
High-Level Allocation to Minimize Internal Hardware Wastage*

M.C. Molina, J.M. Mendías, R. Hermida
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
{cmolinap, mendias, rhermida}@dacya.ucm.es

Abstract

Conventional synthesis algorithms perform the
allocation of heterogeneous specifications, those formed
by operations of different types and widths, by binding
operations to functional units of their same type and
width. Thus, in most of the implementations obtained some
hardware waste appears. This paper proposes an
allocation algorithm able to minimize this hardware waste
by fragmenting operations into their common operative
kernel, which then may be executed over the same
functional units. Hence, fragmented operations are
executed over sets of several linked hardware resources.

The implementations proposed by our algorithm need
considerably smaller area than the ones proposed by
conventional allocation algorithms. And due to operation
fragmentation, in the datapaths produced the type,
number, and width of the hardware resources are
independent of the type, number, and width of the
specification operations and variables.

1. Introduction
Conventional High–Level Synthesis (HLS) allocation

algorithms try to obtain RT–level circuits where each
operation is executed over a unique functional unit (FU)
of its same type and width. When synthesizing
heterogeneous specifications some hardware (HW) waste
(percentage of idle HW resources) appears in almost every
cycle. Even more efficient HLS algorithms, able to
allocate operations of different widths to the same FU,
produce some HW waste if an operation is executed over
a wider FU by extending its arguments. In this case some
bits of the result are computed but not really needed.

The HW waste due to the specification heterogeneity
(number of different types and widths in the specification)
could be reduced by jointly allocating all compatible
operations (those with a common operative kernel)
independently of their widths. This definition is transitive
and considers trivial cases like the compatibility between
additions and subtractions, and more complex ones like

 * Supported by Spanish Government Grant CICYT TIC-2002-750

the compatibility between additions and multiplications.
This requires algorithms able to fragment compatible
operations into their common operative kernel plus some
glue logic.

In the datapaths produced by conventional algorithms,
the number of FUs of every different type is equal to the
maximum number of operations of that type scheduled in
the same cycle. Every FU width depends on both the
scheduling and the widths of the widest operations. By
contrast, in the datapaths designed taking advantage of
operations fragmentation, the type, number, and width of
the HW resources are in general independent of the
specification operations.

To most directly present this new design strategy, the
example illustrated in Fig. 1 will be used. Fig. 1a) shows a
fragment of a heterogeneous specification and a possible
scheduling of it. Fig. 1b) illustrates the implementation
proposed by a conventional algorithm, and Fig. 1c) shows
our more efficient implementation. In the conventional
algorithm implementation the 10×10 multiplier executes
operation (A=B×C) in the first cycle and (J=K×L) in the
second one; and the 16×4 multiplier executes operation
(D=E×F) in the first cycle and (G=H×I) in the second one.
Note that in both cycles some partial HW waste appears
due to the execution of operations over wider FUs.
However, in our approach this HW waste has been
minimized by fragmenting the two operations below:

! (A=B×C) has been fragmented into one 10×4
multiplication, one 10×6 multiplication, and one addition
of 14 bits, and is executed over the 10×4 and 10×6
multipliers and the 14-bit adder.

! (G=H×I) has been fragmented into one 6×4
multiplication, one 10×4 multiplication, and one addition
of 10 bits, and is executed over the 6×4 and 10×4
multipliers and the 14-bit adder.

Note that with this operation fragmentation the HW
waste has been completely removed during the first cycle,
and highly minimized during the second one. Complete
HW waste removal could only be achieved by a
specification re-scheduling that fragments some of the
operations. However, sometimes data dependencies make
datapaths free of some HW waste impossible to construct.

1530-1591/03 $17.00 2003 IEEE

In our example, if we had one addition of m bits
scheduled in a third cycle, conventional algorithms would
include one adder of m bits in the datapath. Instead, in our
solution if m≤14 then the 14 bit adder would be used.
Otherwise one adder of m-14 bits would be included in the
datapath, and linked to the existing 14-bit adder to
propagate the carry signal, thus the addition would be
executed over them.

