
Virtual Hardware Byte Code as a Design Platform
for Reconfigurable Embedded Systems

Sebastian Lange, Udo Kebschull
{lange, kebschull}@ti-leipzig.de

Department of Technical Computer Science
University of Leipzig

Augustusplatz 11, 04103 Leipzig, Germany

Abstract

Reconfigurable hardware will be used in many future em-
bedded applications. Since most of these embedded systems
will be temporarily or permanently connected to a network,
the possibility to reload parts of the application at run time
arises. In the 90ies it was recognized, that the huge variety
of processors would lead to a tremendous amount of bina-
ries for the same piece of software. For the hardware parts
of an embedded system, the situation today is even worse.
The java approach based on a java virtual machine (JVM)
was invented to solve the problem for software. In this pa-
per, we show how the hardware parts of an embedded sys-
tem can be implemented in a hardware byte code, which can
be interpreted using a virtual hardware machine running
on an arbitrary FPGA. Our results show that this approach
is feasible and that it leads to fast, portable and reconfig-
urable designs, which run on any programmable target ar-
chitecture.

1. Introduction

With a widespread use of reconfigurable hardware such
as FPGAs and PLDs in devices as well as the interconnec-
tion between them through networks new possibilities and
demands arise. It is now possible to not only change soft-
ware components at runtime, but also the hardware logic
itself. This can be done at the customer site without the
need of physical access to the device, possibly even with-
out an explicit interaction with the user. In order to al-
low for a multitude of devices to interact with each other,
hardware components should be interchangeable in a way
that is abstracting from the specific design of the under-
lying hardware architecture. However, due to the lack of
a standardized interface to the FPGAs and other common
programmable devices, it is problematic to define logic in a
general and portable fashion.

Reconfiguration in hardware is synonymous with the in-
corporation of FPGAs in the design. Unfortunately, the con-

figuration file formats of different FPGAs, which represent
the very essence of reconfigurable hardware, differ greatly
and prove incompatible. The incompatibilities are not only
vendor induced, but moreover root in the different physical
layouts of FPGAs. It is therefore not foreseeable that a stan-
dardized, compatible format will be available in the future,
leaving reconfigurable hardware in the same dilemma, soft-
ware was in a decade ago. At that time Java [1] was invented
to eliminate the compatibility issues caused by the variety of
incompatible processor platforms. Ever since its introduc-
tion the Java concept has been inarguably successful. Re-
configurable hardware faces the same principle problem as
software did. In consequence the Java approach of abstract-
ing software from the underlying processor platform should
be applied to reconfigurable hardware. One such solution
will be presented in the remainder of this paper.

The approach of the Virtual Hardware Byte Code
(VHBC) as described in this paper provides a means to
combine the virtues of hardware design with the flexibil-
ity inherent in software. Algorithms are designed as hard-
ware but mapped to a special hardware architecture called
the Virtual Hardware Machine (VHM) by a dedicated hard-
ware byte code compiler. The VHM is designed to be easily
implemented on virtually any underlying hardware archi-
tecture and acts as a mediator between an abstract algorith-
mic description and the hardware itself.

Another important aspect of a design platform for em-
bedded systems is the driving need for low power devices.
With the advent of wireless communication devices and
hand-held computers (PDA’s, cellular phones) a new door
has been opened towards computing power in the light of
information whenever and wherever it is needed. Fast exe-
cution is paramount to keep up with new ever more involved
algorithms. However, this when solved entirely in software
on state of the art all-purpose processing elements requires
ever higher clock frequencies which puts a heavy burden
on the energy resources of any hand-held device or embed-
ded system. Using dedicated hardware resources effectively
increases the computational power as well as lowers the
power consumption, but this comes at the price of very lim-
ited flexibility. The VHBC is specifically designed to repre-

1530-1591/03 $17.00 2003 IEEE

sent hardware. Designs mapped to the VHM will thus run
more effectively than corresponding solutions in pure soft-
ware on general purpose processors, yielding higher perfor-
mance and lower power consumption.

