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Abstract 
 

Conventional synthesis algorithms perform the 
allocation of heterogeneous specifications, those formed 
by operations of different types and widths, by binding 
operations to functional units of their same type and 
width. Thus, in most of the implementations obtained some 
hardware waste appears. This paper proposes an 
allocation algorithm able to minimize this hardware waste 
by fragmenting operations into their common operative 
kernel, which then may be executed over the same 
functional units. Hence, fragmented operations are 
executed over sets of several linked hardware resources. 

The implementations proposed by our algorithm need 
considerably smaller area than the ones proposed by 
conventional allocation algorithms. And due to operation 
fragmentation, in the datapaths produced the type, 
number, and width of the hardware resources are 
independent of the type, number, and width of the 
specification operations and variables. 

 

1. Introduction 
Conventional High–Level Synthesis (HLS) allocation 

algorithms try to obtain RT–level circuits where each 
operation is executed over a unique functional unit (FU) 
of its same type and width. When synthesizing 
heterogeneous specifications some hardware (HW) waste 
(percentage of idle HW resources) appears in almost every 
cycle. Even more efficient HLS algorithms, able to 
allocate operations of different widths to the same FU, 
produce some HW waste if an operation is executed over 
a wider FU by extending its arguments. In this case some 
bits of the result are computed but not really needed. 

The HW  waste due to the specification heterogeneity 
(number of different types and widths in the specification) 
could be reduced by jointly allocating all compatible 
operations (those with a common operative kernel) 
independently of their widths. This definition is transitive 
and considers trivial cases like the compatibility between 
additions and subtractions, and more complex ones like 
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the compatibility between additions and multiplications.  
This requires algorithms able to fragment compatible 
operations into their common operative kernel plus some 
glue logic. 

In the datapaths produced by conventional algorithms, 
the number of FUs of every different type is equal to the 
maximum number of operations of that type scheduled in 
the same cycle. Every FU width depends on both the 
scheduling and the widths of the widest operations. By 
contrast, in the datapaths designed taking advantage of 
operations fragmentation, the type, number, and width of 
the HW resources are in general independent of the 
specification operations. 

To most directly present this new design strategy, the 
example illustrated in Fig. 1 will be used. Fig. 1a) shows a 
fragment of a heterogeneous specification and a possible 
scheduling of it. Fig. 1b) illustrates the implementation 
proposed by a conventional algorithm, and Fig. 1c) shows 
our more efficient implementation. In the conventional 
algorithm implementation the 10×10 multiplier executes 
operation (A=B×C) in the first cycle and (J=K×L) in the 
second one; and the 16×4 multiplier executes operation 
(D=E×F) in the first cycle and (G=H×I) in the second one. 
Note that in both cycles some partial HW waste appears 
due to the execution of operations over wider FUs. 
However, in our approach this HW waste has been 
minimized by fragmenting the two operations below: 

! (A=B×C) has been fragmented into one 10×4 
multiplication, one 10×6 multiplication, and one addition 
of 14 bits, and is executed over the 10×4 and 10×6 
multipliers and the 14-bit adder.  

! (G=H×I) has been fragmented into one 6×4 
multiplication, one 10×4 multiplication, and one addition 
of 10 bits, and is executed over the 6×4 and 10×4 
multipliers and the 14-bit adder. 

Note that with this operation fragmentation the HW 
waste has been completely removed during the first cycle, 
and highly minimized during the second one. Complete 
HW waste removal could only be achieved by a 
specification re-scheduling that fragments some of the 
operations. However, sometimes data dependencies make 
datapaths free of some HW waste impossible to construct. 
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In our example, if we had one addition of m bits 
scheduled in a third cycle, conventional algorithms would 
include one adder of m bits in the datapath. Instead, in our 
solution if m≤14 then the 14 bit adder would be used. 
Otherwise one adder of m-14 bits would be included in the 
datapath, and linked to the existing 14-bit adder to 
propagate the carry signal, thus the addition would be 
executed over them. 

In the next sections we present a heuristic allocation 
algorithm especially suited for heterogeneous 
specifications. Its main aim is to minimize HW waste by 
fragmenting specification operations into their common 
operative kernels when necessary. 