In the next sections we present a heuristic allocation
algorithm especially suited for heterogeneous
specifications. Its main aim is to minimize HW waste by
fragmenting specification operations into their common
operative kernels when necessary.

2. Related work
The HW waste problem appears when heterogeneous

algorithms are executed over HW architectures with
shared resources. Especially relevant is the case of DSP
algorithms (e.g. an ADPCM encoder includes around 20
different data representations and 40 different operations
types), which has been addressed from different
perspectives:

a) DSP processor programming. HW waste appears
because the DSP software computational model consists
of a set of pre-designed fixed word-length computational
units responsible of executing all the operations. So,
heterogeneous specifications are transformed into other
ones whose operation types and widths match these of the
computational units. Truncation, extension, rounding, and
conversion operators must be applied in order to adjust
operation widths [1].

b) RT-level synthesis of DSP algorithms. The most
common RT-level computational models are: bit-parallel
(processes a complete word of the input sample per cycle),
bit-serial (processes a bit of the input sample per cycle)
and digit-serial (processes a word fragment called digit
per cycle). The heterogeneity problem appears only in bit
and digit-serial implementations, and it is solved by
fragmenting the specification operations into new ones
whose widths allow the maximum bit-level reuse of HW
resources [2][3].

c) HLS of DSP algorithms. Conventional allocation
algorithms synthesize heterogeneous specifications by
binding operations to FUs of the same width [4][5]. More
efficient algorithms allow the execution of operations over
wider FUs [6][7]. And in order to obtain smaller datapaths
some authors propose algorithms that perform the
scheduling and allocation phases at the same time [7].
Another approach [8][9], especially suited for cell-based
technologies, minimizes HW waste by using bit-level
scheduling and allocation algorithms. It transforms every
specification operation into a set of new operations of a
unique type (additions), and afterwards performs jointly
their allocation (independently of their widths). This
binding style leads to datapaths with a unique FU type
(adders), and where all complex operations have been
fragmented into a set of simpler ones (e.g. one m×n
unsigned multiplication is transformed into n-1 additions
of m bits). In this approach unnecessary fragmentation
occurs when an equal number of operations of the same
type and width can be scheduled in every cycle, or in most
cycles. In these cases a selective operation transformation
would be required to maintain the benefits of structured
designs (regularity, locality…).

3. Proposed algorithm
In the present version of the algorithm the following

types of operations have been taken into account:
two-complement signed multiplications, unsigned
multiplications, additions and additive operations (those
which can be transformed into additions, e.g. subtractions,
comparisons, maximum, minimum, etc). The algorithm
works in three phases.

1) Multiplier selection and binding. During this
phase a set of two-complement both signed and unsigned
multipliers is selected. Some specification multiplications
are bound to them, other ones are fragmented into smaller
multiplications and additions to increase the multipliers
reuse, and the remaining ones are transformed into
additions that are allocated during the next phase. At the

A20 bits = B10 bits ×××× C10 bits D10 bits = E6 bits ×××× F4 bits

G20 bits = H16 bits ×××× I4 bits J14 bits = K8 bits ×××× L6 bits

a)

b)

c)

××××16××××4

16 4

F

20

H I0 E
10

10 10

D
•••• G

××××10××××10

10 10

B C0 K
2

20

6 14

J
••••

0 L
4

A

××××6××××4

6 4

E F

××××10××××4

10 4

B C9..6

××××10××××6

10 6

B C5..0
0 K

2 L

10 14 16

+14

2 1464

1414
4 10

4 10

00
D

J

A

G

14
2010

0

••••

••••
4

20

H15..10 I IH9..0

A20 bits = B10 bits ×××× C10 bits D10 bits = E6 bits ×××× F4 bits

G20 bits = H16 bits ×××× I4 bits J14 bits = K8 bits ×××× L6 bits

A20 bits = B10 bits ×××× C10 bits D10 bits = E6 bits ×××× F4 bits

G20 bits = H16 bits ×××× I4 bits J14 bits = K8 bits ×××× L6 bits

a)

b)

c)