1.1. State of the Art

At present, the design of a new embedded system usually
leads to the deployment of two coexisting design platforms.
On one hand, functionality is cast into hardware by means
of ASIC design. ASICs provide the highest performance
and the lowest power consumption. However, they do not
account for later changes in functionality demands making
reconfigurability impossible. Moreover, the cost of design-
ing ASICs is skyrocketing. The production cost for a single
mask set alone can easily consume well over $1 million.
Furthermore manufacturing techniques have ventured deep
into the fields of sub-micron physics, introducing effects
unaccounted for in years passed, such as signal integrity,
power leakage or electromigration, which in itself makes it
harder to design working chips and thus extends the amount
of money as well as time spent on designing ASICs. A de-
tailed discussion of these effects, however, is far beyond the
scope of this paper and is discussed in detail in the litera-
ture [2]. The other design platform mentioned is software.
Software, being an abstract description of functionality is
inherently exchangeable. It allows not only to account for
changing demands, which greatly shortens design cycles,
but provides also means to transfer functionality among sys-
tems. Furthermore, processors are applied ”off the shelf”,
thus being cost-effective and thoroughly tested. Yet a lot of
different processor platforms exist, leading towards compat-
ibility problems and a multitude of equivalent implementa-
tions of the same application. Far worse, processors prove
to be very power hungry and very complex devices wast-
ing a lot of available computing power because they are de-
signed to be general purpose, but usually only perform very
specific tasks when employed in embedded systems.

In conjunction, neither software nor ASIC design can
sufficiently solve the problems of modern design chal-
lenges. What is needed, is a way to combine the virtues of
both design platforms, namely reconfigurability and short
design cycles coupled with fast execution and low power
consumption, thus making hardware ”virtual” [3]. FPGAs
were a very important step towards Virtual Hardware, be-
cause they offer close resemblance of the performance of
custom-built circuits, yet still provide for changing func-
tionality through reconfiguration. However, FPGAs show
several disadvantages which prevent them from being the
ideal technology for Virtual Hardware. Most predomi-
nantly, FPGAs do not share a common, standardized way of
describing hardware, but rather differ greatly in the layout
and format of their bit file descriptions. Furthermore, FP-
GAs impose harsh limitations towards the size of the Virtual
Hardware designs. Although the number of logical gates
that can be fit on a FPGA is increasing, it is still too small
for a lot of real world designs to be implemented entirely on

an FPGA. As another aspect, the time needed to reconfigure
a whole FPGA, well lies in the range of several millisec-
onds to seconds, proving too long for applications which
change dynamically during execution. The introduction of
partial reconfiguration has helped alleviate the problem, but
in consequence leads to a coarse grain place and route - pro-
cess to bind the partial designs to available resources within
the FPGA, which has to be done at runtime on the chip.
This however, adds complexity to the surrounding systems,
because they have to accommodate for the place and route
logic.

Several proposals have been made addressing different
shortcomings of current FPGAs. The ”Hardware Virtual
Machine” [4] [5] project, lead by Hugo de Man at the K.U.
Leuven, gives attention to the problem of incompatible bit
files, proposing the definition of an abstract FPGA which
provides the essence of FPGAs. Designs should be mapped
onto an abstract FPGA and placed and routed into small
fractions. The so mapped and routed fragments pose an ab-
stract yet portable representation of the design. In order
to allow specific host FPGAs to make use of it, a Hard-
ware Virtual Machine converts the abstract representation
to bit files specific to the FPGA and reconfigures it. This
approach has the advantage of running the actual design on
FPGAs, thus providing high performance. The conversion
itself, however, involves a placing of the hardware frag-
ments as well as a routing of signals between them on the
FPGA. This requires considerable computational effort and
has to be done at design loading time. Furthermore, FPGA
architectures differ greatly and their common ground might
be too small to account for an efficient representation of Vir-
tual Hardware and allow for great efficiency in the resulting
specific bit files.

Another project, ”PipeRench” [6] at CMU in Pittsburgh,
addresses the spacial limitation imposed by FPGA design.
The basic idea is to identify pipeline stages within a given
design. Each stage is then treated as a single block of func-
tionality, that is swapped in and out of the FPGA as needed.
The control over the reconfiguration process is given to a
special purpose processor that transfers the stages from an
external memory to the FPGA and vice versa. The project
assumes that the reconfiguration of a single pipeline stage
can be done with great speed, allowing for stages to execute
while others are reconfiguring. The results of this project
present a possibility to design Virtual Hardware without the
need to consider the spatial extend of the underlying recon-
figurable hardware substrate, while also enabling design-
ers to incorporate dynamic reconfiguration code changes
into the design, thus clearing the way towards devices that
change the functionality provided within the device ad hoc
at user request. The pitfalls of the PipeRench approach
clearly lie within its requirement of special FPGAs with ex-
tremely small reconfiguration delays, as well as the use of
a control processor which turns out to be very complex [7].
Furthermore the architecture provides only limited support
for interstage feed-back data flow, thus restricting the do-
main of applications.