2. Related work 
The HW waste problem appears when heterogeneous 

algorithms are executed over HW architectures with 
shared resources. Especially relevant is the case of DSP 
algorithms (e.g. an ADPCM encoder includes around 20 
different data representations and 40 different operations 
types), which has been addressed from different 
perspectives: 

a) DSP processor programming. HW waste appears 
because the DSP software computational model consists 
of a set of pre-designed fixed word-length computational 
units responsible of executing all the operations. So, 
heterogeneous specifications are transformed into other 
ones whose operation types and widths match these of the 
computational units. Truncation, extension, rounding, and 
conversion operators must be applied in order to adjust 
operation widths [1]. 

b)  RT-level synthesis of DSP algorithms. The most 
common RT-level computational models are: bit-parallel 
(processes a complete word of the input sample per cycle), 
bit-serial (processes a bit of the input sample per cycle) 
and digit-serial (processes a word fragment called digit 
per cycle). The heterogeneity problem appears only in bit 
and digit-serial implementations, and it is solved  by 
fragmenting the specification operations into new ones 
whose widths allow the maximum bit-level reuse of HW 
resources [2][3]. 

c) HLS of DSP algorithms. Conventional allocation 
algorithms synthesize heterogeneous specifications by 
binding operations to FUs of the same width [4][5]. More 
efficient algorithms allow the execution of operations over 
wider FUs [6][7]. And in order to obtain smaller datapaths 
some authors propose algorithms that perform the 
scheduling and allocation phases at the same time [7]. 
Another approach [8][9], especially suited for cell-based 
technologies, minimizes HW waste by using bit-level 
scheduling and allocation algorithms. It transforms every 
specification operation into a set of new operations of a 
unique type (additions), and afterwards performs jointly 
their allocation (independently of their widths). This 
binding style leads to datapaths with a unique FU type 
(adders), and where all complex operations have been 
fragmented into a set of simpler ones (e.g. one m×n 
unsigned multiplication is transformed into n-1 additions 
of m bits). In this approach unnecessary fragmentation 
occurs when an equal number of operations of the same 
type and width can be scheduled in every cycle, or in most 
cycles. In these cases a selective operation transformation 
would be required to maintain the benefits of structured 
designs (regularity, locality…).  

3. Proposed algorithm 
In the present version of the algorithm the following 

types of operations have been taken into account: 
two-complement signed multiplications, unsigned 
multiplications, additions and additive operations (those 
which can be transformed into additions, e.g. subtractions, 
comparisons, maximum, minimum, etc). The algorithm 
works in three phases.  

1) Multiplier selection and binding. During this 
phase a set of two-complement both signed and unsigned 
multipliers is selected. Some specification multiplications 
are bound to them, other ones are fragmented into smaller 
multiplications and additions to increase the multipliers 
reuse, and the remaining ones are transformed into 
additions that are allocated during the next phase.  At  the 
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Fig. 1. a) Scheduling of a heterogeneous 
specification, b) implementation proposed by 
conventional algorithms, c) more efficient 
implementation proposed by our approach. 



time of fragmenting multiplications, the algorithm takes 
into account the following features: 

! Any unsigned multiplication may be fragmented 
into a set of smaller unsigned ones plus some additions. 
! Any pair of unsigned multiplications may be 
fragmented to obtain in each case another unsigned one 
of the same width. Be m×n, and k×l (m≥n and k≥l) the 
widths of two unsigned multiplications, the biggest 
common unsigned multiplication which may be 
obtained from their fragmentations is: 

m×n if  m≤k  and  n≤l, m×l if  m≤k  and  l≤n 
k×n  if  k≤m  and  n≤l, k×l  if  k≤m  and  l≤n 

! Any unsigned multiplication may be fragmented 
into a set of additions, as it is shown in Fig. 2. 
! Any two-complement signed multiplication may be 
fragmented into one unsigned multiplication and two 
additions, as shown in Fig. 3. 

2) Adder selection and binding. During this phase a 
set of adders is selected and every addition bound to it. 
These additions may come from multiplication 
fragmentations, additive operation transformations, or be 
present in the original specification. 

3) Routing selection and binding. A set of 
multiplexers is instanced and allocated. 