××××16××××4

16 4

F

20

H I0 E
10

10 10

D
•••• G

××××10××××10

10 10

B C0 K
2

20

6 14

J
••••

0 L
4

A

××××16××××4

16 4

F

20

H I0 E
10

10 10

D
•••• G

××××16××××4

16 44

F

20

H I0 E
10

10 1010

D
•••• G

××××10××××10

10 10

B C0 K
2

20

6 14

J
••••

0 L
4

A

××××10××××10

10 10

B C0 K
22

2020

6 1414

J
••••

0 L
44

A

××××6××××4

6 4

E F

××××10××××4

10 4

B C9..6

××××10××××6

10 6

B C5..0
0 K

2 L

10 14 16

+14

2 1464

1414
4 10

4 10

00
D

J

A

G

14
2010

0

••••

••••
4

20

H15..10 I IH9..0

××××6××××4

66 44

E F

××××10××××4

10 44

B C9..6

××××10××××6

10 66

B C5..0
0 K

22 L

1010 1414 1616

+14

2 1414664

14141414
4 10

4 1010

00
D

J

A

G

1414
202010

0

••••

••••
4

2020

H15..10 I IH9..0

Fig. 1. a) Scheduling of a heterogeneous
specification, b) implementation proposed by
conventional algorithms, c) more efficient
implementation proposed by our approach.

time of fragmenting multiplications, the algorithm takes
into account the following features:

! Any unsigned multiplication may be fragmented
into a set of smaller unsigned ones plus some additions.
! Any pair of unsigned multiplications may be
fragmented to obtain in each case another unsigned one
of the same width. Be m×n, and k×l (m≥n and k≥l) the
widths of two unsigned multiplications, the biggest
common unsigned multiplication which may be
obtained from their fragmentations is:

m×n if m≤k and n≤l, m×l if m≤k and l≤n
k×n if k≤m and n≤l, k×l if k≤m and l≤n

! Any unsigned multiplication may be fragmented
into a set of additions, as it is shown in Fig. 2.
! Any two-complement signed multiplication may be
fragmented into one unsigned multiplication and two
additions, as shown in Fig. 3.

2) Adder selection and binding. During this phase a
set of adders is selected and every addition bound to it.
These additions may come from multiplication
fragmentations, additive operation transformations, or be
present in the original specification.

3) Routing selection and binding. A set of
multiplexers is instanced and allocated.

The storage units selection and binding take place
during the first and second phases of the algorithm. Each
time one operation is allocated, the registers used to store
its operands and result are selected. The heuristic
algorithm used [10] guarantees the maximum bit-level
reuse of registers. In the datapaths obtained some
variables may be stored simultaneously in the same
register, and some variables may be fragmented and every
fragment stored in a different register.

The next subsections explain in detail the central
phases of the algorithm proposed.

3.1. Multiplier selection and binding
In order to obtain structured designs, excessive

multiplication fragmentation should be avoided, and
therefore some HW waste tolerated. For this purpose, the
Maximum Internal Wastage Allowed (MIWA) parameter
is introduced to quantify the maximum HW waste allowed
by the designer in every design. Be the Internal Wastage
(IW) of a multiplier in a cycle the percentage of bits
discarded from the result in that cycle (due to the
execution of one multiplication over a wider multiplier).
Hence, the IW average of every multiplier in the datapath
should not exceed MIWA. Its value ranges between:
! 0%. Every multiplier in the datapath must execute an
operation of its same width in every cycle.
! 100%. No restriction applies.

Next some concept definitions follow in order to ease
the understanding of this phase of the algorithm.
! Multiplication order: Be m≥n and k≥l then m×n > k×l
(m×n is bigger than k×l) if (m>k) or (m=k and n>l).
! Occurrence of width m×n in cycle c: number of m×n
multiplications scheduled in cycle c.