1.2. Our approach

Our approach is different in that it defines means of im-
plementing the hardware part of an embedded system as an
intermediate hardware byte code. This byte code simply
describes the hardware net list on register transfer or logic
level. It is compacted and contains all the parallelism of
the underlying hardware, which makes it run much faster
than a description of the same functionality in software. A
Virtual Hardware Machine (VHM) interprets the byte code.
The VHM is implemented in VHDL and can therefore be
mapped to any target FPGA or even into a CMOS imple-
mentation.

The following sections describe the general concept of
the Virtual Hardware Byte Code and the Virtual Hardware
Machine. To this point a first implementation of the VHM
is available, which, however, supports only a subset of all
possible features. The byte code reflects this simplification
by providing instructions only on the logic level. These re-
strictions were imposed to allow for a first evaluation of the
concept. Nevertheless, it should be evident that the concept
is not limited to the current implementation and will in fact
be easily adaptable to descriptions on register transfer level,
yielding even higher performance.

2. The Virtual Hardware Byte Code

The definition of a coding scheme for virtual hardware
reveals several important aspects. The most predominant
ones are generality and high performance, which unfortu-
nately proof to be quite orthogonal in this matter. General-
ity for one demands that the vast majority of circuits may
be feasible within the execution model of the code while
also calling for the highest level of abstraction of the code
from the underlying hardware substrate. Performance, on
the other hand, requests the code to be as close to the hard-
ware as possible in order to minimize the overhead induced
by emulation on a hardware implementation. Another im-
portant aspect is that hardware reveals a very high level of
parallelism. This inherent parallelism should map to in-
struction level parallelism in the code in order to increase
performance.

With these goals in mind the Virtual Hardware Byte
Code has been defined with a number of features. In order
to support a majority of circuits the available instructions
mimic basic logic operations. This also yields a close re-
semblance of the code to traditional hardware concepts and
thus allows for great efficiency in the actual implementation
of an interpreting hardware processor (Virtual Hardware
Machine). To account for high performance and alleviate
the runtime system from the involved task of extracting in-
struction level parallelism at runtime the virtual byte code
image is pre-scheduled into blocks of instructions which are
independent of each other. Hence, all instructions belong-
ing to the same block can be executed in parallel without
side effects resulting from data dependencies.

The Virtual Hardware Byte Code uses a register transfer
model to represent functionality. Instructions have a fixed
format and consist of an operation code, two source regis-
ters and a destination register. The size of all registers is de-
fined as one bit. The instructions, which are available to ma-
nipulate register contents represent basic logic operations as
well as data movement instructions. A short overview of the
available instruction set is given in table 1.

Header

Virtual Hardware Byte Code

Instr Instr Instr Instr Instr Instr

Instr Instr Instr Instr Instr Instr

Instr Instr Instr Instr Instr Instr

Instr Instr Instr Instr Instr Instr

Instr Instr Instr Instr Instr Instr

Instr Instr Instr Instr Instr Instr

…

Figure 1. Structure of VHBC image

The byte code is structured hierarchically. At the top-
most level it consists of two major parts, the header sec-
tion, which provides general information about the circuit
embedded in the image as well as information necessary to
adapt it to the specific implementation of the Virtual Hard-
ware Machine. The Virtual Hardware itself is encoded in
the second part and consists of an arbitrary number of in-
structions grouped into code blocks. In order to illustrate
the rationale behind the available instruction set the CMOV
instruction will be described in detail.

OpCode Mnemonic Mathematical Expression
00002 EOB N/A
00012 NOP c = c
00102 MOV c = a
00112 NOT c = a
01002 AND c = a∧b
01012 NAND c = a∧b
01102 OR c = a∨b
01112 NOR c = a∨b
10002 XOR c = (a∧b)∨

(

a∧b
)

10012 EQ c = (a∧b)∨
(

a∧b
)

10102 IMP c = (a∧b)∨a
10102 NIMP c = a∧b

11002 CMOV c =

{

b if a true
c otherwise

Table 1. Instruction set of the VHBC

The CMOV operation (short for Conditional MOVe) is, as
the name suggests, a conditional operation. It moves the
content of the second source register to the output register

if and only if the value contained in the first source register
is not zero. It thus sets itself apart from all other instruc-
tions in the instruction set, because the condition introduces
a certain amount of control flow to the code and opens the
possibility to incorporate a dynamic optimization scheme
similar to branch prediction. Conceptually, the CMOV opera-
tion takes two data flows, the one which led to the content
already stored in the output register and the one which con-
tributes to the second input, and chooses among them ac-
cording to the condition in the first input register, thereby
discarding the result of one data flow. The instructions con-
tained in the data flow which was discarded were thus su-
perfluously computed. Given that the same condition holds
in the next cycle it is possible to speculatively prune that
data path.