The storage units selection and binding take place 
during the first and second phases of the algorithm. Each 
time one operation is allocated, the registers used to store 
its operands and result are selected. The heuristic 
algorithm used [10] guarantees the maximum bit-level 
reuse of registers. In the datapaths obtained some 
variables may be stored simultaneously in the same 
register, and some variables may be fragmented and every 
fragment stored in a different register.  

The next subsections explain in detail the central 
phases of the algorithm proposed. 

3.1. Multiplier selection and binding 
In order to obtain structured designs, excessive 

multiplication fragmentation should be avoided, and 
therefore some HW waste tolerated. For this purpose, the 
Maximum Internal Wastage Allowed (MIWA) parameter 
is introduced to quantify the maximum HW waste allowed 
by the designer in every design. Be the Internal Wastage 
(IW) of a multiplier in a cycle the percentage of bits 
discarded from the result in that cycle (due to the 
execution of one multiplication over a wider multiplier). 
Hence, the IW average of every multiplier in the datapath 
should not exceed MIWA. Its value ranges between: 
! 0%. Every multiplier in the datapath must execute an 
operation of its same width in every cycle.  
! 100%. No restriction applies. 

Next some concept definitions follow in order to ease 
the understanding of this phase of the algorithm. 
! Multiplication order: Be m≥n and k≥l then m×n > k×l 
(m×n is bigger than k×l) if (m>k) or (m=k and n>l). 
! Occurrence of width m×n in cycle c: number of m×n 
multiplications scheduled in cycle c. 

! Candidate: set of operations formed by zero or one 
operation scheduled in every cycle. Of course, there are 
many different operation alignments of every candidate 
formed by operations of different widths. To reduce the 
algorithm complexity we have only taken into account the 
ones with the least significant bits of the operands aligned. 
Thus, if one operation is executed over a wider FU the 
most significant bits of the result produced are discarded. 
! Interconnection saving of C candidate IS(C): 

IS(C) = BitsOpe(C) + Bits_Res(C) where 
BitsOpe(C): number of bits of the C candidate left and 

right operands that may come from the same sources. 
BitsRes(C): number of bits of the C candidate results that 

may be stored in the same register. 
During this phase the algorithm only handles the yet 

unallocated multiplications. It consists of a loop that 

Fig. 2. Fragmentation of a m××××n bits 
unsigned multiplication into additions. 
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finishes when either there are not remaining unallocated 
multiplications left, or when it is not possible to instance a 
new multiplier without exceeding MIWA parameter (due 
to the given scheduling). These conditions are checked in 
each loop iteration at the end of every step executed by the 
algorithm.  

The first and second steps are performed twice during 
the first iteration, initially to instance and bind 
two-complement signed multipliers, and secondly, 
unsigned multipliers. Only during the first iteration, at the 
end of the second step every unallocated two-complement 
signed multiplications is transformed into one unsigned 
multiplication and two additions, as Fig. 3 shows. In the 
remaining iterations of the algorithm every step is 
performed only once. We detail now these steps. 

Instancing and allocating multipliers without IW. 
For every different width m×n the algorithm instances as 
many multipliers of that width as the minimum occurrence 
of width m×n per cycle. Next, the algorithm allocates 
operations to them. For every instanced multiplier of 
width m×n, it calculates the candidates formed by as many 
multiplications of width m×n as the circuit latency, and 
the IS of every candidate. The algorithm allocates to every 
multiplier the operations of the candidate with greater IS. 

Every multiplier instanced in this step executes one 
operation of its same width per cycle, consequently its IW 
is zero in all cycles.  

Instancing and allocating multipliers with some IW. 
For every different width m×n, and from the biggest, the 
algorithm checks if it is possible to instance one m×n 
multiplier without exceeding MIWA parameter. During 
this checking the algorithm considers in every cycle, the 
operation (able to be executed over an m×n multiplier) 
that produces the least IW of an m×n multiplier. After 
every successful checking the algorithm instances one 
multiplier of the checked width, and allocates operations 
to it. Now the candidates are formed by as many 
operations as the number of cycles in which there is, at 
least, one operation that may be executed over an m×n 
multiplier. The width of the candidate operation scheduled 
in cycle c is that of the operation used in cycle c to 
perform the checking. Hence, each candidate has the same 
number of operations of equal width. 

