
Distributed Synchronous Control Units for Dataflow Graphs under Allocation of
Telescopic Arithmetic Units

Euiseok Kim†, ‡ Hiroshi Saito† Jeong-Gun Lee‡

Dong-Ik Lee‡ Hiroshi Nakamura† Takashi Nanya†

Dependable and High-Performance Computing Laboratory, RCAST, Univ. of Tokyo†

Ultra-Fast Fiber Optic Networks Research Center, Dept. of Info. and Comm., K-JIST‡

E-mail: {eskim, hiroshi, nakamura, nanya}@hal.rcast.u-tokyo.ac.jp & {eulia, dilee}@kjist.ac.kr

Abstract

In order to enjoy performance improvement effects of
variable computation time arithmetic units in a system level,
we propose a new synchronous control unit design method-
ology for dataflow graphs under allocation of a telescopic
arithmetic unit which is one of well-known synchronous
variable computation time arithmetic units. The proposed
method generates an independent synchronous controller
for each component arithmetic unit, and builds a distributed
synchronous control unit through integrating derived con-
trollers. The distributed structure of a final synchronous
control unit maximizes performance improvement effect of
telescopic arithmetic units through a complete preservation
of original concurrency among operations.

1. Introduction

With the increase of interests in high-performance sys-
tem design, variable computation time arithmetic units, in
short VCAUs, have started to be used for implementing a
variable delay datapath of a target system in pursuit of
performance enhancement[1, 2, 3]. However, adoption of
VCAUs requires modification of a traditional synchronous
control unit design methodology since existing ones are
based on the assumption that all arithmetic units of a dat-
apath operate with their own fixed computation time.

[1, 2] proposed a telescopic arithmetic unit, in short TAU,
which is one of representative synchronous VCAUs, and pre-
sented a method to build a centralized control unit for a
datapath including TAUs. Although the method in [1, 2]
achieved noticeable and pioneering results, it may cause
some problems such as system performance degradation
with the increase of the number of TAUs used in a target sys-
tem. In [3], a synchronous independent controller is built

for each operation, and a global control unit is realized as
a set of those independent small controllers. Although the
method can guarantee that resulting control units are able
to preserve original concurrency among operations, result-
ing control units may suffer from a rapid area increase with
the increase of the number of operations in system specifi-
cations.

In this paper, we propose a new synchronous control unit
design method for dataflow graphs, in short DFGs, under al-
location of TAUs. The proposed method generates an inde-
pendent synchronous controller for each component arith-
metic unit, and builds a distributed synchronous control unit
through integrating derived controllers. Each independent
synchronous controller activates allocated operations se-
quentially once its input operands and allocated arithmetic
unit become available with a new clock occurrence. There-
fore, the idle time of each component arithmetic unit can be
minimized and the original concurrency among operations
is preserved completely.

The organization of this paper is as follows; Section 2
introduces previous work and related problems. In Section
3, a new scheduling method, which is for building a dis-
tributed synchronous control unit, will be explained. Sec-
tion 4 explains how to generate a set of FSMs which will
be synthesized into a final distributed synchronous control
unit. Section 5 and Section 6 present experimental results,
discussions and future work.

2. Previous Work

2.1. Telescopic arithmetic units

A TAU[1, 2] consists of the following two parts, an arith-
metic logic part and a completion signal generator as shown
in Fig. 1. The arithmetic logic part of a TAU is exactly
the same as general synchronous arithmetic logics. The

1530-1591/03 $17.00  2003 IEEE

SD: Short delay / LD: Long delay

Din

C: Completion signal

R
eg

is
te

r

C Generator C
C=0

C=1SD:

LD:

Worst case delay = LD

Arithmetic Unit Dout

Figure 1. A structure of a TAU

completion signal generator, which is a distinctive part of
VCAUs, generates a completion signal when it decides that
computation for input operands is over. For an explanation,
we define two variables LD(Long Delay) and SD(Short De-
lay). Actually, LD corresponds to the worst case delay of
the arithmetic logic part. Note that the real computation
time varies according to input operands although traditional
synchronous system designers assume the worst and fixed
computation time. Therefore, we can divide whole input
operands into two groups; the first group is the set of input
operands requiring computation time not larger than SD, and
the second group is the set of remaining input operands not
belonging to the first group. Intuitively speaking, a com-
pletion signal generator is the set of input operands belong-
ing to the first group. Therefore, it produces ‘1’ for input
operands which can be computed within SD, and thus we
can decide whether the corresponding computation is over
within SD or not by checking the value of the completion
signal generated from the completion signal generator 1. An
automatic generation method of the completion signal gen-
erator was also developed in [1, 2]. Note that our considera-
tion is restricted to TAUs just for convenience of explanation.
That is, the proposed method in this paper can be applied to
other kinds of synchronous VCAUs in the same manner.

Contrary to synchronous system designs, VCAUs are very
general in asynchronous system designs, and there ex-
ist well-known VCAUs such as dual-rail arithmetic units[4]
and speculative arithmetic units[5]. However, they gen-
erate their computation completion signals in continuous
time domain and thus require special asynchronous control
circuits[6, 7, 8].

2.2. A synchronous control unit generation method
based on TAUs

In addition to developments of TAUs, [1, 2] developed a
method to modify an original FSM into a new FSM which
is able to control a variable delay datapath including TAUs,
and we call it TAU based methodology, in short TAUBM. Al-
though the original TAUBM considers direct modification of

1In [1], the completion signal ‘1’ is generated for input operands which
can not be processed within SD. However, in this paper, we take an oppo-
site way for convenience.

CC (<CC) : a new clock cycle based on SD

C : negation of C

(b) (c)(a)

O1

T0

T1

T2

T3

O0

O2

O3

O4

O5

T0

T0’

T1

T2

T2’

T3

O0 O3

O1

O2
O4

O5

CC

S0

S2

S3

S0’

S2’

S1

C / OF0 OF3 RE0 RE3

C / OF0 OF3 RE0 RE3

− / OF1 RE1

C / OF2 OF4 RE2 RE4

C / OF2 OF4 RE2 RE4

− / OF5 RE5

C / OF0 OF3

C / OF2 OF4

TAU

TAU

CC

OF:& RE: operand fetch and register enable signals

CC : an original clock cycle

Figure 2. (a) An original DFG (b) A TAUBM
DFG (c) A corresponding TAUBM FSM

an original FSM, we introduce a TAUBM DFG as an interme-
diate model in a control unit building procedure because
the main goal of this paper is to derive a distributed syn-
chronous control unit for DFGs. Actually, the derivation of
a TAUBM DFG is trivial as follows; [step 1] If a time step Ti

in an original DFG includes operations bound to TAUs, di-
vide it into Ti and T′

i. [step 2] For operations in a time step
Ti of an original DFG, schedule operations bound to TAUs
in both Ti and T′

i, and allocate remaining operations into
Ti. Note that operations which are scheduled in T i and T′

i

can be performed within Ti or within T′
i according to their

input operands. Fig. 2 (a) and (b) show an original DFG

and the corresponding TAUBM DFG when we assume that
a multiplier is implemented in a TAU. Gray colored boxes
in Fig. 2(b) represent that corresponding time steps are not
spent for input operands requiring SD. Therefore, other op-
erations are not scheduled to time steps corresponding to
gray colored boxes. A typical synchronous controller for a
DFG generates predetermined control signals necessary for
performing operations in each time step, and thus its corre-
sponding FSM has a simple counter like structure. However,
a TAUBM FSM receives completion signals from TAUs addi-
tionally, and select different state transitions according to
their values. Fig. 2(c) shows a TAUBM FSM derived for a
TAUBM DFG in Fig. 2(b). Note that states S0 and S2 have
choices according to the value of a completion signal ‘C’,
and thus a resulting system latency varies between 4 and 6
clock cycles. A typical FSM does not have S′

0, S′
2 and ‘C’.

For a detailed explanation about a TAUBM FSM derivation
procedure, please refer to [1, 2].