! Candidate: set of operations formed by zero or one
operation scheduled in every cycle. Of course, there are
many different operation alignments of every candidate
formed by operations of different widths. To reduce the
algorithm complexity we have only taken into account the
ones with the least significant bits of the operands aligned.
Thus, if one operation is executed over a wider FU the
most significant bits of the result produced are discarded.
! Interconnection saving of C candidate IS(C):

IS(C) = BitsOpe(C) + Bits_Res(C) where
BitsOpe(C): number of bits of the C candidate left and

right operands that may come from the same sources.
BitsRes(C): number of bits of the C candidate results that

may be stored in the same register.
During this phase the algorithm only handles the yet

unallocated multiplications. It consists of a loop that

Fig. 2. Fragmentation of a m××××n bits
unsigned multiplication into additions.

+m

m

m
m-1

z0
0

xm-1..0 y0

m

xm-1..0 y1

0

z1m-1

+m 0

m

xm-1..0 y2

z2m-1

+m 0

m

xm-1..0 yn-1

m+1 zm+n-1..n-1

n-1

+m+m++m

mm

mm
m-1m-1

z0
0

xm-1..0 y0

mm

xm-1..0 y1

0

z1m-1m-1

+m+m++m 0

mm

xm-1..0 y2

z2m-1m-1

+m++m 0

mm

xm-1..0 yn-1

m+1 zm+n-1..n-1

n-1

Fig. 3. Fragmentation of an m××××n two complement
signed multiplication into one unsigned multiplication
and two additions.

x
(m-1)x(n-1)

xm-2..0 yn-2..0

n-1 zn-2..0

xm-1

yn-1

m-1

m-1

1

o

xm-1 yn-1 xm-2..0 yn-1

n
m-n zm-2..n-1n-2

o n-2
yn-1

xm-1 yn-2..1

xm-1

y0

xm-1

zm+n-1..m-1
n+1

m-1
m+n-2

m-1 n-1

+m

+n+1 o

o

o

x
(m-1)x(n-1)

xm-2..0 yn-2..0

n-1 zn-2..0

xm-1

yn-1

m-1

m-1m-1

1

oo

xm-1 yn-1 xm-2..0 yn-1

nn
m-n zm-2..n-1n-2

oo n-2
yn-1

xm-1 yn-2..1

xm-1

y0

xm-1

zm+n-1..m-1
n+1

m-1m-1
m+n-2

m-1m-1 n-1n-1

+m++m

+n+1++n+1 oo

oo

oo

finishes when either there are not remaining unallocated
multiplications left, or when it is not possible to instance a
new multiplier without exceeding MIWA parameter (due
to the given scheduling). These conditions are checked in
each loop iteration at the end of every step executed by the
algorithm.

The first and second steps are performed twice during
the first iteration, initially to instance and bind
two-complement signed multipliers, and secondly,
unsigned multipliers. Only during the first iteration, at the
end of the second step every unallocated two-complement
signed multiplications is transformed into one unsigned
multiplication and two additions, as Fig. 3 shows. In the
remaining iterations of the algorithm every step is
performed only once. We detail now these steps.

Instancing and allocating multipliers without IW.
For every different width m×n the algorithm instances as
many multipliers of that width as the minimum occurrence
of width m×n per cycle. Next, the algorithm allocates
operations to them. For every instanced multiplier of
width m×n, it calculates the candidates formed by as many
multiplications of width m×n as the circuit latency, and
the IS of every candidate. The algorithm allocates to every
multiplier the operations of the candidate with greater IS.

Every multiplier instanced in this step executes one
operation of its same width per cycle, consequently its IW
is zero in all cycles.

Instancing and allocating multipliers with some IW.
For every different width m×n, and from the biggest, the
algorithm checks if it is possible to instance one m×n
multiplier without exceeding MIWA parameter. During
this checking the algorithm considers in every cycle, the
operation (able to be executed over an m×n multiplier)
that produces the least IW of an m×n multiplier. After
every successful checking the algorithm instances one
multiplier of the checked width, and allocates operations
to it. Now the candidates are formed by as many
operations as the number of cycles in which there is, at
least, one operation that may be executed over an m×n
multiplier. The width of the candidate operation scheduled
in cycle c is that of the operation used in cycle c to
perform the checking. Hence, each candidate has the same
number of operations of equal width.