0x0000 0x00020x0001 0x0003 0x0004 0x0005 0x0006

0x0000 0x00020x0001 0x0003 0x0004 0x0005 0x0006

PE

XOR 0, 1

PE

AND 0, 1

PE

NOP

PE

AND 4, 6

PE

OR 2, 4

PE

AND 4, 5

PE

AND 5, 6

Figure 2. Instruction Mapping

The Virtual Hardware Byte Code defines every position
in a code block to be available for every possible type of
instruction of the instruction set. Therefore no special po-
sitions or slots exist for certain types of instructions. This
leaves a degree of freedom in the placement of instructions,
which is used to implicitly encode the address of the out-
put register and thereby saves the space otherwise used to
explicitly declare it. The address of the destination register
is given by the position of the instruction in its code block
starting to count at 0. If for example an instruction appears
on the third position in the code block its output register
address will be 2. Figure 2 illustrates how instructions are
mapped to output register addresses.

3. The Byte Code Compiler

The Byte Code Compiler is a very important feature of
the VHBC approach, because it provides the means to com-
pile working hardware designs, coded as a VHDL descrip-
tion, into a portable and efficient VHBC representation,
thus removing the need for redesigning working hardware
projects.The tool flow within the VHDL compiler can basi-
cally be divided into three main stages, the hardware syn-
thesis, the net list to byte code conversion and the byte code
optimization and scheduling.

In the first stage, the VHDL description is compiled into
a net list and standard logic optimization is performed upon

it, resulting in an optimized net list. The net list is then
mapped to the components contained within the SimPrim
library from Xilinx. The resulting output of the first stage
is converted to structural VHDL and passed on to the sec-
ond stage. Most standard industry VHDL compilers with a
support for Xilinx FPGAs readily provide the functionality
needed for this step and can therefore be applied. Current
implementations of the VHDL compiler make use of the
FPGAExpress tool from Synopsis.

In the second stage, VHBC fragments substitute the
components of the SimPrim library and form a VHBC in-
struction stream. Before, however, the components are
mapped to a VHBC representation, the net list is analyzed
and optimized for VHBC. The optimization is necessary be-
cause commercial compilers targeting FPGAs usually out-
put designs which contain large amounts of buffers to en-
hance signal integrity otherwise impaired by the routing of
the signals. Furthermore, compilers show a tendency to-
wards employing logic representations based on NAND or
NOR gates, which are more efficient when cast into silicon.
However, the resulting logic structure is more complex, re-
vealing higher levels of logic. The code fragments used for
substituting the logic components are based on predefined,
general implementations of the latter in VHBC and are ad-
justed according to the data flow found in the structural de-
scription from the first phase, thus registers are allocated
and the instructions are sequenced according to the data de-
pendencies inherent.

In the third stage, the byte code sequence is optimized
and scheduled into blocks of independent instructions. First
of all, the data flow graph of the entire design is constructed,
which is possible due to the lack of control flow instructions
such as jumps. The code fragments introduced in the sec-
ond stage are very general, so the resulting code gives a lot
of room to code optimization techniques. One such tech-
nique is dead code elimination, which removes unnecessary
instructions. The code is further optimized by applying pre-
defined code substitution rules along the data paths, such as
XOR extraction or negation removal, to reduce the number
of instructions and compact the code.

The thus optimized code is scheduled using a list based
scheduling scheme [15]. The objective of the scheduling
is to group the instructions into code blocks such that the
number of code blocks is minimal and the number of in-
structions per code block is evenly distributed among all
code blocks. Furthermore, the time of data not being used,
i.e. the number of clock cycles between the calculation of a
datum and its use in another operation, should be minimal.
The scheduled code is then converted to the VHBC image
format and the compiler flow concludes.

4. The Virtual Hardware Machine

Our approach assumes that hardware descriptions can be
translated into a portable byte code which can efficiently be
interpreted by a special hardware processor called the Vir-
tual Hardware Machine. The design of the VHM is greatly

influenced by the properties of the byte code, namely simple
gate level operations and a high level of available instruction
level parallelism, which suppose a VLIW-like architecture
with a very high number of functional units which possess
only very small footprints.