2.3. Problems of previous work

A TAU and TAUBM proposed in [1, 2] are pioneering
work which introduces the concept of VCAUs in a syn-
chronous system design, and their method improved the
performance of a synthesized target system largely. How-
ever, the method, TAUBM, performs a simple modification of
an original FSM on a reduced new clock cycle. Therefore,

2

TAUBM may not manage complex behavior of a datapath if
the number of TAUs increases. In this subsection, we point
out two problems that TAUBM causes with the increase of the
number of allocated TAUs. Solving those two problems are
important goals of this paper.

The distinctive feature of a TAU is for it to spend one or
two clock cycles selectively according to input operands.
Therefore, if the ratio of input operands requiring SD, de-
noted in ‘P’, is small, performance of a resulting TAUBM FSM

may get worse because of the increased number of clock cy-
cles. With this feature of a TAU, the first problem of TAUBM

is that the possibility of spending one additional clock cycle
increases as more TAUs are used. For example, if only one
TAU is allocated to the time step Ti, the probability that one
more clock cycle is spent is 1-P. However, if n TAUs are al-
located to the time Ti, the probability that one more clock
cycle is spent becomes 1-Pn. Consequently, performance of
a resulting control unit gets worse. In pursuit of high perfor-
mance system, more and more TAUs will be used, and hence
this problem becomes serious.

The second problem is that a TAUBM FSM may not pre-
serve original concurrency among operations. This feature
originates from the fact that all the operations assigned to
the same time step are synchronized. For example, in a
TAUBM DFG of Fig. 2(b), operation O1 can be performed
once operation O0 is over. However, operations O0 and O3

are synchronized, and thus operation O1 cannot start until
operation O3 is over although operations O1 and O3 can be
performed concurrently. Note here that this synchronization
increases idle time of arithmetic units and leads to degrada-
tion of system performance.

3. A New Scheduling Method under TAU Allo-
cation

Synchronous scheduling is a procedure to allocate each
operation in a DFG to a specific time step which is deter-
mined according to the global clock cycle. Therefore, a con-
trol unit starts and finishes each operation at predetermined
time steps. This feature of general synchronous schedul-
ing is due to the basic assumption that all the operations
have fixed computation time. However, with the adoption of
VCAUs such as TAUs, that basic assumption of synchronous
scheduling is not true any more. For example, for a TAUBM

DFG in Fig. 3(a), if we assume that two TAU multipliers and
two general adders are allocated, a time step T ′

0 is reserved
for operations O0 and O6 and thus operation O4 should wait
until both of operations O0 and O6 are over. However, oper-
ation O4 can be activated actually if only one operation out
of O0 and O6 is over when an operation O3 is over. There-
fore, in order for performance enhancement through adop-
tion of TAUs, we need a new concept of scheduling. The new
scheduling method is not to allocate each operation to a spe-

: clique2 TAU multiplier & 2 Adder are allocated : schedule arc

(b)

0

1

4

8

6

Telescopic Multiplier 1

Telescopic Multiplier 2

(c)

O0

O1

O2

O3

O4

O5

O6

O7

O8

T0

T0’

T1

T2

T2’

T1’

O0

O1

O2

O3

O4

O5

O6

O7

O8

(a)

Figure 3. (a) A TAUBM DFG (b) A dependency
graph for multiplications (c) A scheduled DFG

cific time step but to decide execution order among vertices
performing the same operation under available resource al-
location. Therefore, in a new scheduling method, several
schedule arcs are inserted in order to make the number of
concurrently performed operations not bigger than the num-
ber of allocated corresponding resources. Fig. 3(b) shows a
dependency graph, where each node corresponds to a mul-
tiplication operation and each edge represents dependency
relation between two operations corresponding to adjacent
nodes. When we consider only solid edges, the graph has
three cliques ((0-1), (4), (6-8)) minimally and this means
that at least three TAU-multipliers are required. Therefore, if
we assume that two TAU-multipliers are allocated, we should
insert additional schedule arcs. Fig. 3(b) shows that two
edges(dotted edges) are inserted and the minimal number of
cliques becomes two. This kind of scheduling methods have
been already developed by several research groups[9, 10]
and we use them. Fig. 3(c) shows a final scheduled DFG

with 4 additional schedule arcs, where (O0, O1), (O6, O4,
O8), (O3, O2) and (O7, O5) are bound to TAU multiplier-1,
2 and adder-1, 2 respectively.

