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Abstract

This paper presents our work toward an operating sys-
tem that manages the resources of a reconfigurable device
in a multitasking manner. We propose an online scheduling
system that allocates tasks to a block-partitioned reconfig-
urable device. The blocks are statically-fixed but can have
different widths, which allows to match the computational
resources with the task requirements. We implement sev-
eral non-preemptive and preemptive schedulers as well as
different placement strategies. Finally, we present a simu-
lation environment that allows to experimentally investigate
the effects of specific partitioning, placement, and schedul-
ing methods.

1 Introduction

Reconfigurable computers map algorithms to specialized
hardware circuits which are configured and executed on, for
example, SRAM-based Field-Programmable Gate Arrays
(FPGAs). These computers are flexible through hardware
reconfiguration. For many computationally intense appli-
cations, e.g., from the digital signal processing domain, re-
configurable systems have been shown to achieve a higher
performance and an increased energy efficiency compared
to processors.

While early FPGAs were rather limited in their densi-
ties and reconfiguration capabilities, todays devices provide
several millions of gates and enable partial reconfiguration
and readback. This allows to configure and execute a circuit
onto the device without affecting other, currently running
circuits. To express the dynamic nature of such circuits we
denote them as hardware tasks. In many of the promising
application domains for reconfigurable embedded systems,
such as networked mobile systems [1] and wearable com-
puting systems [2], the activation times and frequencies of
the different tasks are only known at runtime. Task execu-
tion is triggered by user-generated events and changes in the
environment.

Such highly dynamic situations ask for a well-defined
set of system services that support an efficient design of re-
liable and portable applications and manage the reconfig-
urable resource at runtime. These system services are de-
noted as reconfigurable operating system. Reconfigurable
operating systems are a rather new line of research. One
of the first descriptions of hardware multitasking is due to
Brebner [3]. More recently, Wigley et al. [4] discussed oper-
ating system services including device partitioning, alloca-
tion, placement, and routing. The preemption of hardware
tasks was investigated by Simmler et al. [5].

A central issue in a reconfigurable operating system is
the online scheduling of tasks to the partially reconfigurable
resource. The difficulty of this problem stems from the fact
that task and resource management are strongly coupled.
A multitasked reconfigurable device can be seen as multi-
processor with an additional global resource constraint. As
discussed below, partitioning of the reconfigurable surface
relaxes this resource constraint to some extend and simpli-
fies scheduling.

This paper presents our work toward an operating sys-
tem layer for reconfigurable devices. Section 2 discusses
different area models. Section 3 details our implementation
of non-preemptive and preemptive online schedulers for 1D
block-partitioned reconfigurable devices. A simulation en-
vironment and experimental results are discussed in Section
4. Section 5 reports on the status of our prototype. The main
contributions of this paper are the development of:

• online schedulers for 1D block-partitioned reconfig-
urable devices

• a simulator that accurately models the device’s con-
figuration port with task-dependent configuration and
readback times

2 Reconfigurable Resource Management

The reconfigurable resource is usually modeled by a
rectangular array of configurable logic blocks, and tasks are
modeled by smaller rectangles of such logic blocks. These
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Figure 1. Reconfigurable resource models.

assumptions are reasonable as design tools allow to con-
strain the placement and, only recently, the routing of cir-
cuits to rectangular areas on the device.

The online scheduling problem includes the placement
of tasks on the reconfigurable surface as an important sub-
problem. Given a specific allocation of tasks to the device,
not every ready task might be placeable which strongly ef-
fects scheduling. The area model of the reconfigurable re-
source relates closely to the complexity of the scheduling
and placement problems. In the following sections, we dis-
cuss several area models with their advantages and disad-
vantages.

2.1 2D Area Models

Figure 1a) shows the most flexible area model that al-
lows to allocate rectangular tasks anywhere on the 2D re-
configurable surface. This model has been used by many
authors [3] [6] [7]. The advantage of this model is a high de-
vice utilization as tasks can be packed tightly. On the other
hand, the high flexibility of this model makes scheduling
and placement rather difficult. The development of online
placement algorithms that find a good – or even feasible
– allocation site for a task is not trivial. Bazargan et al. [6]
address this problem and devise efficient data structures and
heuristics. When tasks are placed on arbitrary positions the
remaining free area is fragmented. This external fragmenta-
tion may prevent the placement of a new task although suf-
ficient free resources are available. To combat this external
fragmentation, Diessel et al. [7] investigate defragmentation
techniques such local repacking and ordered compactation.