The concept of the VHM is a general one. It aims to be
easily adaptable to a variety of underlying hardware plat-
forms, ranging from standard hardware CMOS implemen-
tations to different reconfigurable hardware substrates such
as FPGAs. Due to differing platform capabilities, VHM im-
plementations differ in the number of available functional
units and registers as well as the extend of the available ex-
ternal port capabilities. In principle, the virtual hardware
machine consists of five components:

Register File

FU

0x006

FU

0x0050x0040x0030x0020x001

FUFUFUFU FU

0xXXX

Sequencer

Decoder VHBC image

Figure 3. Principle components of the Virtual Hard-
ware Machine

Decoder The decoder takes the byte aligned instruction
input stream and extracts code blocks from it. The instruc-
tions embedded in the code blocks are adapted to the spe-
cific VHM implementation, thus register addresses might
have to be recalculated or the register address sizes possibly
need to be enlarged. The adapted instructions are then sent
to the instruction caches of the functional units. Further-
more, the decoder is also responsible for resolving prob-
lems caused by oversized code blocks, meaning that more
instructions are pre-scheduled into a code block than func-
tional units are available. In this case, the scheduler tries to
split the code blocks into smaller units.

Functional units Functional units execute the instruc-
tions of the VHBC. In order to allow for an efficient ex-
ecution, each functional unit contains a processing kernel,
sequencer and an instruction cache. The size of the instruc-
tion cache differs among implementations.

Register file The register file consists of single address-
able memory cells. In the current implementation they pos-
sess the width of one bit. In later versions, when the VHM
will work on register transfer level rather than logic, regis-
ters holding eight or more bit will be more appropriate.

Interconnect The interconnect between the functional
units and the register file allows read access from every

functional unit to every register. Write access to the reg-
isters is restricted to exactly one register per functional unit,
thus every functional unit is associated with a hard-wired
output register. The interconnect between the register file
and the external ports is triggered by the sequencer. The
values present at the input ports are read at the very be-
ginning of each macro cycle, overwriting the corresponding
registers, whereas the output port values are altered after all
functional units have finished the execution of the instruc-
tions of the final code block.

Sequencer The global sequencer synchronizes the func-
tional units and triggers the signal propagation to the exter-
nal ports. Furthermore, it takes care of the reconfiguration
of the functional units. Whenever new VHBC images or
fragments arrive, the sequencer allows the decoder to ex-
tract the new instructions and distribute them to the func-
tional units. This can be done, by either stopping the execu-
tion of the current VHBC image and fully reconfiguring all
FUs with new code, or by inserting or replacing only certain
hardware instructions in the instruction caches.

5. Results

In this paper, we have presented the concept of the Vir-
tual Hardware Byte Code in a first preliminary version. To
allow for a first feasibility study, the code only facilitates
logic operations. Up to now, a rudimentary implementation
of the Virtual Hardware Machine in VHDL, a cycle-precise
simulation environment as well as a VHDL to VHBC com-
piler have been implemented to support first evaluations of
the concept.

The VHM currently uses 32 functional units, with 16
instructions deep I-Caches and 32 registers in the register
file. We implemented the VHM using a high level VHDL
description and mapped it onto a Xilinx Virtex XCV800
FPGA. First tests show that the current implementation is
capable of running with a core speed of at least 100 MHz.

Due to the simplicity of the current implementation three
basic designs have been analyzed, a Fulladder (2Add), a 4
bit ripple carry adder (4Add) and a seven segment decoder
(7Seg). Furthermore two more involved designs, a 16 bit
counter (Count16) and a basic general purpose processor
(GPP), were compiled and simulated using the VHM simu-
lation environment. All five designs show that the claimed
high levels of available instruction level parallelism were
well grounded. Table 2 shows the obtained results. All
designs were specified in VHDL and compiled using the
VHDL to VHBC compiler. In the table, the column Blocks
describes the number of code blocks found in the VHBC
code and Parallelism the average number of instruction per
block. With the number of code blocks n, a nominal de-
lay d can be calculated for a given design as follows :
d = n

100MHz = n×10ns. The delay values on the VHM were
calculated using this formula. The delays on the Virtex were
approximated using the timing information available from
the Xilinx VHDL compiler.