4. Derivation of a Distributed Synchronous
Control Unit

4.1. A distributed synchronous control unit

FSMs for datapaths with TAUs come to have choices in
next state transitions according to values of completion sig-
nals contrary to typical FSMs and this feature leads to the
increase of the number of states. What is worse is that the
number of states may increase exponentially with respect to
the number of TAUs allocated to the same time step. Fig. 4(a)
shows a part of an example FSM where two TAU multipliers,
TM1 and TM2, are used in one time step. As we see in
Fig. 4(a), a state Si has 22 = 4 state transitions, and similar
choices occur in each subsequent state continuously. Note
that the increase of the number of states causes circuit area
overhead and hence performance degradation. If we assume
a synchronization among operations in the same time step,

3

TM2

S’’’’i

iS

CTM1 /CTM2

(a) (b)

iS

S

i

i+1

S’
/

i i iS’’ S’’’S’

/

/C C/CCTM1 TM2

TM2

TM1 TM2

TM1CC

C C’TM1 TM2

+ C /CTM1

Figure 4. (a) Exponential increase of
state transitions (b) A synchronized state
transition(‘¬’ means the negation)

we can derive a simpler FSM as shown in Fig 4(b) but the
performance of a target system is degraded because of the
first problem explained in 2.3.

In order to build global control units which can control a
datapath with several TAUs efficiently, we propose a method
to derive a set of distributed FSMs for a global control unit.
In the proposed method, the granularity of distribution is
an arithmetic unit. Why? A TAUBM FSM is suitable to the
case that only one TAU is used and its synthesized controller
can guarantee performance improvement effect of the TAU

with variable computation time. Therefore, we intend to
take advantage of a TAUBM FSM by restricting each FSM to
one arithmetic unit. Since an independent synchronous con-
troller is derived for an arithmetic unit, we call the controller
an arithmetic unit controller. A global control unit consists
of arithmetic unit controllers.

4.2. Derivation of arithmetic controllers from DFGs

Fig. 5 shows a basic structure of an arithmetic unit con-
troller. In this paper, we denote completion signals of di-
rect predecessor operation Oi and current operation Oj as
CPO(i) and CCO(j) respectively. Here, Oi is a direct prede-
cessor of Oj and Oj is a direct successor of Oi if Oj uses the
result of Oi as an input operand. However, in this paper, a
direct predecessor or successor relation is restricted to two
operations executed on different arithmetic units since an
arithmetic controller guarantees correct execution order for
two operations using the same arithmetic unit automatically.
As mentioned before, basically the idea of each arithmetic
unit controller is the same as that of a TAUBM FSM. How-
ever, since we construct a distributed controller, where each
entity corresponds to one arithmetic unit, by aggregating
arithmetic unit controllers, we need to build a coordination
mechanism, each arithmetic unit controller receives com-
pletion signals from the direct predecessor operations and
gives completion signals to the direct successor operations
in terms of given schedule. The algorithm to derive an FSM

for an arithmetic unit controller corresponding to a TAU is as
follows;

Clock Signal

Arithmetic Unit

Controller

Next StateCurrent State

FF

OF & RE

C

C

PO CCO

Figure 5. A basic structure of an arithmetic
unit controller

ALGORITHM 1 Derivation of an FSM for an arith-
metic unit controller corresponding to a TAU
input: A DFG where scheduling and resource binding are
completed.
[step 1] For a TAU ‘T’, label operations, which are allocated
to ‘T’, as O0, O1, .., On.
[step 2] For every operation O i, i=0..n, generate states Si

and S′
i. If there exist direct predecessor operations for O i,

generate a ready state Ri additionally.
[step 3] For every operation O i, generate state transitions
Si → S′

i, Si → Si+1, and S′
i → Si+1. For each state transi-

tion, corresponding input and output signals are as follows;
[Si → S′

i]: ¬CT / OFi, [Si → Si+1]: CT CPO’s / OFi REi

CCO(i), [S′
i → Si+1]: CPO’s / OFi REi CCO(i). In the

second and third state transitions, input signals, CPO’s, are
inserted only when there exist direct predecessor operations
for Oi+1.
[step 4] For every ready state Ri+1, generate state transitions
Si → Ri+1, S′

i → Ri+1, Ri+1 → Si+1 and Ri+1 → Ri+1.
For each state transition, corresponding input and output
signals are as follows; [Si → Ri+1]: ¬(CPO’s) CT / OFi