The area model in Figure 1a) includes some abstractions
that are difficult to reduce to the practice of current FPGA
technology (Xilinx Virtex). First, the tasks will require ex-
ternal wires to connect to other tasks and I/O pads. Related

work either assumes that this communication is established
inside the rectangular task area via configuration and read-
back (which is feasible but presumably inefficient) or pro-
poses to leave some space between tasks for communication
channels. Second, task connections and I/O must be dynam-
ically rerouted and the timing must be reanalyzed which is
not supported by current commercial design tools.

Figure 1b) shows a 2D partitioned model where the re-
configurable surface is split into a statically-fixed number
of allocation sites, so-called blocks. Each block can accom-
modate one task at a time. Such a partitioning has been
proposed by Merino et al. [8] and Marescaux et al. [9].
Partitioning the area simplifies scheduling and placement
and makes a practical implementation on current technol-
ogy more realistic. As the blocks have fixed positions, the
remaining area can be made an operating system resource.
Communication channels and I/O are provided exclusively
by the operating system. With fixed interfaces between the
tasks and the operating system there is no need for online
rerouting and timing analysis [10]. The disadvantage of a
partitioned area model is internal fragmentation, i.e., the
area wasted when a task is smaller than a block.

2.2 1D Area Models

Currently available FPGA technology (Xilinx Virtex)
is partially reconfigurable only in vertical chip-spanning
columns. Hence, the configuration of a task potentially in-
terferes with other tasks allocated to the same columns.

Figure 1c) shows a 1D area model where tasks can be al-
located anywhere along the horizontal dimension; the verti-
cal dimension is fixed. Such a model has been described by
Brebner and Diessel [11], leads to simplified scheduling and
placement, and is amenable to an implementation on Xil-
inx Virtex. However, the model suffers from both internal
and external fragmentation which asks for defragmentation
techniques. Figure 1d) finally shows a 1D block-partitioned
area model which combines the simplified scheduling and
placement of the model in Figure 1b) with the implemen-
tation advantages of the model in Figure 1c). Again, the
disadvantage lies in the high internal fragmentation.

2.3 Our Resource Model

In this paper we focus on the architectural model shown
in Figure 2. The reconfigurable device is controlled by
a host CPU that runs the online scheduler, including the
placer, and performs configuration and readback via a sin-
gle config/readback port. The configuration and readback
times depend on the tasks’ widths. There are several im-
plementations for this system. First, the host CPU can be
externally attached to the reconfigurable device. Second,
host CPU and the reconfigurable area can be integrated in a
so-called configurable system on chip (CSoC). Finally, the
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Figure 2. Architecture model.

host CPU can be implemented in the operating system area
of the reconfigurable device as a synthesizable soft core.

The reconfigurable device contains blocks of fixed size
with the same vertical dimension. We allow for different
block widths, i.e., there are m blocks with l, l ≤ m, dif-
ferent widths w1, . . . ,wl . We assume that communication
takes place via preallocated channels in the operating sys-
tem’s area. Scheduling and placement is not constrained
by communication requirements. Therefore, without loss
of generality we arrange the blocks such that their widths
decrease monotonically from left to right, i.e., w j ≥ wi for
j > i. The area model in Figure 1d) is a special instance of
our resource model.

The motivation of having differently-sized blocks is to
achieve a better match between the resources and the tasks.
Adapting block widths to task widths decreases internal
fragmentation and leads to a higher average resource uti-
lization. Although the block widths are fixed during the
scheduling of a task set, we are still able to change the
widths on a longer time scale. If, for example, the maximum
task width for an upcoming task set is known, the device can
be repartitioned to limit the maximum block width to the
maximum task width and increase the number of available
blocks.

3 Online Scheduling Methods

We assume task sets consisting of n unrelated tasks.
Each task t j is characterized by an a-priori unknown arrival
time a j, the area requirement expressed by its width w j, the
execution time requirement c j and, optionally, a deadline
d j. Configuration and readback times are proportional to
the task width.
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Figure 3. Structure of the online scheduler.