Once calculated all candidates, the algorithm computes
their corresponding IS. Next, the operations of the
candidate with the greatest IS are allocated.

Multipliers instanced in this step may be unused during
several cycles, and may also be used to execute narrower
operations. Nevertheless the IW average of these
multipliers is always MIWA compliant.

Fragmenting multiplications. This step of the
algorithm is only reached when it is not possible to
instance a new multiplier of the same width as any of the
yet unallocated multiplications (at this stage the only yet
unallocated multiplications are unsigned ones) without
exceeding MIWA parameter. In this step the algorithm
selects an operation width m×n and a fragment width k×l,

and fragments some of the m×n multiplications into at
least one k×l multiplication. These fragmentations
increase the number of k×l multiplications, which may
result in the final instance of a multiplier of that width
(during steps one or two).
! How are multiplications fragmented?, how many
fragments are obtained?, which are the type and width of
every fragment?

There are many ways of fragmenting one unsigned
multiplication into a set of narrower multiplications and
additions. In particular, the number of different
fragmentations of an m×n multiplication into five
multiplications and four additions, obtaining at least one
k×l fragment is (m-k+1)×(n-l+1)×16 (being m≥k and n≥l).
The number of different fragmentations grows with the
width of the operation to be fragmented, and decreases as
the width of the operation fragment augments.

In the above formula (m-k+1)×(n-l+1) is the number of
different ways of choosing a k×l multiplication fragment
from an m×n multiplication. And for each there are 16
different fragmentations of the remaining part of the
original multiplication. Fig. 4 a) shows the structure of a
7×7 multiplication and one of the 36 different ways of
extracting a 2×2 multiplication from it. For every of these
36 possibilities there are 16 different ways of fragmenting
the rest of the 7×7 multiplication, to produce the minimum
number of fragments (9 operations). These 16 possibilities
correspond to all different ways of selecting either a
horizontal or oblique line in every vertex of the
parallelogram occupied by the selected 2×2 multiplication.
Fig. 4 b) shows some of these 16 possible fragmentations.

The calculus of all possible fragmentations requires
exponential time, so our algorithm only takes into account
a reduced set of them. This set is formed by the particular
cases of the general method explained above, which
fragment minimally the original multiplication. Fig. 5
shows the set of fragmentations considered. Each of these
8 ways fragments the original multiplication into a set of 3
multiplications and 2 additions.
! How are the operations to be fragmented selected?,
which is the fragment width?

First the algorithm selects both the width of the
operations to be fragmented and the fragment width, and
afterwards a set of multiplications of the selected width,
which are finally fragmented.

Multiplication fragmentation increases the number of
narrower multiplications, which may result in the instance
of a new multiplier. Thus the algorithm selects as the
width of the operations to be fragmented, the width m×n
of the biggest multiplication that satisfies the next two
conditions:
a) There is at least one k×l multiplication, being
k×l<m×n, that can be executed over an m×n multiplier (i.e.
m≥k and n≥l).
b) At least in one cycle there is one m×n multiplication
scheduled and there are not k×l multiplications scheduled.

Once chosen the width m×n of the multiplications to be
fragmented, the algorithm selects the fragment width k×l
of the biggest multiplication satisfying the above
conditions. Next the algorithm selects the set of the
operations to be fragmented. This set is formed by one
m×n multiplication per cycle in which there are not k×l
multiplications scheduled.

If there are not two operations satisfying the above
conditions among the yet unallocated multiplications, then
the algorithm selects both two different widths as the
widths of the operations to be fragmented, and a fragment
width independent of the remaining unallocated
multiplications. The widths selected as the widths of the
operations to be fragmented m×n and k×l, are those of the
biggest multiplications which satisfy the next conditions:
a) m×n ≠ k×l
b) At least in one cycle there is one m×n multiplication
scheduled and there are not k×l multiplications scheduled.
c) At least in one cycle there is one k×l multiplication
scheduled and there are not m×n multiplications
scheduled.

