there is no inverter
on the partial path frome to the primary output. From

Definition 5, for each on-inputf l ∈ L(P) in Cl
α , if a tran-

sition ncv(f l) → cv(f l) (resp.cv(f l) → ncv(f l)) occurs,
ncv(f) → cv(f) (resp.cv(f) → ncv(f)) also occurs at the
corresponding on-inputf ∈ P in C (see Figure 5). There-
fore, if 〈ṽ,v〉 is applied toC, some transition is propagated
throughP and the rising transition is induced at the primary
output ofP. Since the rising transition occurs at the output
of P and all the off-input ofP meet the condition of non-
robust off-input, the vector pair〈ṽ,v〉 is an SIC non-robust
two-pattern test forP ↑ onP in C.
Only if part: An input vector pair〈ṽ,v〉 of C is an SIC
non-robust two-pattern test forP ↑ on P. If 〈ṽ,v〉 is ap-
plied to C, some transition is propagated throughP and
the rising transition is induced at the primary output of
P. From Definition 5, for each on-inputf ∈ P in C, if a
transitionncv(f) → cv(f) (resp.cv(f) → ncv(f)) occurs,
ncv(f l) → cv(f l) (resp.cv(f l) → ncv(f l)) also occurs at
the corresponding on-inputf l ∈ L(P) in Cl

α (see Figure 5).
If the second vectorv is applied toCl

α , the logic value 1 is
appeared at the primary output ofL(P). Since there is no in-
verter on the partial path frome to the primary output, SA0
in e is activated by applyingv. Since all the off-inputs ofP
meet the condition of Definition 1 when〈ṽ,v〉 is applied to
C, each off-input ofL(P) becomes a non-controlloing value
whenv is applied toCl

α . Therefore, the vectorv is a test for
SA0 one of L(P) in Cl

α .
We show that a vector pair〈ṽ,v〉 of C is an SIC non-

robust two-pattern test forP ↑ onP if and only if there exists
a testv of Cl

α for SA0 on the I-edgee of L(P). It is obvious
that there exists a similar correspondence betweenP ↓ onP
and SA1 one. Thus, the theorem holds. �

Lemma 1 A PDF P ↑ (P ↓) is non-robust testable if and
only if there exists an SIC non-robust two-pattern test for
P ↑ (P ↓) [10].

The proof of Lemma 1 is available in [10].
Theorem 2 The test generation problem for P ↑ (resp. P ↓)
on P ∈α in C can be reduced to the test generation problem
for SA0 (resp. SA1) on the I-edge of L(P) in Cl

α .
Proof: From Lemma 1 and Theorem 2, it is obvious that
the test generation problem forP ↑ (resp.P ↓) onP ∈ α of C
can be reduced to the test generation problem for SA0 (resp.
SA1) on the I-edge ofL(P) in Cl

α . �

4. Experimental Results

We evaluate effectiveness of the test generation method
proposed in the previous section by experiments and discuss
the advantages of the method. In the experiments, we used
circuits from the ISCAS’85 benchmark suite and the com-
binational logic of circuits from the ISCAS’89 benchmark
suite. Both the ordinary PDF test generation method and
our proposed test generation method are applied to these
circuits. The PDF test generation tool of TestGen (Synop-
sys) [14] is used as an ordinary PDF test generation algo-
rithm and the SAF test generation tool of TestGen is used as

the SAF test generation algorithm in our proposed method.
Both tools are used on Ultra 30 (Sun Microsystems). In the
experiments, we did not select paths to be targeted for test
generation and thus we targeted all paths in test generation
because the selection is not essential for the experiments.

Table 1 gives the results of both the ordinary test genera-
tion and our proposed method. In the table, columns in “Cir-
cuits” represent test generation results for each circuit. For
each row, test generation results for both the ordinary test
generation denoted as “Ordinary” and our proposed method
denoted as “Proposed” are available.

Row “# Faults” denotes the number of faults targeted in
test generation. For the ordinary test generation, TestGen
did not list all the faults that should be tested for s1488,
s1494, s838.1 and c880. Sub-row “Proposed” shows the
total numbers of paths in the circuits. The number is also
the total number of SAFs on I-edges in the circuits.

Rows “# Testable Faults” and “# Two-Pattern Tests” de-
note the number of non-robust testable faults for which two-
pattern tests were generated and the number of two-pattern
tests. For all the circuits, the ordinary test generation tool
achieved complete fault efficiency with respect to the listed
PDFs for all the circuits. The SAF test generation tool also
achieved complete fault efficiency with respect to all the
SAFs on I-edges of all the transformed circuits, that is, our
proposed method achieved complete fault efficiency with
respect to all the PDFs of all the circuits. The average num-
ber of faults detected per a two-pattern test for the ordinary
test generation method is 1.03 and that for our proposed
method is 6.15. Therefore, we can say test sets generated by
our proposed method is more compact than that generated
by the ordinary method. We believe that utilizing stuck-at
fault simulation induced the good results instead of using
more restricted path delay fault simulation.

Row “Test Generation Time (sec.)” denotes test genera-
tion time in second. The test generation time of our method
is shorter than the ordinary one except for c880. For c880,
although the number of faults listed by TestGen is 1/4 of the
number of faults considered in our method, test generation
time of our method is only double of that of TestGen.

Sub-rows “Ordinary” and “Proposed” in “Time Required
for Listing Faults (sec.)” denote times required for making a
file of a path delay fault list for a circuit by TestGen and for
transforming a circuit into its full leaf-dag by our method,
respectively. Time required for transforming a circuit into
its full leaf-dag is shorter that that for listing paths by Test-
Gen for most circuits.