We have implemented a number of non-preemptive and
preemptive schedulers using policies well-known from sin-
gle processor scheduling. All schedulers use the structure
shown in Figure 3 which consists of a number of queues
and the two functions fSPLIT and fSELECT. The number and po-
sitions of the queues depend on the device’s block partition-
ing. A queue q j is created and assigned to block b j if the
next block to the right, bi, has a smaller width, w j > wi. The
right-most block b1 always gets a queue q1 assigned. Func-
tion fSPLIT works in two steps. First, it assigns an arriving
task tx with width wx in the right-most queue corresponding
to a block wide enough to accommodate tx. Second, fSPLIT

inserts the task into that queue according to some sorting
rule.

The function fSELECT actually selects and places the task
that is to be executed next. fSELECT is invoked every time an
executing tasks terminates, a configuration or readback pro-
cess ends, or a new task arrives at the head of some queue.
Among all queue heads, fSELECT selects a task that can be al-
located and configures it onto the smallest idle block able
to accommodate the task. The selection is based on some
selection rule.

The placer in fSELECT can operate in two modes. In the re-
strict mode, tasks in queue qi can only be placed into blocks
that correspond to qi. In the prefer mode, the placer can al-
locate a task to any block that is able to accommodate it.
Consequently, tasks waiting in queue q j can be allocated to
blocks b j, . . . ,bm, but not to blocks b1, . . . ,bi. The example
in Figure 3 indicates the prefer mode. Tasks from q3 can be
placed in b4 and b3, whereas tasks in q1 can be placed in
any block.

3.1 Non-preemptive Methods

The non-preemptive schedulers neither preempt tasks
running on the reconfigurable device nor the configuration
process itself. Once fSELECT selects a task, the task is loaded



and run to termination. We have implemented the following
non-preemptive schemes:

• First Come First Serve (FCFS)
fSPLIT(FCFS) assigns a timestamp to each arriving task
and inserts it into the appropriate queue. The sorting
rule is first-in first-out (FIFO). The selection rule of
fSELECT is to pick the task with the earliest arrival time-
stamp.

• Shortest Job First (SJF)
fSPLIT(SJF) sorts the queues according to the execution
times of the tasks. In each queue, the head entry iden-
tifies the task with the smallest execution time. The
selection rule for fSELECT(SJF) is to pick the task with
the smallest execution time.

3.2 Preemptive Methods

The preemptive schedulers preempt tasks running on the
reconfigurable device to allocate a task with higher prior-
ity. Moreover, the configuration and readback processes can
also be preempted (load abort and unload abort). Figure 4
shows the resulting task state diagram. Configuration pro-
cesses are always aborted by higher-priority tasks. A read-
back process that unloads a block bl is aborted only when
the higher-priority task is to be loaded onto a block differ-
ent from bl . Otherwise, the readback is continued as bl must
be unloaded anyway. We have implemented the following
preemptive schemes:

• Shortest Remaining Processing Time (SRPT)
fSPLIT(SRPT) sorts the queues according to the remain-
ing execution times of the tasks. The selection rule for
fSELECT(SRPT) is to pick the task with the smallest re-
maining execution time.

• Earliest Deadline First (EDF)
fSPLIT(EDF) sorts the queues according to the task dead-
lines. In each queue, the head entry identifies the
task with the earliest deadline. The selection rule of
fSELECT(EDF) picks the task with the earliest deadline.

When all blocks are of equal width, there is only one
queue assigned to the right-most block. In this case, FCFS,
SJF, SRPT, and EDF behave exactly as their single pro-
cessor counterparts. Differently-sized blocks pose an ad-
ditional resource constraint that might break the policy. For
example, FCFS might schedule a later arrived smaller task
before an earlier arrived bigger task.

3.3 Finding Good Partitionings

The partitioning determines the number and widths of
the blocks. Finding a partitioning that yields good schedul-
ing results, e.g., measured by the total execution time for a
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Figure 4. Task states for preemptive schedul-
ing.

task set, is a non-trivial task and will likely involve experi-
mentation.