In this case the fragment width equals the maximum
common multiplicative kernel of m×n and k×l
multiplications, i.e. min(m,k)×min(n,l). Now the set of
operations to be fragmented is formed by either one m×n
or one k×l multiplication per cycle. In those cycles in
which there are operations of both widths scheduled, only
one multiplication of the biggest width is selected.

Once selected the set of operations to be fragmented
and the desired fragment width, there are 8 different ways
of fragmentation (shown in Fig. 5). The algorithm selects
one of them, following the next criteria:
! The best fragmentations are those which obtain in
addition to one multiplication fragment of the desired
width, other multiplication fragments of the same width as
any of the yet unallocated multiplications.
! Among those fragmentations with identical
multiplication fragments, the one that requires the smallest
adder cost is preferable.

After fragmenting the selected operations the algorithm
executes again steps one and two to instance, if possible,
any multiplier of the same width as any of the new
multiplications (resulting from the fragmentation).

At the end of this phase, if there still are unallocated
multiplications (because due to the given scheduling it is
not possible to instance a new multiplier without
exceeding the MIWA parameter), these are transformed
into additions as Fig. 2 shows.

3.2. Adders selection and binding
This phase performs jointly the adder selection and

binding, guaranteeing the maximum bit-level reuse of
these FUs. The allocated additions may come from three
different sources: additions in the original specification,
additive operation transformations, and multiplication
fragmentations. The algorithm used to perform this phase
is detailed in [10].

The datapaths obtained at the end of this phase have the
following features:

a6 a5 a4 a3 a2 a1 a0
b6 b5 b4 b3 b2 b1 b0

a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

a6 a5 a4 a3 a2 a1 a0
b6 b5 b4 b3 b2 b1 b0

a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

7×3 2×2 7×2

2×2

3×2

5×2

2×2 7×2

5×3 3×2

7×3

3×2 2×2 2×2

7×2

.

.

..
.
.

7×3 2×2 7×2

2×2

3×2

7×3 2×2 7×2

2×2

3×2

5×2

2×2 7×2

5×3 3×2

5×2

2×2 7×2

5×3 3×2

7×3

3×2 2×2 2×2

7×2

7×3

3×2 2×2 2×2

7×2

.

.

..
.
.Fig. 4. a) Structure of a 7××××7 unsigned multiplication, and one way of extracting a 2××××2 multiplication fragment

from it, b) 3 different ways (out of 16 possibilities) of fragmenting the rest of the 7××××7 multiplication.

a) b)

1

2

3

4

5

6

7

8

m×(n-l)

(m-k)×l k×l

m×(n-l)

k×l (m-k)×l

m×(n-l)

(m-k)×l k×l

m×(n-l)

k×l (m-k)×l

m×(n-l)

(m-k)×l k×l

m×(n-l)

(m-k)×l k×l

m×(n-l)

k×l (m-k)×l

m×(n-l)

k×l (m-k)×l

m×(n-l)

(m-k)×l k×l

m×(n-l)

(m-k)×l k×l

m×(n-l)

k×l (m-k)×l

m×(n-l)

k×l (m-k)×l

k×(n-l)

k×l (m-k)×n

k×(n-l)

(m-k)×n k×l

k×(n-l)

k×l (m-k)×n

(m-k)×n k×l

k×(n-l)

k×(n-l)

k×l (m-k)×n

k×(n-l)

k×l (m-k)×n

k×(n-l)

(m-k)×n k×l

k×(n-l)

(m-k)×n k×l

k×(n-l)

k×l (m-k)×n

k×(n-l)

k×l (m-k)×n

(m-k)×n k×l

k×(n-l)

(m-k)×n k×l

k×(n-l)

Fig. 5. Fragmentations of an m××××n multiplication
obtaining a k××××l multiplication fragment.