Row “Circuit Size (#gates)” denotes the original circuit
sizes of benchmark circuits for “Ordinary” and the circuit
sizes of transformed circuits by the path-leaf transformation
for “Proposed”. In this experiments, we did not select the
paths to be tested. Therefore, the size of transformed cir-
cuits became large compared to the original one. However,
it is easily considerable that if the number of paths to be
tested in a circuit is a tractable number, the complexity of

Table 1. Experimental results.
Circuits

c17 s386 s382 s526 s1488 s1494 s838.1 c880

Faults
Ordinary 22 414 800 820 1788 1802 2876 4520
Proposed 22 414 800 820 1924 1952 3428 17284

Testable Faults
Ordinary 22 414 734 720 1781 1781 2876 4477
Proposed 22 414 734 720 1916 1927 3428 16652

Two-Pattern Tests
Ordinary 22 372 699 698 1754 1754 2876 4432
Proposed 9 78 92 99 214 205 1144 3451

Test Generation Ordinary 0.16 1.47 4.25 4.59 20.77 20.51 63.80 121.12
Time (sec.) Proposed 0.15 0.36 1.39 1.53 1.62 1.70 15.45 238.36

Time Required for Ordinary 0.04 0.23 0.52 0.53 2.21 2.27 5.07 13.91
Listing Faults (sec.) Proposed 0.39 0.40 0.45 0.46 0.50 0.50 0.51 0.79

Circuit Size (#gates)
Ordinary 6 159 158 193 653 647 446 352
Proposed 15 206 494 431 1262 1282 2257 9772

applying the path-leaf transformation is also tractable and
thus the size of the transformed circuit is also tractable.

From the above discussion, our test generation method is
superior to the ordinary test generation for those benchmark
circuits.

5. Conclusion

In this paper, we proposed a test generation method for
path delay faults. In the method, a single stuck-at fault test
generation tool is used to generate non-robust two-pattern
tests instead of a path delay fault test generation tool. The
advantage of the method is that non-robust test genera-
tion is dealt with and the complexity of the circuit pseudo-
transformation in the method depends on the number of tar-
get paths for test generation instead of the total number of
paths in a circuit. We theoretically proved the correctness
of the method and showed the effectiveness of it through
experiments. We confirmed that test generation time re-
quired for guaranteeing complete fault efficiency and the
number of non-robust two-pattern tests to achieve complete
fault coverage by using the method can be reduced com-
pared to those by an path delay fault test generation tool.

Our future work is to ease the test generation problem for
functional testable path delay faults by using a stuck-at fault
test generation tool under the concept of circuit pseudo-
transformation.

References
[1] A. Krsti ć and K.-T. T. Cheng:Delay fault testing for VLSI

circuits, Kluwer Academic Publishers, 1998.
[2] G. L. Smith: “Model for delay faults based upon paths,” in

Proc. of Int. Test Conf., pp. 342–349, 1985.
[3] K. Heragu, V. D. Agrawal and M. L. Bushnell: “Statistical

methods for delay fault coverage analysis,” inProc. of VLSI
Design, pp. 166–170, 1995.

[4] A. Krsti ć and K.-T. T. Cheng: “Resynthesis of combina-
tional circuits for path count reduction and for path de-

lay fault testability,” inProc. of European Design and Test
Conf., pp. 486–490, 1996.

[5] I. Pomeranz and S. M. Reddy: “On synthesis-for testabil-
ity of combinational logic circuits,” inProc. of 32nd Design
Automation Conf., pp. 126–132, 1995.

[6] A. K. Pramanick and S. M. Reddy: “On the design of path
delay fault testable combinational circuits,” inProc. of 20th
Fault Tolerant Computing Symp., pp. 374–381, 1990.

[7] P. Uppaluri, U. Sparmann and I. Pomeranz: “On minimizing
the number of test points needed to achieve complete robust
path delay fault testability,” inProc. of VLSI Test Symp., pp.
288–295, 1996.

[8] A. Saldanha, R. K. Brayton and A. L. Sangiovanni-
Vincentelli: “Equivalence of robust delay-fault and sin-
gle stuck-fault test generation,” inProc. of Int. Conf. on
Computer-Aided Design, pp. 418–421, 1992.

[9] W. K. C. Lam and R. K. Brayton:Timed Boolean Functions:
A Unified Formalism for Exact Timing Analysis, Kluwer
Academic Publishers, 1994.

[10] M. A. Gharaybeh, M. L. Bushnell and V. D. Agrawal: “Clas-
sification and test generation for path-delay faults using sin-
gle stuck-at tests,”Journal of Electronic Testing: Theory and
Applications, Vol. 11, No. 1, pp. 55–67, Aug. 1997.

[11] S. Majumder, B. B. Bhattacharya, V. D. Agrawal and M. L.
Bushnell: “A complete characterization of path delay faults
through stuck-at faults,” inProc. of Int. Conf. on VLSI De-
sign, pp. 492–497, 1999.

[12] K. Fuchs, F. Fink and M. H. Schulz: “DYNAMITE: An ef-
ficient automatic test pattern generation system for path de-
lay faults,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 10, No. 9, pp. 1323–
1335, Oct. 1991.

[13] T. J. Chakraborty, V. D. Agrawal and M. L. Bushnell: “De-
lay fault models and test generation for random sequential
circuits,” inProc. of Design Automation Conf., pp. 165–172,
1992.

[14] Synopsys, Inc.:TestGen Tool Reference Manual Version
1999.10-TG4.1, 1999.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