REi CCO(i), [S′
i → Ri+1]: ¬(CPO’s) / OFi REi CCO(i),

[Ri+1 → Si+1]: CPO’s / -, [Ri+1 → Ri+1]: ¬(CPO’s) / -.
OFi and REi represent “operand fetch signal” and “register
enable signal” for operation O i respectively. For operation
On, Sn+1 and Rn+1 are S0 and R0 respectively.

In Algorithm 1, we generate two states, S i and S′
i, one

corresponds to SD and the other corresponds to LD, for each
operation which are bound to TAU ‘T’. If an operation has di-
rect predecessor operations, a ready state R i is generated ad-
ditionally in order to wait for activation of their completion
signals(step 2). Then, according to the values of comple-
tion signals of direct predecessor operations and the TAU ‘T’,
CPO’s and CT, several state transitions are generated with
output signals such as “operand fetch signals(OF i)”, “regis-
ter enable signals(REi)” and “current operation completion
signals(CCO(i))”(step 3). For the case that completion sig-
nals from direct predecessor operations are not activated,
state transitions to a ready state are generated(step 4). FSMs
for non-TAU styled arithmetic units are also constructed in
the similar way. We have only to remove a completion sig-

4

M1: TAU multiplier

S0’ M1C / OF01.

POC (3) COC (0)2. M1C / OF0 RE0

POC (3) COC (0) / OF0 RE03.

COC (0)PO M1C / OF0 RE0C (3)4.

COC (0)PO / OF0 RE0C (3)5.

POC (3) / −6. POC (3) / − 7.

8. M1C / OF1 RE1C (1)CO

10. − / OF1 RE1 COC (1)
M1C / OF1S1

S1’

R1

1

2

3 4

7

5

6

S0

8

9

10

9.

OF & RE: operand fetch and register enable signals

Figure 6. A new FSM of an arithmetic unit con-
troller for a DFG in Fig. 3(c)

nal CT, states S′
i’s, all the incoming and outgoing transitions

of states S′
i’s. Fig. 6 shows an FSM derived by algorithm 1.

The FSM corresponds to a multiplier which is bound with
operations O0 and O1 for a DFG in Fig. 3(c). In Fig. 6,
state transitions “1, 2 & 3” and “4, 5, 6 & 7” correspond
to three state transitions in step 3 and four state transitions
in step 4 respectively. In S0, multiplication O0 can imme-
diately start and generate operand fetch signal, OF0, since
there is no direct predecessor. If those fetched operands can
be processed within 1 clock cycle, CM1, CCO(0) and regis-
ter enable signal, RE0, are activated. Here, note that there
are two possible state transitions, S0 → S1 and S0 → R1,
since O1 can start only after it receives a completion signal
CPO(3). In S0, if CM1 is not activated within 1 clock cy-
cle, a state transition S0 → S′

0 occurs. Since a TAU has two
delay levels in general, in S′

0, CCO(0) and RE0 are gen-
erated newly with OF0 irrespective of the value of CM1.
Here, there are also two state transitions, and one of two
is selected according to the value of the completion signal
CPO(3) from a direct predecessor O3. In a ready state R1, a
synthesized controller waits until O3 finishes its operation,
and goes to S1 when the completion signal from O3 is ac-
tivated. Remaining behaviors are similar and thus we skip
explaining it.

Fig. 7 shows a distributed synchronous global control
unit for a DFG in Fig. 3(c) under the assumption that (O0,
O1), (O6, O4, O8), (O3, O2) and (O7, O5) are bound to
TAU multiplier-1, 2 and adder-1, 2 respectively. In Fig. 7,
note that several communication signals are optimized. For
example, CCO(0) is removed since any other controllers do
not receive it.