! One addition may be executed over a wider adder.
! One addition may be executed over a set of narrower
adders linked to propagate the carry signal.
! The sum of the adder widths is equal to the maximum
number of bits added simultaneously in a cycle.
! The number and width of the adders are independent
of the number and width of the additions allocated.

4. Experimental results
In order to measure the quality of the implementations

obtained by our algorithm, they have been compared to
those proposed by Synopsys Behavioral Compiler. We
have synthesized a wide collection of heterogeneous
specifications formed by multiplications and additive
operations of different widths. Specifications sizes ranged
from 10 to 100 operations (about 50% were
multiplications), latencies varied from 5 to 50 cycles, and
MIWA values up to 15%.

Results show that the areas of the implementations
obtained by our approach are always smaller than the ones
of the circuits proposed by the commercial tool. For the
circuits synthesized, the average area saved by our
approach is about 40%. The amount of saved area grows
in general with both the specification heterogeneity
(number of different widths of every different operation
type in the specification divided by the number of
operations) and the scheduling heterogeneity (measures
the uniformity of the operations to cycles distribution) as
it is shown in Fig. 6 a). Fig. 6 b) shows the average area of
some implementations obtained by both Synopsys and our
algorithm, grouped by the number of specification
operations.

5. Conclusion
This paper presents a novel allocation algorithm

especially suited for heterogeneous specifications and
macro-cells technologies (due to the structured designs
obtained). In order to reduce the HW waste produced by

conventional algorithms, some operations are fragmented
and executed over a set of linked FUs.

The implementations obtained are multiple-precision
datapaths, where the number, type, and width of the HW
resources used are independent of the circuit specification.

Experimental results show that the circuits synthesized
using this allocation algorithm have smaller area than the
implementations offered by commercial tools. The amount
of area saved by our approach grows in general with both
the specification and the scheduling heterogeneities.

References
[1] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.

Bolsens. “A methodology and design environment for DSP
ASIC fixed point refinement”. Proc. DATE, 1999.

[2] Y.N. Chang, and K.K. Parhi, “High-Performance Digit-
Serial Complex-Number Multiplier-Accumulator”. Proc.
ICCD, 1998.

[3] H. Lee, and G.E. Sobelman. “FPGA-Based FIR Filters Using
Digit-Serial Arithmetic”. Proc. Int. ASIC Conf., 1997.

[4] C. Huang, Y. Chen, Y. Lin, and Y. Hsu. “Data path
allocation based on bipartite weighted matching”. Proc.
DAC, 1990.

[5] K. Küçükçakar, and A. Parker. “Data Path tradeoffs using
MABAL”. Proc. DAC, 1990.

[6] M. Ercegovac, D. Kirovski, and M. Potkonjak. “Low-power
behavioural synthesis optimization using multiple precision
arithmetic”. Proc. DAC, 1999.

[7] G.A. Constantinides, P.Y.K. Cheung, and W.Luk. “Heuristic
datapath allocation for multiple wordlength systems”. Proc.
DATE, 2001.

[8] M.C. Molina, J.M. Mendías, and R. Hermida. “Bit-level
Scheduling of Heterogeneous Behavioural Specifications”.
Proc. ICCAD, 2002.

[9] M.C. Molina, J.M. Mendías, and R. Hermida. “High-Level
Synthesis of Multiple-Precision Circuits Independent of
Data-Objects Length”. Proc. DAC, 2002.

[10] M.C. Molina, J.M. Mendías, and R. Hermida. “Multiple-
Precision Circuits Allocation Independent of Data-Objects
Length”. Proc. DATE, 2002.

a) b)

Fig. 6. a) Percentage of area saved by our algorithm in comparison with Synopsys Behavioral Compiler, b) average
area of some implementations proposed by Synopsys and our algorithm.

0

500

1000

1500

2000

2500

3000

Ar
ea

10 20 30 40 50 60 70 80 90 100

Number of operations

Synopsys Our algorithm

0
10
20
30
40
50
60
70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f (specification heterogeneity,
scheduling heterogeneity)

%
 S

av
ed

 a
re

a

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