Once calculated all candidates, the algorithm computes 
their corresponding IS. Next, the operations of the 
candidate with the greatest IS are allocated. 

Multipliers instanced in this step may be unused during 
several cycles, and may also be used to execute narrower 
operations. Nevertheless the IW average of these 
multipliers is always MIWA compliant. 

Fragmenting multiplications. This step of the 
algorithm is only reached when it is not possible to 
instance a new multiplier of the same width as any of the 
yet unallocated multiplications (at this stage the only yet 
unallocated multiplications are unsigned ones) without 
exceeding MIWA parameter. In this step the algorithm 
selects an operation width m×n and a fragment width k×l, 

and fragments some of the m×n multiplications into at 
least one k×l multiplication. These fragmentations 
increase the number of k×l multiplications, which may 
result in the final instance of a multiplier of that width 
(during steps one or two). 
! How are multiplications fragmented?, how many 
fragments are obtained?, which are the type and width of 
every fragment? 

There are many ways of fragmenting one unsigned 
multiplication into a set of narrower multiplications and 
additions. In particular, the number of different 
fragmentations of an m×n multiplication into five 
multiplications and four additions, obtaining at least one 
k×l fragment is (m-k+1)×(n-l+1)×16 (being m≥k and n≥l). 
The number of different fragmentations grows with the 
width of the operation to be fragmented, and decreases as 
the width of the operation fragment augments. 

In the above formula (m-k+1)×(n-l+1) is the number of 
different ways of choosing a k×l multiplication fragment 
from an m×n multiplication. And for each there are 16 
different fragmentations of the remaining part of the 
original multiplication. Fig. 4 a) shows the structure of a 
7×7 multiplication and one of the 36 different ways of 
extracting a 2×2 multiplication from it. For every of these 
36 possibilities there are 16 different ways of fragmenting 
the rest of the 7×7 multiplication, to produce the minimum 
number of fragments (9 operations). These 16 possibilities 
correspond to all different ways of selecting either a 
horizontal or oblique line in every vertex of the 
parallelogram occupied by the selected 2×2 multiplication. 
Fig. 4 b) shows some of these 16 possible fragmentations. 

The calculus of all possible fragmentations requires 
exponential time, so our algorithm only takes into account 
a reduced set of them. This set is formed by the particular 
cases of the general method explained above, which 
fragment minimally the original multiplication. Fig. 5 
shows the set of fragmentations considered. Each of these 
8 ways fragments the original multiplication into a set of 3 
multiplications and 2 additions. 
! How are the operations to be fragmented selected?, 
which is the fragment width? 

First the algorithm selects both the width of the 
operations to be fragmented and the fragment width, and 
afterwards a set of multiplications of the selected width, 
which are finally fragmented. 

Multiplication fragmentation increases the number of 
narrower multiplications, which may result in the instance 
of a new multiplier. Thus the algorithm selects as the 
width of the operations to be fragmented, the width m×n 
of the biggest multiplication that satisfies the next two 
conditions: 
a) There is at least one k×l multiplication, being 
k×l<m×n, that can be executed over an m×n multiplier (i.e. 
m≥k and n≥l). 
b) At least in one cycle there is one m×n multiplication 
scheduled and there are not k×l multiplications scheduled. 



Once chosen the width m×n of the multiplications to be 
fragmented, the algorithm selects the fragment width k×l 
of the biggest multiplication satisfying the above 
conditions. Next the algorithm selects the set of the 
operations to be fragmented. This set is formed by one 
m×n multiplication per cycle in which there are not k×l 
multiplications scheduled. 

If there are not two operations satisfying the above 
conditions among the yet unallocated multiplications, then 
the algorithm selects both two different widths as the 
widths of the operations to be fragmented, and a fragment 
width independent of the remaining unallocated 
multiplications. The widths selected as the widths of the 
operations to be fragmented m×n and k×l, are those of the 
biggest multiplications which satisfy the next conditions: 
a) m×n ≠ k×l 
b) At least in one cycle there is one m×n multiplication 
scheduled and there are not k×l multiplications scheduled. 
c) At least in one cycle there is one k×l multiplication 
scheduled and there are not m×n multiplications 
scheduled. 