The following paragraph considers a rather simple sce-
nario where a set of tasks has to be executed. The schedul-
ing goal is to minimize the overall execution time. All
tasks arrive at the same time, their widths are uniformly
distributed in [wmin,wmax], and their execution times are
also uniformly distributed. The placer operates in the re-
strict mode. The device is partitioned into blocks of width
w1, . . . ,wl , with a number of m1, . . . ,ml blocks of each
width. The restrict mode groups the tasks into classes. A
class is defined by an interval of widths, e.g., (wi−1,wi].
A task falling into this interval finds mi blocks to execute
on. We define δi = wi −wi−1 and ∆ = wmax −wmin. The
percentage of tasks scheduled to (wi−1,wi] is δi/∆. This ex-
pression can be taken as measure for the overall execution
time requirement (load) for this class. There are mi blocks
assigned to the class (wi−1,wi], which gives δi/(∆ ·mi) as
measure for the class’ overall execution time. The task set’s
overall execution time is the maximum over all class execu-
tion times. Consequently, a good partitioning should select
the parameters wi and mi in order to

minimize: max
s=1...l

{
δs

∆ ·ms

}
(1)

As an example, consider a device with W = 80, wmin = 4
and wmax = 20. The partitioning [3×20,2×10] leads to an
execution time metric of max

{
7

17·2 , 10
17·3

}
= 0.206. The par-

titioning [2× 20,2× 15,1× 10] leads to an execution time
metric of max

{
7

17·1 , 5
17·2 , 5

17·2
}

= 0.41. The first partition-
ing can thus be expected to work better for the described
scenario.

4 Simulation Experiments

We have implemented a simulation framework to ex-
perimentally investigate the behavior and the performance
of the online schedulers. The parameters of the simula-
tor include the dimensions of the reconfigurable device, the



configuration and readback times for one device column,
and the block partitioning. In the current state the simu-
lation neglects CPU runtimes required for i) the bitstream
manipulations to relocate tasks to different allocation sites,
ii) the context extraction and -insertion, and ii) the online
schedulers. The simulation framework comprises the sim-
ulator module, a task generator, a module for data collec-
tion and statistical analysis including a Gantt chart viewer,
and a graphical display of the allocation situation and queue
loads. In the following, we report on a number of selected
experiments conducted with this simulation environment.

4.1 Evaluation of Partitionings and Placers

This section presents an experiment to investigate the
influence of the partitioning and placement on the perfor-
mance of the FCFS scheduler. We assume independent
tasks. Hence, the scheduler performance is measured by
the average response time for a task set. The response time
ri of a task ti is given by ri = fi −ai, whereas fi is the task’s
finishing time and ai is its arriving time. The simulation
models the Xilinx Virtex XCV1000 where the configura-
tion or readback of one column takes 159µs. We assume
that only 80 columns (out of 96 columns available) are us-
able for blocks; the remaining columns are occupied by the
operating system. Since there are no benchmarks or statis-
tical data available from real-world applications so far, we
have to resort to randomly generated tasks. We have gener-
ated task sets with 100 task each. The tasks widths are uni-
formly distributed in [4,20] columns, the execution times in
[2,200]ms, and the arrival times in [0.5,500]ms. The reso-
lution of the simulator, the duration of one clock tick, has
been set to 500µs.
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Figure 5. Average response time for FCFS.

Figure 5 shows the results for both placer modes, re-
strict and prefer, and five different partitionings. For both
placer modes, the partitioning [1× 20,2× 15,3× 10] per-
forms best. In the restrict mode, the partitioning [2×20,2×
15,1× 10] clearly shows a bottleneck for small tasks. The
prefer mode achieves a much better result for this partition-
ing, as the smaller tasks can be allocated to the larger blocks

as well. The partitioning [1×20,10×6] is a pathologic case
because the 10 blocks with width 6 are quite ineffective. In
this case, 88% of the total load is scheduled to the one large
block. Consequently, the average response time increases
dramatically.