5. Experimental Results and Discussions

In this paper, we propose a method to build distributed
synchronous control units for DFGs under TAU allocation.
The main goal of distributed synchronous control units is to
minimize idle time of component arithmetic units through
complete preservation of concurrency among operations.

In order to perform area analysis of the proposed method,

(6)

CONT−M1

CPO (7)

CCO(7)

CPO (4)

CCO

CPO

CPO

CCO

CPO

CCO

CCO

CPO

(1)

(1) (3)

(3)

(3)

(4) CONT−M2

CONT−A1 CONT−A2

(6)

Figure 7. A distributed synchronous global
control unit

Table 1. Area analysis results for TAUBM
FSMs and a distributed FSM for a Diff. DFG

FSM I/O States FFs Area(Com./Seq.)

CENT-FSM 4 / 18 24 5 640 / 110

CENT-SYNC-FSM 4 / 18 7 3 96 / 66

DIST-FSM 4 / 18 20 10 251 / 220
D-FSM-M1 4 / 9 7 3 138 / 66
D-FSM-M2 3 / 9 6 3 53 / 66
D-FSM-A1 3 / 6 3 2 21 / 44
D-FSM-S1 4 / 6 4 2 39 / 44

• DIST-FSM is aggregation of D-FSM-M1, M2, A1 & S1.

we derive three types of FSMs, CENT-FSM, CENT-SYNC-

FSM and DIST-FSM for the well-known high-level synthe-
sis benchmark ‘Differential Equation Solver’(Diff.). Table 1
shows the area analysis results of control units synthesized
from derived FSMs. CENT-FSM and CENT-SYNC-FSM are built
based on expansion of TAUBM and DIST-FSM is derived by
the proposed method. Note that CENT-FSM and CENT-SYNC-

FSM are derived according to the styles shown in Fig. 4(a)
and (b) respectively because original TAUBM considers allo-
cation of only 1 TAU. Scheduling and resource binding for
a DFG of Diff. are performed under allocation of two TAU

multipliers(M1, M2), one adder(A1) and one subtractor(S1).
Therefore, our proposed method derives 4 FSMs, D-FSM-M1,

M2, A1, S1, and DIST-FSM is a set of them. As shown in
Table 1, a distributed control unit(DIST-FSM) is three times
larger than CENT-SYNC-FSM. This is due to the redundancy
of sequential circuits and the communication signal over-
head caused by the distribution of a control unit. However,
as explained in section 4.1, CENT-SYNC-FSM causes perfor-
mance degradation because of additional synchronization
among TAUs in the same time step. CENT-FSM correspond-
ing to the style of Fig. 4(a) guarantees performance as good
as DIST-FSM. However, CENT-FSM represents complex rela-
tions among arithmetic units in one FSM, its synthesized cir-
cuit area becomes relatively large, for example about 1.6

5

Table 2. Latency comparison between TAUBM FSMs and new distributed FSMs

DFG Resources LTTAU(ns) LTDIST(ns) Performance Enhancement

3rdFIR ×:2, +:1 [45][49.4, 57.1, 63.7][75] [45][49.2, 56.2, 61.8][75] [0.4%, 1.6%, 2.9%]
5thFIR ×:2, +:1 [75][81.9, 92.5, 99.4][105] [75][77.9, 82.7, 86.3][90] [4.9%, 10.6%, 13.2%]
2ndIIR ×:2, +:1 [75][80.7, 90.3, 97.5][105] [75][77.9, 82.7, 86.3][90] [3.5%, 8.4%, 11.5%]
3rdIIR ×:3, +:2 [75][83.1, 94.7, 101.3][135] [75][80.6, 89.3, 95.9][135] [3.0%, 5.7%, 5.3%]

Diff. ×:2, +:1, -:1 [60][68.6, 82.9, 93.8][105] [60][68.1, 80.7, 90.6][105] [0.7%, 2.7%, 3.4%]
AR-lattice ×:4, +:2 [120][140.6, 165.6, 176.3][180] [120][134.2, 150.8, 160.2][165] [4.6%, 8.9%, 9.1%]

×: SD(×)=15ns, LD(×)=20ns / +, -: FD(+, -)=15ns

times larger than DIST-FSM, as already explained in section
4.1. Therefore, we can conclude that the distributed ap-
proach enables designers to build performance efficient syn-
chronous control units with small additional area overhead.