In this case the fragment width equals the maximum 
common multiplicative kernel of m×n and k×l 
multiplications, i.e. min(m,k)×min(n,l). Now the set of 
operations to be fragmented is formed by either one m×n 
or one k×l multiplication per cycle. In those cycles in 
which there are operations of both widths scheduled, only 
one multiplication of the biggest width is selected. 

Once selected the set of operations to be fragmented 
and the desired fragment width, there are 8 different ways 
of fragmentation (shown in Fig. 5). The algorithm selects 
one of them, following the next criteria: 
! The best fragmentations are those which obtain in 
addition to one multiplication fragment of the desired 
width, other multiplication fragments of the same width as 
any of the yet unallocated multiplications. 
! Among those fragmentations with identical 
multiplication fragments, the one that requires the smallest 
adder cost is preferable. 

After fragmenting the selected operations the algorithm 
executes again steps one and two to instance, if possible, 
any multiplier of the same width as any of the new 
multiplications (resulting from the fragmentation). 

At the end of this phase, if there still are unallocated 
multiplications (because due to the given scheduling it is 
not possible to instance a new multiplier without 
exceeding the MIWA parameter), these are transformed 
into additions as Fig. 2 shows. 

3.2. Adders selection and binding 
This phase performs jointly the adder selection and 

binding, guaranteeing the maximum bit-level reuse of 
these FUs. The allocated additions may come from three 
different sources: additions in the original specification, 
additive operation transformations, and multiplication 
fragmentations. The algorithm used to perform this phase 
is detailed in [10].  

The datapaths obtained at the end of this phase have the 
following features: 
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.Fig. 4. a) Structure of a 7××××7 unsigned multiplication, and one way of extracting a 2××××2 multiplication fragment 

from it, b) 3 different ways (out of 16 possibilities) of fragmenting the rest of the 7××××7 multiplication. 
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Fig. 5. Fragmentations of an m××××n multiplication 
obtaining a k××××l multiplication fragment. 



! One addition may be executed over a wider adder. 
! One addition may be executed over a set of narrower 
adders linked to propagate the carry signal. 
! The sum of the adder widths is equal to the maximum 
number of bits added simultaneously in a cycle. 
! The number and width of the adders are independent 
of the number and width of the additions allocated. 

4. Experimental results 
In order to measure the quality of the implementations 

obtained by our algorithm, they have been compared to 
those proposed by Synopsys Behavioral Compiler. We 
have synthesized a wide collection of heterogeneous 
specifications formed by multiplications and additive 
operations of different widths. Specifications sizes ranged 
from 10 to 100 operations (about 50% were 
multiplications), latencies varied from 5 to 50 cycles, and 
MIWA values up to 15%.  

Results show that the areas of the implementations 
obtained by our approach are always smaller than the ones 
of the circuits proposed by the commercial tool. For the 
circuits synthesized, the average area saved by our 
approach is about 40%. The amount of saved area grows 
in general with both the specification heterogeneity 
(number of different widths of every different operation 
type in the specification divided by the number of 
operations) and the scheduling heterogeneity (measures 
the uniformity of the operations to cycles distribution) as 
it is shown in Fig. 6 a). Fig. 6 b) shows the average area of 
some implementations obtained by both Synopsys and our 
algorithm, grouped by the number of specification 
operations. 

5. Conclusion 
This paper presents a novel allocation algorithm 

especially suited for heterogeneous specifications and 
macro-cells technologies (due to the structured designs 
obtained). In order to reduce the HW waste produced by 

conventional algorithms, some operations are fragmented  
and executed over a set of linked FUs. 

The implementations obtained are multiple-precision 
datapaths, where the number, type, and width of the HW 
resources used are independent of the circuit specification. 

Experimental results show that the circuits synthesized 
using this allocation algorithm have smaller area than the 
implementations offered by commercial tools. The amount 
of area saved by our approach grows in general with both 
the specification and the scheduling heterogeneities.  
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a) b) 

Fig. 6. a) Percentage of area saved by our algorithm in comparison with Synopsys Behavioral Compiler, b) average 
area of some implementations proposed by Synopsys and our algorithm. 
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