Blocks Parallelism Delay Factor
VHM Virtex

2Add 3 4 30ns 15.47ns 1.9
4Add 12 8 120ns 22.07ns 5.5
7Seg 8 31 80ns 12.7ns 6.2

Count16 15 16 150ns 18.4ns 8.2
GPP 37 358 370ns 58.3ns 6.3

Table 2. Results for different designs running on
the VHM and the Xilinx Virtex

The results are quite encouraging to presume further
work on the Byte Code, the Virtual Hardware Machine as
well as the compiler. They clearly indicate that a design
description employing the VHBC performs only factor 5 to
10 times slower than the same design compiled directly for
a specific FPGA, while allowing for portability as well as
easy run time reconfiguration without the need for placing
and routing. On top of this, the early stage of implementa-
tion should be taken into consideration. Code optimizations
as well as more sophisticated VHM implementations will
definitely show even better performance results.

6. Conclusions and future work

We have defined a Virtual Hardware Byte Code (VHBC)
representation for hardware components in embedded sys-
tems, which carries the concept and virtues of Java into
the world of hardware design. As a result we received
a portable and efficient way to transfer hardware designs
via standard network environments. Consequently, we are
working on a specially streamlined hardware processor, the
Virtual Hardware Machine (VHM), as well as a host of soft-
ware tools such as a VHDL compiler and a cycle accurate
hardware simulator to support VHBC. The first version of
the VHM has been implemented and vindicates the idea
of implementing hardware components in VHBC and in-
terpreting it to be viable and feasible.

The main focus of the current work is devoted to an opti-
mized version of the VHM, which will be implemented on
the Xilinx Virtex chip. It will be able to provide more func-
tional units and a higher number of registers. In the future
we will try to map the VHM design efficiently onto a vari-
ety of FPGAs of different vendors by using a pure VHDL
description of the VHM similar to the C reference imple-
mentation of the Java Virtual Machine (C-Machine).

References

[1] T. Lindholm, F. Yellin, ”The Java Vir-
tual Machine Specification, Second Edition”,
http://java.sun.com/docs/books/vmspec/

[2] M. Mahadevan, R. M. Bradley, Journal of Applied Physics,
Vol 79, 1996

[3] M. Budiu, ”Application-Specific Hardware: Computing
Without CPUs”, citeseer.nj.nec.com/497138.html

[4] Y. Ha, P. Schaumont, M. Engels, S. Vernalde, F. Potargent, L.
Rijnders, H. de Man, ”A Hardware Virtual Machine for the
Networked Reconfiguration”, In Proc. of 11th IEEE Interna-
tional Workshop on Rapid System Prototyping (RSP 2000),
2000

[5] Y. Ha, S. Vernalde, P. Schaumont, M. Engels, H. De Man,
”Building a Virtual Framework for Networked Reconfig-
urable Hardware and Software Objects”, In Proc. of PDPTA
’00, 2000

[6] S. Goldstein et al., ”PipeRench: A Coprocessor for Stream-
ing Multimedia Acceleration”, In Proc. of 24th International
Symposium on Computer Architecture, 1999

[7] Y. Chou, P. Pillai, H. Schmit, and J. P. Shen, ”PipeRench Im-
plementation of the Instruction Path Coprocessor”, In Proc.
of MICRO ’00, 2000

[8] B. Mei, P. Schaumont, S. Vernalde, ”A Hardware-Software
Partitioning and Scheduling Algorithm for Dynamically Re-
configurable Embedded Systems”

[9] Y. Ha, B. Mei, P. Schaumont, S. Vernalde, R. Lauwere-
ins, H. De Man, ”Development of a Design Framework for
Platform-Independent Networked Reconfiguration of Soft-
ware and Hardware”, In Proc. of FLP, 2001

[10] R. Kress, A Fast Reconfigurable ALU for Xputers, PhD the-
sis, Universitaet Kaiserslautern, 1996

[11] R. Hartenstein, M. Merz, T. Hoffmann, U. Nageldinger,
”Mapping Applications onto reconfigurable KressArrays”,
In Proc. of FLP, 1999

[12] J. Becker, T. Pionteck, C. Habermann, M. Glesner, ”Design
and Implementation of a Coarse-Grained Dynamically Re-
configurable Hardware Architecture”, In Proc. of Workshop
on VLSI (WVLSI), 2001

[13] C. Nitsch, U. Kebschull, ”The Use of Runtime Configuration
Capabilities for Networked Embedded Systems”, In Proc. of
DATE’02, Paris, 2002

[14] S. Guccione, D. Verkest, I. Bolsens, ”Design Technology
for Networked Reconfigurable FPGA Platforms”, In Proc.
of DATE’02, Paris, 2002

[15] G. De Micheli, ”Synthesis and Optimization of Digital Cir-
cuits”, McGraw-Hill Higher Education, 1994

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