4.2 Influence of Configuration and Readback

This section discusses an experiment to analyze the ef-
fects of configuration and readback on the system perfor-
mance. For this, we have simulated the SRPT scheduler in
the restrict placement mode with and without modeling the
configuration port. The scheduler performance is measured
by the overall execution time for a task set. We have gen-
erated task sets with 25 tasks each. The arrival times are
distributed in [0.1,10]ms to eliminate the influence of late
arriving tasks on the overall execution time. All other pa-
rameters are identical to the previous section which results
in configuration and readback times of [0.6,3.1]ms. The
results show an increase in the overall execution time of
1.2% to 7.3% when configuration and readback times are
included. We believe that in the targeted application do-
mains, such as wearable computing [2], typical task exe-
cution times will be higher than the times assumed in this
experiment. Consequently, the presented partially reconfig-
urable system will not suffer from a bottleneck formed by
the single configuration port.

4.3 EDF Scheduling

Figure 6 displays a screenshot of the Gantt chart viewer.
The reconfigurable surface is partitioned into two blocks
(b1,b2) of widths (w1,w2) = (5,10). The scheduler runs
in EDF mode; the placer in the prefer mode. The example
details the scheduling of a task set with following four tasks
tx(ax,wx,cx,dx):
t1(1,5,8,26), t2(2,5,8,24), t3(8,5,4,23), t4(9,8,4,20)

The configuration and readback times for t1, t2 and t3 are
2, for task t4 3 time units. At time 1, t1 arrives and starts
to configure onto b1. At time 2, t2 arrives and gets a higher
priority than t1. The placer allocates t2 to b2 (prefer mode).
The configuration of t1 is preempted (configuration abort)
and t2 is configured onto b2.

Figure 6. Gantt chart of an EDF schedule.



At time 4, the config/readback port is released by t2. t1
starts again configuration onto b1. At time 8, t3 arrives with
a higher priority than t1 and t2. As both blocks are already
in use, the scheduler selects t1 to be preempted due to its
long deadline. Readback of t1 from b1 starts. At time 9,
t4 arrives with the highest priority among all tasks. t4 can
only be placed in b2. Consequently, t2 must be preempted.
The readback of t1 which is currently in progress is stopped
(unload abort) and the readback of t2 is started instead. t1
resumes execution on b1. At time 11, readback of t2 has
finished and t4 is loaded onto b1.

5 Prototype Implementation

The prototype is work in progress. The implementa-
tion is done on a PC-based XESS XSV-800 board equipped
with a Virtex XCV-800 FPGA. The tasks are designed in
VHDL and synthesized to full FPGA bitstreams with com-
mercial design tools (Xilinx Foundation). From these full
bitstreams we extract partial bitstreams [10]. Then we lo-
calize and store the positions of the status bits within the
partial bitstreams. These status bits define the tasks’ con-
texts. We have created an operating system frame on the
FPGA and partitioned the remaining area into a number of
blocks. Each block is provided with a reset signal. The host
PC can execute following operating system functions:

• task load: The task is relocated by modifying the
frame addresses in the partial bitstream. Then, the
partial bitstream is written to the FPGA. Finally, the
block’s reset signal is enabled which loads the initial
state and starts task execution.

• task preemption: The running task’s state is captured
by activating the capture signal on the FPGA. Then,
the task with its state is read back. Finally, the context
is extracted and saved by accessing the state bits in the
readback bitstream.

• task resume: This is basically identical with task load.
The only difference lies in the insertion of the previ-
ously extracted state into the partial bitstream before
loading.

We have created rather simple test tasks in the com-
plexity of counters. For debugging purposes, we allow the
blocks access to I/O pins that connect to external LEDs. We
have been successful in loading, preempting, and resuming
such tasks on the FPGA. Although the correct function has
been verified, we must note that the tasks have limited sizes.
Future work includes the implementation and test of more
complex tasks.

6 Conclusion and Further Work

In this paper we discussed area models for reconfig-
urable devices. We introduced a 1D block-partitioned

model and devised an online scheduling system that sched-
ules tasks according to several non-preemptive and preemp-
tive policies. We presented a simulation framework that
allows to evaluate specific partitionings, placements, and
scheduling methods.

Further work includes the investigation of novel schedul-
ing techniques that adapt the resources by a repartitioning of
the device and the implementation of a more complex proto-
type for wearable computing [2]. We also intend to look at
application scenarios with related tasks and tasks with hard
deadlines.
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