For the analysis of performance effects of the proposed
method, we applied it to several DFG benchmarks, and Ta-
ble 2 shows analysis results. FSMs for latencies LTTAU and
LTDIST are derived through expanded TAUBM based on the
style shown in Fig. 4(b) and the proposed method respec-
tively. Each result for latencies consists of [best case], [av-
erage cases where P is equal to 0.9, 0.7 and 0.5], [worst
case]. Average latencies are acquired as changing the value
of ‘P’ because performance effects of a TAU are sensitive to
its SD occurrence ratio ‘P’. The 5th column in Table 2 shows
performance enhancement ratios achieved by our proposed
approach.

Experimental results in Table 1 and 2 show that the
proposed method can guarantee performance improvement
with small additional area overhead explicitly. This feature
is due to the fact that the proposed method succeeds in trans-
forming performance effects of component TAUs into a sys-
tem performance under a distributed structure of a global
synchronous control unit. In conclusion, the proposed dis-
tributed approach is expected to be useful for building per-
formance efficient synchronous control units for datapaths
including TAUs.

6. Future Work

Although TAUs are considered mainly in this paper, the
proposed method can be applied to other types of VCAUs
without special modification. Therefore, we have concen-
trated our effort on developing a new high-level synthesis
tool which can manage various kinds of VCAUs through in-
tegration of the proposed method into an existing our high-
level synthesis tool. For it, development or modification of
new or existing high-level synthesis algorithms in schedul-
ing, resource allocation and binding procedures will be re-
quired. Moreover, construction of a hardware resource li-

brary including VCAUs is one of important future work.

Acknowledgements

This work was partially supported by MEXT of JAPAN,
Special Coordination Fund for Science and Technology and
the Korea Science and Engineering Foundation(KOSEF)
through the Ultra-Fast Fiber Optic Networks Research Cen-
ter at Kwangju Institute of Science and Technology.

References

[1] L. Benini, E. Macii, M. Poncino and G. DeMicheli, “Telescopic
Units: A New Paradigm for Performance Optimization of VLSI De-
signs,” IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol.17, no.3, pp.220-232, Mar. 1998.

[2] L. Benini, E. Macii and M. Poncino, “Efficient Controller Design
for Telescopic Units,” In Proceedings of IEEE International Confer-
ence Innovative Systems in Silicon, pp.290-299, Oct. 1997.

[3] G. DeMicheli, “Synthesis and Optimization of Digital Circuits,”
pp.174-178, New York: McGraw-Hill, 1994.

[4] S. Hauck, “Asynchronous Design Methodologies: an Overview,” In
Proceedings of the IEEE, vol.83, no.1, pp.69-93, 1995.

[5] S. M. Nowick, K. Y. Yun, A. E. Dooply and P. A. Beerel, “Specula-
tive Completion for the Design of High-Performance Asynchronous
Dynamic Adders,” In Proceedings of Async’97, pp.210-223, 1997.

[6] S. M. Nowick, “Automatic Synthesis of Burst-Mode Asynchronous
Controllers,” Ph.D. Dissertation, Stanford University, 1995.

[7] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Petrify: A tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,” IEICE Trans. Inf.
& Syst., vol.E80-D, no.3, pp.315-325, Mar. 1997.

[8] E. Kim, J.-G. Lee and D.-I. Lee, “Automatic Process-Oriented
Asynchronous Control Unit Generation from Control Data Flow
Graphs,” IEICE Trans. Fund., vol.E84-A, no.8, pp.2014-2028, Aug.
2001.

[9] B. M. Bachman, H. Zheng and C. J. Myers, “Architectural Synthesis
of Timed Asynchronous Systems,” In Proceedings of IEEE Interna-
tional Conference on Computer Design, pp.354-363, Oct., 1999.

[10] E. Kim and D.-I. Lee, “Resource Constrained Asynchronous
Scheduling Method through Transformation of Dataflow Graph,” In
Proceedings of 2001 IEEE International Symposium on Circuits and
Systems, pp.V-41-V-44, 2001.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

